Molecular-Genetic Testing in Hepatocellular Carcinoma and Its Premalignant Conditions

  • Rodney E. Shackelford
  • Greg Mayhall
  • Shankar Japa
  • Aejaz Nasir
  • Mokenge Malafa
  • Domenico CoppolaEmail author
Part of the Cancer Growth and Progression book series (CAGP, volume 16)


Hepatocellular carcinoma (HCC) is the fifth most common malignancy worldwide and the third most common cause of malignancy-associated death. Presently there are relatively few molecular genetic testing directly performed on HCC. However, many molecular genetic tests are performed on conditions that increase the risk for HCC or modify drug treatments for conditions that increase HCC risk, including hepatitis B and C, hemochromatosis, and interleukin-28b testing. Here we review the common molecular diagnostic genetic tests associated with HCC diagnosis and treatment.


Hepatocellular carcinoma (HCC) Hepatitis B (HBV) Hepatitis C (HCV) Hemochromatosis Interleukin-28b p53 MicroRNA 


  1. 1.
    Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:2893–2917PubMedGoogle Scholar
  2. 2.
    Forner A, Llovet JM, Bruix J (2012) Hepatocellular carcinoma. Lancet 379:1245–1255PubMedGoogle Scholar
  3. 3.
    Bosetti C, Levi F, Boffetta P, Lucchini F, Negri E, La Vecchia C (2008) Trends in mortality from hepatocellular carcinoma in Europe, 1980–2004. Hepatology 48:137–145PubMedGoogle Scholar
  4. 4.
    Qiu D, Katanoda K, Marugame T, Sobue T (2009) A Joinpoint regression analysis of long-term trends in cancer mortality in Japan (1958–2004). Int J Cancer 124:443–448PubMedGoogle Scholar
  5. 5.
    Chen CJ, Yang HI, Su J, Jen CL, You SL, Lu SN, Huang GT, Iloeje UH (2006) Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. JAMA 295:65–73PubMedGoogle Scholar
  6. 6.
    Chang MH, Chen CJ, Lai MS, Hsu HM, Wu TC, Kong MS, Liang DC, Shau WY, Chen DS (1997) Universal hepatitis B vaccination in Taiwan and the incidence of hepatocellular carcinoma in children. Taiwan Childhood Hepatoma Study Group. N Engl J Med 336:1855–1859PubMedGoogle Scholar
  7. 7.
    Papatheodoridis GV, Lampertico P, Manolakopoulos S, Lok A (2010) Incidence of hepatocellular carcinoma in chronic hepatitis B patients receiving nucleos(t)ide therapy: a systematic review. J Hepatol 53:348–356PubMedGoogle Scholar
  8. 8.
    MacDonald DC, Nelson M, Bower M, Powles T (2008) Hepatocellular carcinoma, human immunodeficiency virus and viral hepatitis in the HAART era. World J Gastroenterol 14:1657–1663PubMedGoogle Scholar
  9. 9.
    Kew MC (2009) Hepatic iron overload and hepatocellular carcinoma. Cancer Lett 286:38–43PubMedGoogle Scholar
  10. 10.
    Santos PC, Krieger JE, Pereira AC (2012) Molecular diagnostic and pathogenesis of hereditary hemochromatosis. Int J Mol Sci 13:1497–1511PubMedGoogle Scholar
  11. 11.
    Strachan AS (1929) Hemosiderosis and hemochromatosis in South African natives with a comment on the aetiology of hemochromatosis. M.D. thesis, University of Glasgow, GlasgowGoogle Scholar
  12. 12.
    Shackelford RE, Kaufmann WK, Paules RS (2000) Oxidative stress and cell cycle checkpoint function. Free Radic Biol Med 28:1387–1404PubMedGoogle Scholar
  13. 13.
    Gordeuk VR, McLaren CE, MacPhail AP, Deichsel D, Bothwell TH (1996) Associations of iron overload in Africa and hepatocellular carcinoma and tuberculosis. Blood 87:3470–3476PubMedGoogle Scholar
  14. 14.
    Trichopoulos D, Bamia C, Lagiou P et al (2011) Hepatocellular carcinoma risk factors and disease burden in a European cohort: a nested case–control study. J Natl Cancer Inst 103:1686–1695PubMedGoogle Scholar
  15. 15.
    Bravi F, Bosetti C, Tavani A, Bagnardi V, Gallus S, Negri E, Franceschi S, La Vecchia C (2007) Coffee drinking and hepatocellular carcinoma risk: a meta-analysis. Hepatology 46:430–435PubMedGoogle Scholar
  16. 16.
    Yu MC, Yuan JM (2004) Environmental factors and risk for hepatocellular carcinoma. Gastroenterology 127:S72–S78PubMedGoogle Scholar
  17. 17.
    Chuang SC, La Vecchia C, Boffetta P (2009) Liver cancer: descriptive epidemiology and risk factors other than HBV and HCV infection. Cancer Lett 286:9–14PubMedGoogle Scholar
  18. 18.
    Pietrangelo A (2004) Hereditary hemochromatosis – a new look at an old disease. N Engl J Med 350:2383–2397PubMedGoogle Scholar
  19. 19.
    Bradbear RA, Bain C, Siskind V, Schofield FD, Webb S, Axelsen EM, Halliday JW, Bassett ML, Powell LW (1985) Cohort study of internal malignancy in genetic hemochromatosis and other chronic non- alcoholic liver diseases. J Natl Cancer Inst 75:81–84PubMedGoogle Scholar
  20. 20.
    Strohmeyer G, Niederau C, Stremmel W (1988) Survival and causes of death in hemochromatosis. Observations in 163 patients. Ann N Y Acad Sci 526:245–257PubMedGoogle Scholar
  21. 21.
    Bacon BR (2012) Hemochromatosis: discovery of the HFE gene. Mo Med 109:133–136PubMedGoogle Scholar
  22. 22.
    Adams PC, Speechley M, Kertesz AE (1991) Long-term survival analysis inhereditary hemochromatosis. Gastroenterology 101:368–372PubMedGoogle Scholar
  23. 23.
    Zhang H, Zhai Y, Hu Z, Wu C, Qian J et al (2010) Genome-wide association study identifies 1p36.22 as a new susceptibility locus for hepatocellular carcinoma in chronic hepatitis B virus carriers. Nat Genet 42:755–758PubMedGoogle Scholar
  24. 24.
    Chan KY, Wong CM, Kwan JS et al (2011) Genome-wide association study of hepatocellular carcinoma in Southern Chinese patients with chronic hepatitis B virus infection. PLoS One 6:e28798PubMedGoogle Scholar
  25. 25.
    Clifford RJ, Zhang J, Meerzaman DM, Lyu MS et al (2010) Genetic variations at loci involved in the immune response are risk factors for hepatocellular carcinoma. Hepatology 52:2034–2043PubMedGoogle Scholar
  26. 26.
    Tanabe KK, Lemoine A, Finkelstein DM, Kawasaki H et al (2008) Epidermal growth factor gene functional polymorphism and the risk of hepatocellular carcinoma in patients with cirrhosis. JAMA 299:53–60PubMedGoogle Scholar
  27. 27.
    Hassan MM, Spitz MR, Thomas MB et al (2009) The association of family history of liver cancer with hepatocellular carcinoma: a case–control study in the United States. J Hepatol 50:334–341PubMedGoogle Scholar
  28. 28.
    Sakamoto M, Effendi K, Masugi Y (2010) Molecular diagnosis of multistage hepatocarcinogenesis. Jpn J Clin Oncol 40:891–896PubMedGoogle Scholar
  29. 29.
    International Consensus Group for Hepatocellular Neoplasia (2009) Pathologic diagnosis of early hepatocellular carcinoma: a report of the international consensus group for hepatocellular neoplasia. Hepatology 49:658–664Google Scholar
  30. 30.
    Hoshida Y, Villanueva A, Kobayashi M et al (2008) Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J Med 359:1995–2004PubMedGoogle Scholar
  31. 31.
    Dong H, Ge X, Shen Y, Chen L et al (2009) Gene expression profile analysis of human hepatocellular carcinoma using SAGE and LongSAGE. BMC Med Genomics 2:5PubMedGoogle Scholar
  32. 32.
    Yang J, Seol SY, Leem SH et al (2011) Genes associated with recurrence of hepatocellular carcinoma: integrated analysis by gene expression and methylation profiling. J Korean Med Sci 26:1428–1438PubMedGoogle Scholar
  33. 33.
    Evans CG, Chang L, Gestwicki JE (2010) Heat shock protein 70 (hsp70) as an emerging drug target. J Med Chem 53:4585–4602PubMedGoogle Scholar
  34. 34.
    Garrido C, Gurbuxani S, Ravagnan L, Kroemer G (2001) Heat shock proteins: endogenous modulators of apoptotic cell death. Biochem Biophys Res Commun 286:433–442PubMedGoogle Scholar
  35. 35.
    Helmbrecht K, Zeise E, Rensing L (2000) Chaperones in cell cycle regulation and mitogenic signal transduction: a review. Cell Prolif 33:341–365PubMedGoogle Scholar
  36. 36.
    Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10:86–103PubMedGoogle Scholar
  37. 37.
    Rohde M, Daugaard M, Jensen MH, Helin K, Nylandsted J, Jaattela M (2005) Members of the heat- shock protein 70 family promote cancer cell growth by distinct mechanisms. Genes Dev 19:570–582PubMedGoogle Scholar
  38. 38.
    Sliutz G, Karlseder J, Tempfer C, Orel L, Holzer G, Simon MM (1996) Drug resistance against gemcitabine and topotecan mediated by constitutive hsp70 overexpression in vitro: implication of quercetin as sensitiser in chemotherapy. Br J Cancer 74:172–177PubMedGoogle Scholar
  39. 39.
    Seo JS, Park YM, Kim JI, Shim EH, Kim CW, Jang JJ, Kim SH, Lee WH (1996) T cell lymphoma in transgenic mice expressing the human Hsp70 gene. Biochem Biophys Res Commun 218:582–587PubMedGoogle Scholar
  40. 40.
    Chuma M, Sakamoto M, Yamazaki K et al (2003) Expression profiling in multistage hepatocarcinogenesis: identification of HSP70 as a molecular marker of early hepatocellular carcinoma. Hepatology 37(1):198–207PubMedGoogle Scholar
  41. 41.
    Di Tommaso L, Franchi G, Park YN et al (2007) Diagnostic value of HSP70, glypican 3, and glutamine synthetase in hepatocellular nodules in cirrhosis. Hepatology 45:725–734PubMedGoogle Scholar
  42. 42.
    Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL, Morrison SJ, Clarke MF (2003) Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 23:302–305Google Scholar
  43. 43.
    Valk-Lingbeek ME, Bruggeman SW, van Lohuizen M (2004) Stem cells and cancer; the polycomb connection. Cell 118:409–418PubMedGoogle Scholar
  44. 44.
    Dimri GP, Martinez JL, Jacobs JJ, Keblusek P, Itahana K, Van Lohuizen M et al (2002) The Bmi-1 oncogene induces telomerase activity and immortalizes human mammary epithelial cells. Cancer Res 62:4736–4745PubMedGoogle Scholar
  45. 45.
    Glinsky GV (2007) Stem cell origin of death-from-cancer phenotypes of human prostate and breast cancers. Stem Cell Rev 3:79–93PubMedGoogle Scholar
  46. 46.
    Wang H, Pan K, Zhang HK, Weng DS, Zhou J, Li JJ, Huang W, Song HF, Chen MS, Xia JC (2008) Increased polycomb-group oncogene Bmi-1 expression correlates with poor prognosis in hepatocellular carcinoma. J Cancer Res Clin Oncol 134:535–541PubMedGoogle Scholar
  47. 47.
    Li DW, Tang HM, Fan JW, Yan DW, Zhou CZ, Li SX, Wang XL, Peng ZH (2010) Expression level of Bmi-1 oncoprotein is associated with progression and prognosis in colon cancer. J Cancer Res Clin Oncol 136:997–1006PubMedGoogle Scholar
  48. 48.
    Wu Z, Min L, Chen D, Hao D, Duan Y, Qiu G, Wang Y (2011) Overexpression of BMI-1 promotes cell growth and resistance to cisplatin treatment in osteosarcoma. PLoS One 6:e14648PubMedGoogle Scholar
  49. 49.
    Effendi K, Mori T, Komuta M, Masugi Y, Du W, Sakamoto M (2010) Bmi-1 gene is upregulated in early-stage hepatocellular carcinoma and correlates with ATP-binding cassette transporter B1 expression. Cancer Sci 101:666–672PubMedGoogle Scholar
  50. 50.
    Liaw SH, Kuo I, Eisenberg D (1995) Discovery of the ammonium substrate site on glutamine synthetase, a third cation binding site. Protein Sci 4:2358–2365PubMedGoogle Scholar
  51. 51.
    Reitzer LJ, Wice BM, Kennell D (1979) Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J Biol Chem 254:2669–2676PubMedGoogle Scholar
  52. 52.
    Moorman AF, de Boer PA, Geerts WJ et al (1988) Complementary distribution of carbamoylphosphate synthetase (ammonia) and glutamine synthetase in rat liver acinus is regulated at a pretranslational level. J Histochem Cytochem 36:751–755PubMedGoogle Scholar
  53. 53.
    Zucman-Rossi J, Benhamouche S, Godard C et al (2007) Differential effects of inactivated Axin1 and activated beta-catenin mutations in human hepatocellular carcinomas. Oncogene 26:774–780PubMedGoogle Scholar
  54. 54.
    Cadoret A, Ovejero C, Terris B et al (2002) New targets of beta-catenin signaling in the liver are involved in the glutamine metabolism. Oncogene 21:8293–8301PubMedGoogle Scholar
  55. 55.
    Christa L, Simon MT, Flinois JP et al (1994) Overexpression of glutamine synthetase in human primary liver cancer. Gastroenterology 106:1312–1320PubMedGoogle Scholar
  56. 56.
    Osada T, Sakamoto M, Nagawa H et al (1999) Acquisition of glutamine synthetase expression in human hepatocarcinogenesis: relation to disease recurrence and possible regulation by ubiquitin-dependent proteolysis. Cancer 85:819–831PubMedGoogle Scholar
  57. 57.
    Bioulac-Sage P, Rebouissou S, Thomas C et al (2007) Hepatocellular adenoma subtype classification using molecular markers and immunohistochemistry. Hepatology 46:740–748PubMedGoogle Scholar
  58. 58.
    Bialecki ES, Di Bisceglie AM (2005) Diagnosis of hepatocellular carcinoma. HPB (Oxford) 7:26–34Google Scholar
  59. 59.
    Varma V, Cohen C (2004) Immunohistochemical and molecular markers in the diagnosis of hepatocellular carcinoma. Adv Anat Pathol 11:239–249PubMedGoogle Scholar
  60. 60.
    Hubberstey AV, Mottillo EP (2002) Cyclase-associated proteins: CAPacity for linking signal transduction and actin polymerization. FASEB J 16:487–499PubMedGoogle Scholar
  61. 61.
    Yu G, Swiston J, Young D (1994) Comparison of human CAP and CAP2, homologs of the yeast adenylyl cyclase-associated proteins. J Cell Sci 107:1671–1678PubMedGoogle Scholar
  62. 62.
    Shibata R, Mori T, Du W, Chuma M, Gotoh M, Shimazu M et al (2006) Overexpression of cyclase-associated protein 2 in multistage hepatocarcinogenesis. Clin Cancer Res 12:5363–5368PubMedGoogle Scholar
  63. 63.
    Libbrecht L, Severi T, Cassiman D et al (2006) Glypican-3 expression distinguishes small hepatocellular carcinomas from cirrhosis, dysplastic nodules, and focal nodular hyperplasia-like nodules. Am J Surg Pathol 30:1405–1411PubMedGoogle Scholar
  64. 64.
    Wang XY, Degos F, Dubois S, Tessiore S et al (2006) Glypican-3 expression in hepatocellular tumors: diagnostic value for preneoplastic lesions and hepatocellular carcinomas. Hum Pathol 37:1435–1441PubMedGoogle Scholar
  65. 65.
    Abdul-Al HM, Makhlou HR, Wang G, Goodman ZD (2008) Glypican-3 expression in benign liver tissue with active hepatitis C: implications for the diagnosis of hepatocellular carcinoma. Hum Pathol 39:209–212PubMedGoogle Scholar
  66. 66.
    Nakatsuka T, Kageshita T, Ito S, Wakamatsu K, Monji M, Ikuta Y et al (2004) Identification of glypican-3 as a novel tumor marker for melanoma. Clin Cancer Res 10:6612–6621Google Scholar
  67. 67.
  68. 68.
    Gan EK, Powell LW, Olynyk JK (2011) Natural history and management of HFE-hemochromatosis. Semin Liver Dis 31:293–301PubMedGoogle Scholar
  69. 69.
    Santos PC, Dinardo CL, Cançado RD et al (2012) Non-HFE hemochromatosis. Rev Bras Hematol Hemoter 34:311–316PubMedGoogle Scholar
  70. 70.
    Feder JN, Gnirke A, Thomas W, Tsuchihashi Z, Ruddy DA et al (1996) A novel MHC class-I gene is mutated in patients with hereditary haemochromatosis. Nat Genet 13:399–408PubMedGoogle Scholar
  71. 71.
    Sanchez M, Bruguera M, Rodes J, Oliva R (2001) Complete characterization of the 39 region of the human and mouse hereditary hemochromatosis HFE gene and detection of novel splicing forms. Blood Cells Mol Dis 27:35–43PubMedGoogle Scholar
  72. 72.
    Jeffrey GP, Basclain K, Hajek J, Chakrabarti S, Adams PC (1999) Alternate splicing produces a soluble form of the hereditary hemochromatosis protein HFE. Blood Cells Mol Dis 25:61–67PubMedGoogle Scholar
  73. 73.
    Rhodes DA, Trowsdale J (1999) Alternate splice variants of the hemochromatosis gene HFE. Immunogenetics 49:357–359PubMedGoogle Scholar
  74. 74.
    Thenie A, Orhant M, Gicquel I, Fergelot P, Le Gall JY et al (2000) The HFE gene undergoes alternate splicing processes. Blood Cells Mol Dis 26:155–162PubMedGoogle Scholar
  75. 75.
    Martins R, Silva B, Proenca D, Faustino P (2011) Differential HFE gene expression is regulated by alternative splicing in human tissues. PLoS One 6:e17542PubMedGoogle Scholar
  76. 76.
    Worwood M, Shearman JD, Wallace DF, Dooley LS, Merryweather- Clarke AT, Pointon LL et al (1997) A simple genetic test identifies 90 % of UK patients with haemochromatosis. Gut 41:841–844Google Scholar
  77. 77.
    Bridle KR, Frazer DM, Wilkins SJ, Dixon JL, Purdie DM, Crawford DH, Subramaniam VN, Powell LW, Anderson GJ, Ramm GA (2003) Disrupted hepcidin regulation in HFE-associated haemochromatosis and the liver as a regulator of body iron homoeostasis. Lancet 361:669–673PubMedGoogle Scholar
  78. 78.
    Stott MK, Fellowes AP, Upton JD, Burt MJ, George PM (1999) Simple multiplex PCR for the simultaneous detection of the C282Y and H63D hemochromatosis (HFE) gene mutations. Clin Chem 45:426–428PubMedGoogle Scholar
  79. 79.
    Huang MM, Arnheim N, Goodman MF (1992) Extension of base mispairs by Taq DNA polymerase: implications for single nucleotide discrimination in PCR. Nucleic Acids Res 20:4567–4573PubMedGoogle Scholar
  80. 80.
    Kimura H, Kasahara K, Kawaishi M, Kunitoh H, Tamura T, Holloway B, Nishio K (2006) Detection of epidermal growth factor receptor mutations in serum as a predictor of the response to gefitinib in patients with non-small-cell lung cancer. Clin Cancer Res 12:3915–3921PubMedGoogle Scholar
  81. 81.
    Sánchez M, Villa M, Ingelmo M et al (2003) Population screening for hemochromatosis: a study in 5370 Spanish blood donors. J Hepatol 38:745–750PubMedGoogle Scholar
  82. 82.
    Higuchi R (1989) DNA from whole blood for PCR. Amplifications 2:1–3Google Scholar
  83. 83.
    Cukjati M, Koren S, Curin Serbec V, Vidan-Jeras B, Rupreht R (2007) A novel homozygous frameshift deletion c.471del of HFE associated with hemochromatosis. Clin Genet 71:350–353PubMedGoogle Scholar
  84. 84.
    Gemmati D, Zeri G, Orioli E, De Gaetano FE et al (2012) Polymorphisms in the genes coding for iron binding and transporting proteins are associated with disability, severity, and early progression in multiple sclerosis. BMC Med Genet 13:70PubMedGoogle Scholar
  85. 85.
    Bach V, Barceló MJ, Altés A et al (2006) Genotyping the HFE gene by melting point analysis with the LightCycler system: pros and cons. Blood Cells Mol Dis 36:288–291PubMedGoogle Scholar
  86. 86.
    Aguilar-Martinez P, Lok CY, Cunat S, Cadet E, Robson K, Rochette J (2007) Juvenile hemochromatosis caused by a novel combination of hemojuvelin G320V/R176C mutations in a 5-year old girl. Haematologica 92:421–422PubMedGoogle Scholar
  87. 87.
    De Lima Santos PC, Pereira AC, Cancado RD, Schettert IT, Hirata RD, Hirata MH, Figueiredo MS, Chiattone CS, Krieger JE, Guerra-Shinohara EM (2010) Hemojuvelin and hepcidin genes sequencing in Brazilian patients with primary iron overload. Genet Test Mol Biomark 14:803–806Google Scholar
  88. 88.
    Lanzara C, Roetto A, Daraio F, Rivard S, Ficarella R, Simard H, Cox TM, Cazzola M, Piperno A, Gimenez-Roqueplo AP et al (2004) Spectrum of hemojuvelin gene mutations in 1q-linked juvenile hemochromatosis. Blood 103:4317–4321PubMedGoogle Scholar
  89. 89.
    Lee PL, Beutler E, Rao SV, Barton JC (2004) Genetic abnormalities and juvenile hemochromatosis: mutations of the HJV gene encoding hemojuvelin. Blood 103:4669–4671PubMedGoogle Scholar
  90. 90.
    Roetto A, Papanikolaou G, Politou M et al (2003) Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis. Nat Genet 33:21–22PubMedGoogle Scholar
  91. 91.
    Hattori A, Tomosugi N, Tatsumi Y et al (2012) Identification of a novel mutation in the HAMP gene that causes non-detectable hepcidin molecules in a Japanese male patient with juvenile hemochromatosis. Blood Cells Mol Dis 48:179–182PubMedGoogle Scholar
  92. 92.
    Biasiotto G, Belloli S, Ruggeri G et al (2003) Identification of new mutations of the HFE, hepcidin, and transferrin receptor 2 genes by denaturing HPLC analysis of individuals with biochemical indications of iron overload. Clin Chem 49:1981–1988PubMedGoogle Scholar
  93. 93.
    Kawabata H, Yang R, Hirama T, Vuong PT, Kawano S, Gombart AF, Koeffler HP (1999) Molecular cloning of transferrin receptor 2: a new member of the transferrin receptor-like family. J Biol Chem 274:20826–20832PubMedGoogle Scholar
  94. 94.
    Roetto A, Totaro A, Piperno A et al (2001) New mutations inactivating transferrin receptor 2 in hemochromatosis type 3. Blood 97:2555–2560PubMedGoogle Scholar
  95. 95.
    Anderson GJ, Vulpe CD (2009) Mammalian iron transport. Cell Mol Life Sci 66:3241–3261PubMedGoogle Scholar
  96. 96.
    Yang F, Liu X, Quinones M, Melby PC, Ghio A, Haile DJ (2002) Regulation of reticuloendothelial iron transporter MTP1 (Slc11a3) by inflammation. J Biol Chem 277:39786–39791PubMedGoogle Scholar
  97. 97.
    Pietrangelo A, Caleffi A, Corradini E (2011) Non-HFE hepatic iron overload. Semin Liver Dis 31:302–318PubMedGoogle Scholar
  98. 98.
    Montosi G, Donovan A, Totaro A et al (2001) Autosomal-dominant hemochromatosis is associated with a mutation in the ferroportin (SLC11A3) gene. J Clin Invest 108:619–623PubMedGoogle Scholar
  99. 99.
    Pietrangelo A, Montosi G, Totaro A et al (1999) Hereditary hemochromatosis in adults without pathogenic mutations in the hemochromatosis gene. N Engl J Med 341:725–732PubMedGoogle Scholar
  100. 100.
    Lavanchy D (2004) Hepatitis B, virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. J Viral Hepat 11:97–107PubMedGoogle Scholar
  101. 101.
    Liaw YF, Chu CM (2009) Hepatitis B virus infection. Lancet 373:582–592PubMedGoogle Scholar
  102. 102.
    Dienstag JL (2008) Hepatitis B, virus infection. N Engl J Med 359:1486–1500PubMedGoogle Scholar
  103. 103.
    Valsamakis A (2007) Molecular testing in the diagnosis and management of chronic hepatitis B. Clin Microbiol Rev 20:426–439PubMedGoogle Scholar
  104. 104.
    Martinot-Peignoux M, Boyer N, Colombat M et al (2002) Serum hepatitis B virus DNA levels and liver histology in inactive HBsAg carriers. J Hepatol 36:543–546PubMedGoogle Scholar
  105. 105.
    Ishak K, Baptista A, Bianchi L et al (1995) Histological grading and staging of chronic hepatitis. J Hepatol 22:696–699PubMedGoogle Scholar
  106. 106.
    Berninger M, Hammer M, Hoyer B, Gerin J (1982) An assay for the detection of the DNA genome of hepatitis B virus in serum. J Med Virol 9:57–68PubMedGoogle Scholar
  107. 107.
    Guo KJ, Bowden DS (1991) Digoxigenin-labeled probes for the detection of hepatitis B virus DNA in serum. J Clin Microbiol 29:506–509PubMedGoogle Scholar
  108. 108.
    Tsongalis GJ (2006) Branched DNA, technology in molecular diagnostics. Am J Clin Pathol 126:448–453PubMedGoogle Scholar
  109. 109.
    Chen CH, Wang JT, Lee CZ et al (1995) Quantitative detection of hepatitis B virus DNA in human sera by branched-DNA signal amplification. J Virol Methods 53:131–137PubMedGoogle Scholar
  110. 110.
    Abe A, Inoue K, Tanaka T et al (1999) Quantitation of hepatitis B virus genomic DNA by real-time detection PCR. J Clin Microbiol 37:2899–2903PubMedGoogle Scholar
  111. 111.
    Mackay IM, Arden KE, Nitsche A (2002) Real-time PCR in virology. Nucleic Acids Res 30:1292–1305PubMedGoogle Scholar
  112. 112.
    Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RT-PCR. Nat Protoc 1:1559–1582PubMedGoogle Scholar
  113. 113.
    Germer JJ, Qutub MO, Mandrekar JN et al (2006) Quantification of hepatitis B virus (HBV) DNA with a TaqMan HBV analyte-specific reagent following sample processing with the MagNA pure LC instrument. J Clin Microbiol 44:1490–1494PubMedGoogle Scholar
  114. 114.
    Wang Q, Wang X, Zhang J, Song G (2012) LNA real-time PCR probe quantification of hepatitis B virus DNA. Exp Ther Med 3:503–508PubMedGoogle Scholar
  115. 115.
    Veedu RN, Wengel J (2010) Locked nucleic acids: promising nucleic acid analogs for therapeutic applications. Chem Biodivers 7:536–542PubMedGoogle Scholar
  116. 116.
    Orito E, Mizokami M, Ina Y, Moriyama EN et al (1989) Host-independent evolution and a genetic classification of the hepadnavirus family based on nucleotide sequences. Proc Natl Acad Sci U S A 86:7059–7062PubMedGoogle Scholar
  117. 117.
    Okamoto H, Tsuda F, Sakugawa H et al (1988) Typing hepatitis B virus by homology in nucleotide sequence: comparison of surface antigen subtypes. J Gen Virol 69:2575–2583PubMedGoogle Scholar
  118. 118.
    Stuyver L, De Gendt S, Van Geyt C et al (2000) A new genotype of hepatitis B virus: complete genome and phylogenetic relatedness. J Gen Virol 81:67–74PubMedGoogle Scholar
  119. 119.
    Miyakawa Y, Mizokami M (2003) Classifying hepatitis B virus genotypes. Intervirology 46:329–338PubMedGoogle Scholar
  120. 120.
    Kidd-Ljunggren K, Miyakawa Y, Kidd AH (2002) Genetic variability in hepatitis B viruses. J Gen Virol 83:1267–1280PubMedGoogle Scholar
  121. 121.
    Kao JH, Chen PJ, Lai MY, Chen DS (2000) Hepatitis B genotypes correlate with clinical outcomes in patients with chronic hepatitis B. Gastroenterology 118:554–559PubMedGoogle Scholar
  122. 122.
    Thakur V, Guptan RC, Kazim SN et al (2002) Profile, spectrum and significance of HBV genotypes in chronic liver disease patients in the Indian subcontinent. J Gastroenterol Hepatol 17:165–170PubMedGoogle Scholar
  123. 123.
    Wiegand J, Hasenclever D, Tillmann HL (2008) Should treatment of hepatitis B depend on hepatitis B virus genotypes? A hypothesis generated from an explorative analysis of published evidence. Antivir Ther 13:211–220PubMedGoogle Scholar
  124. 124.
    Janssen HL, van Zonneveld M, Senturk H et al (2005) Pegylated interferon alfa-2b alone or in combination with lamivudine for HBeAg-positive chronic hepatitis B: a randomised trial. Lancet 365:123–129PubMedGoogle Scholar
  125. 125.
    Koedijk FD, van Houdt R, Op de Coul EL et al (2008) Hepatitis B virus transmission patterns in the Netherlands, 2004. Ned Tijdschr Geneeskd 152:2673–2680PubMedGoogle Scholar
  126. 126.
    Alam MM, Zaidi SZ, Shaukat S et al (2007) Common genotypes of hepatitis B virus prevalent in injecting drug abusers (addicts) of North West Frontier Province of Pakistan. Virol J 4:63PubMedGoogle Scholar
  127. 127.
    Guirgis BS, Abbas RO, Azzazy HM (2010) Hepatitis B virus genotyping: current methods and clinical implications. Int J Infect Dis 14:e941–e953PubMedGoogle Scholar
  128. 128.
  129. 129.
    Lindstom A, Odeberg J, Albert J (2004) Pyrosequencing for detection of lamivudine-resistant hepatitis B virus. J Clin Microbiol 42:4788–4795Google Scholar
  130. 130.
    Liu WC, Lindh M, Buti M et al (2008) Genotyping of hepatitis B virus – genotypes a to g by multiplex polymerase chain reaction. Intervirology 51:247–252PubMedGoogle Scholar
  131. 131.
    Yeh SH, Tsai CY, Kao JH et al (2004) Quantification and genotyping of hepatitis B virus in a single reaction by real-time PCR and melting curve analysis. J Hepatol 41:659–666PubMedGoogle Scholar
  132. 132.
    Lindh M, Andersson AS, Gusdal A (1997) Genotypes, nt 1858 variants, and geographic origin of hepatitis B virus – large-scale analysis using a new genotyping method. J Infect Dis 175:1285–1293PubMedGoogle Scholar
  133. 133.
    Lee JM, Ahn SH, Chang HY et al (2004) Reappraisal of HBV genotypes and clinical significance in Koreans using MALDI-TOF mass spectrometry. Korean J Hepatol 10:260–270PubMedGoogle Scholar
  134. 134.
    Kriegshäuser G, Auner V, Schuster E et al (2011) KRAS mutation analysis in genomic DNA isolated from formalin-fixed paraffin-embedded ovarian tissue: evaluation of a strip-based reverse-hybridisation assay. J Clin Pathol 64:252–256PubMedGoogle Scholar
  135. 135.
    Prix L, Uciechowski P, Böckmann B, Giesing M, Schuetz AJ (2002) Diagnostic biochip array for fast and sensitive detection of K-ras mutations in stool. Clin Chem 48:428–435PubMedGoogle Scholar
  136. 136.
    Ausch C, Buxhofer-Ausch V, Oberkanins C et al (2009) Sensitive detection of KRAS mutations in archived formalin-fixed paraffin-embedded tissue using mutant-enriched PCR and reverse-hybridization. J Mol Diagn 11:508–513PubMedGoogle Scholar
  137. 137.
    Fariña Sarasqueta A, Moerland E, de Bruyne H et al (2011) SNaPshot and StripAssay as valuable alternatives to direct sequencing for KRAS mutation detection in colon cancer routine diagnostics. J Mol Diagn 13:199–205PubMedGoogle Scholar
  138. 138.
    Gauthier M, Bonnaud B, Arsac M et al (2010) Microarray for hepatitis B virus genotyping and detection of 994 mutations along the genome. J Clin Microbiol 48:4207–4215PubMedGoogle Scholar
  139. 139.
    Tran N, Berne R, Chann R et al (2006) European multicenter evaluation of high-density DNA probe arrays for detection of hepatitis B virus resistance mutations and identification of genotypes. J Clin Microbiol 44:2792–2800PubMedGoogle Scholar
  140. 140.
    Ali MM, Hasan F, Ahmad S, Al-Nakib W (2010) Comparative evaluation of INNO-LiPA HBV assay, direct DNA sequencing and subtractive PCR-RFLP for genotyping of clinical HBV isolates. Virol J 7:111PubMedGoogle Scholar
  141. 141.
    Olivier M (2005) The Invader assay for SNP genotyping. Mutat Res 573:103–110PubMedGoogle Scholar
  142. 142.
    Tadokoro K, Kobayashi M, Yamaguchi T et al (2006) Classification of hepatitis B virus genotypes by the PCR-Invader method with genotype-specific probes. J Virol Methods 138:30–39PubMedGoogle Scholar
  143. 143.
  144. 144.
  145. 145.
    Hanafiah KM, Groeger J, Flaxman AD, Wiersma ST (2012) Global epidemiology of hepatitis C virus infection: new estimates of age-specific antibody to hepatitis C virus seroprevalence. Hepatology. doi: 10.1002/hep.26141 Google Scholar
  146. 146.
    Kim WR (2002) The burden of hepatitis C in the United States. Hepatology 36:S30–S34PubMedGoogle Scholar
  147. 147.
    Robertson B, Myers G, Howard C et al (1998) Classification, nomenclature, and database development for hepatitis C virus (HCV) and related viruses: proposals for standardization. Arch Virol 143:2493–2503PubMedGoogle Scholar
  148. 148.
    NIH Consens State Sci Statements (2002) 19:1–46Google Scholar
  149. 149.
    Robertson B, Myers G, Howard C et al (1998) Classification, nomenclature, and database development for hepatitis C virus (HCV) and related viruses: proposals for standardization. International Committee on Virus Taxonomy. Arch Virol 143:2493–2503PubMedGoogle Scholar
  150. 150.
    Hnatyszyn HJ (2005) Chronic hepatitis C and genotyping: the clinical significance of determining HCV genotypes. Antivir Ther 10:1–11PubMedGoogle Scholar
  151. 151.
  152. 152.
    Scott JD, Gretch DR (2007) Molecular diagnostics of hepatitis C virus infection: a systematic review. JAMA 297:724–732PubMedGoogle Scholar
  153. 153.
    Pearlman BL (2011) The IL-28 genotype: how it will affect the care of patients with hepatitis C virus infection. Curr Gastroenterol Rep 13:78–86PubMedGoogle Scholar
  154. 154.
    Bonetti P, Chemello L, Antona C et al (1997) Treatment of chronic hepatitis C with interferon-alpha by monitoring the response according to viraemia. J Viral Hepat 4:107–112PubMedGoogle Scholar
  155. 155.
    Tong MJ, Blatt LM, Tong LT et al (1998) Long-term retreatment in chronic hepatitis C patients who were non-responders to an initial course of interferon-alpha 2b. J Viral Hepat 5:323–331PubMedGoogle Scholar
  156. 156.
    Kleiber J, Walter T, Haberhausen G et al (2000) Performance characteristics of a quantitative, homogeneous TaqMan RT-PCR test for HCV RNA. J Mol Diagn 2:158–166PubMedGoogle Scholar
  157. 157.
    Halfon P, Bourlière M, Pénaranda G et al (2006) Real-time PCR assays for hepatitis C virus (HCV) RNA quantitation are adequate for clinical management of patients with chronic HCV infection. J Clin Microbiol 44:2507–2511PubMedGoogle Scholar
  158. 158.
    Fried MW, Shiffman ML, Reddy KR et al (2002) Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N Engl J Med 347:975–982PubMedGoogle Scholar
  159. 159.
    Manns MP, McHutchison JG, Gordon SC et al (2001) Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomized trial. Lancet 358:958–965PubMedGoogle Scholar
  160. 160.
    Verbeeck J, Maes P, Lemey P, Pybus OG et al (2006) Investigating the origin and spread of hepatitis C virus genotype 5a. J Virol 80:4220–4226PubMedGoogle Scholar
  161. 161.
    Nguyen MH, Keeffe EB (2005) Prevalence and treatment of hepatitis C virus genotypes 4, 5 and 6. Clin Gastroenterol Hepatol 3:S97–S101PubMedGoogle Scholar
  162. 162.
    Legrand-Abravanel F, Sandres-Saune K, Barange L et al (2004) Hepatitis C virus genotype 5: epidemiological characteristics and sensitivity to combination therapy with interferon-alpha plus ribavirine. J Infect Dis 189:1397–1400PubMedGoogle Scholar
  163. 163.
    Verbeeck J, Stanley MJ, Shieh J et al (2008) Evaluation of Versant hepatitis C virus genotype assay (LiPA) 2.0. J Clin Microbiol 46:1901–1906PubMedGoogle Scholar
  164. 164.
    Elahi E, Pourmand N, Chaung R et al (2003) Determination of hepatitis C virus genotype by Pyrosequencing. J Virol Methods 109:171–176PubMedGoogle Scholar
  165. 165.
    Nakatani SM, Santos CA, Riediger IN et al (2011) Comparative performance evaluation of hepatitis C virus genotyping based on the 5′ untranslated region versus partial sequencing of the NS5B region of Brazilian patients with chronic hepatitis C. Virol J 8:459PubMedGoogle Scholar
  166. 166.
    Schutzbank TE, Sefers SE, Kahmann N et al (2006) Comparative evaluation of three commercially available methodologies for hepatitis C virus genotyping. J Clin Microbiol 44:3797–3798PubMedGoogle Scholar
  167. 167.
    Ank N, Paludan SR (2009) Type III interferons: new layers of complexity in innate antiviral immunity. Biofactors 35:82–87PubMedGoogle Scholar
  168. 168.
    Pagliaccetti NE, Eduardo R, Kleinstein SH et al (2008) Interleukin-29 (inteferon-lambda1) functions cooperatively with interferon to induce antiviral gene expression and inhibit hepatitis C replication. J Biol Chem 283:30079–30089PubMedGoogle Scholar
  169. 169.
    Ge D, Fellay J, Thompson AJ et al (2009) Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 461:399–401PubMedGoogle Scholar
  170. 170.
    McCarthy JJ, Li JH, Thompson A, Suchindran S et al (2010) Replicated association between an IL28B gene variant and a sustained response to pegylated interferon and ribavirin. Gastroenterology 138:2307–2314PubMedGoogle Scholar
  171. 171.
    Fiorina L, Paolucci S, Papadimitriou S, Baldanti F (2012) Comparison of three different methods for the evaluation of IL28 and ITPA polymorphisms in patients infected with HCV. J Virol Methods 184:103–105PubMedGoogle Scholar
  172. 172.
    Cook L, Diem K, Kim W et al (2012) Allele-specific PCR for determination of IL28B genotype. J Clin Microbiol 50:4144–4146PubMedGoogle Scholar
  173. 173.
    Sharafi H, Pouryasin H, Alavian SM et al (2012) Development and validation of a simple, rapid and inexpensive PCR-RFLP method for genotyping of common IL28B polymorphisms: a useful pharmacogenetic tool for prediction of hepatitis C treatment response. Hepat Mon 12:190–195PubMedGoogle Scholar
  174. 174.
    Ito K, Higami K et al (2011) The rs8099917 polymorphism, when determined by a suitable genotyping method, is a better predictor for response to pegylated alpha interferon/ribavirin therapy in Japanese patients than other single nucleotide polymorphisms associated with interleukin-28B. J Clin Microbiol 49:1853–1860PubMedGoogle Scholar
  175. 175.
    Eurich D, Boas-Knoop S, Ruehl M et al (2011) Relationship between the interleukin-28b gene polymorphism and the histological severity of hepatitis C virus-induced graft inflammation and the response to antiviral therapy after liver transplantation. Liver Transpl 17:289–298PubMedGoogle Scholar
  176. 176.
    Llovet JM, Burroughs A, Bruix J (2003) Hepatocellular carcinoma. Lancet 362:1907–1917PubMedGoogle Scholar
  177. 177.
    Llovet JM, Bruix J (2008) Novel advancements in the management of hepatocellular carcinoma in 2008. J Hepatol 48(Suppl 1):S20–S37PubMedGoogle Scholar
  178. 178.
    Paradis V, Bièche I, Dargère D et al (2003) Molecular profiling of hepatocellular carcinomas (HCC) using a large-scale real-time RT-PCR approach: determination of a molecular diagnostic index. Am J Pathol 163:733–741PubMedGoogle Scholar
  179. 179.
    Nam SW, Park JY, Ramasamy A et al (2005) Molecular changes from dysplastic nodule to hepatocellular carcinoma through gene expression profiling. Hepatology 42:809–818PubMedGoogle Scholar
  180. 180.
    Llovet JM, Chen Y, Wurmbach E et al (2006) A molecular signature to discriminate dysplastic nodules from early hepatocellular carcinoma in HCV cirrhosis. Gastroenterology 131:1758–1767PubMedGoogle Scholar
  181. 181.
    Haybaeck J et al (2011) The parallel universe: microRNAs and their role in chronic hepatitis, liver tissue damage and hepatocarcinogenesis. Swiss Med Wkly 141:w13287PubMedGoogle Scholar
  182. 182.
    Gramantieri L et al (2008) MicroRNA involvement in hepatocellular carcinoma. J Cell Mol Med 12:2189–2204PubMedGoogle Scholar
  183. 183.
    Coulouarn C, Factor VM, Andersen JB et al (2009) Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene 28:3526–3536PubMedGoogle Scholar
  184. 184.
    Budhu A, Jia HL, Forgues M et al (2008) Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology 47:897–907PubMedGoogle Scholar
  185. 185.
    Zhang J, Yang Y, Yang T et al (2010) MicroRNA-22, downregulated in hepatocellular carcinoma and correlated with prognosis, suppresses cell proliferation and tumourigenicity. Br J Cancer 103:1215–1220PubMedGoogle Scholar
  186. 186.
    Ura S, Honda M, Yamashita T et al (2009) Differential microRNA expression between hepatitis B and hepatitis C leading disease progression to hepatocellular carcinoma. Hepatology 49:1098–1112PubMedGoogle Scholar
  187. 187.
    Chung GE, Yoon JH, Myung SJ et al (2010) High expression of microRNA-15b predicts a low risk of tumor recurrence following curative resection of hepatocellular carcinoma. Oncol Rep 23:113–119PubMedGoogle Scholar
  188. 188.
    Ji J, Shi J, Budhu A et al (2009) MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med 361:1437–1447PubMedGoogle Scholar
  189. 189.
    Wang W, Zhao LJ, Tan YX et al (2012) MiR-138 induces cell cycle arrest by targeting cyclin D3 in hepatocellular carcinoma. Carcinogenesis 33:1113–1120PubMedGoogle Scholar
  190. 190.
    He XX, Chang Y, Meng FY et al (2012) MicroRNA-375 targets AEG-1 in hepatocellular carcinoma and suppresses liver cancer cell growth in vitro and in vivo. Oncogene 31:3357–3369PubMedGoogle Scholar
  191. 191.
    Huang YS, Dai Y, Yu XF et al (2008) Microarray analysis of microRNA expression in hepatocellular carcinoma and non-tumorous tissues without viral hepatitis. J Gastroenterol Hepatol 23:87–94PubMedGoogle Scholar
  192. 192.
    Antequera F, Bird A (1993) Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci U S A 90:11995–11999PubMedGoogle Scholar
  193. 193.
    Antequera F, Boyes J, Bird A (1990) High levels of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell 62:503–514PubMedGoogle Scholar
  194. 194.
    Baylin SB, Hoppener JW, de Bustros A et al (1986) DNA methylation patterns of the calcitonin gene in human lung cancers and lymphomas. Cancer Res 46:2917–2922PubMedGoogle Scholar
  195. 195.
    Baylin SB, Fearon ER, Vogelstein B et al (1987) Hypermethylation of the 5′ region of the calcitonin gene is a property of human lymphoid and acute myeloid malignancies. Blood 70:412–417PubMedGoogle Scholar
  196. 196.
    de Bustros A, Nelkin BD, Silverman A et al (1985) The short arm of chromosome 11 is a “hot spot” for hypermethylation in human neoplasia. Proc Natl Acad Sci U S A 85:5693–5697Google Scholar
  197. 197.
    Jeng KS, Sheen IS, Chen BF, Wu JY (2000) Is the p53 gene mutation of prognostic value in hepatocellular carcinoma after resection? Arch Surg 135:1329–1333PubMedGoogle Scholar
  198. 198.
    Katiyar S, Dash BC, Thakur V, Guptan RC, Sarin SK, Das BC (2000) p53 tumor suppressor gene mutations in hepatocellular carcinoma patients in India. Cancer 88:1565–1573PubMedGoogle Scholar
  199. 199.
    Honda K, Sbisa E, Tullo A, Papeo PA et al (1998) p53 mutation is a poor prognostic indicator for survival in patients with hepatocellular carcinoma undergoing surgical tumour ablation. Br J Cancer 77:776–782PubMedGoogle Scholar
  200. 200.
    Heinze T, Jonas S, Karsten A, Neuhaus P (1999) Determination of the oncogenes p53 and C-erb B2 in the tumour cytosols of advanced hepatocellular carcinoma (HCC) and correlation to survival time. Anticancer Res 19:2501–2503PubMedGoogle Scholar
  201. 201.
    Malkin D (2001) The role of p53 in human cancer. J Neurooncol 51:231–243PubMedGoogle Scholar
  202. 202.
    Ryan KM, Phillips AC, Vousden KH (2001) Regulation and function of the p53 tumor suppressor protein. Curr Opin Cell Biol 13:332–337PubMedGoogle Scholar
  203. 203.
    Chen GG, Merchant JL, Lai PB et al (2003) Mutation of p53 in recurrent hepatocellular carcinoma and its association with the expression of ZBP-89. Am J Pathol 162:1823–1829PubMedGoogle Scholar
  204. 204.
    Hsia CC, Nakashima Y, Thorgeirsson SS et al (2000) Correlation of immunohistochemical staining and mutations of p53 in human hepatocellular carcinoma. Oncol Rep 7:353–356PubMedGoogle Scholar
  205. 205.
    Laurent-Puig P, Legoix P, Bluteau O et al (2001) Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology 120:1763–1773PubMedGoogle Scholar
  206. 206.
    Audard V, Grimber G, Elie C et al (2007) Cholestasis is a marker for hepatocellular carcinomas displaying β-catenin mutations. J Pathol 212:345–352PubMedGoogle Scholar
  207. 207.
    Uenishi T, Kubo S, Yamamoto T et al (2003) Cytokeratin 19 expression in hepatocellular carcinoma predicts early postoperative recurrence. Cancer Sci 94:851–857PubMedGoogle Scholar
  208. 208.
    Kirkpatrick KL, Mokbel K (2001) The significance of human telomerase reverse transcriptase (hTERT) in cancer. Eur J Surg Oncol 27:754–760PubMedGoogle Scholar
  209. 209.
    Yang YJ, Chen H, Huang P, Li CH et al (2011) Quantification of plasma hTERT DNA in hepatocellular carcinoma patients by quantitative fluorescent polymerase chain reaction. Clin Invest Med 34:E238PubMedGoogle Scholar
  210. 210.
    Bosch FX, Ribes J, Diaz M, Cleries R (2004) Primary liver cancer: worldwide incidence and trends. Gastroenterology 127:S5–S16PubMedGoogle Scholar
  211. 211.
    Shackelford RE, Whitling NA, McNab P et al (2012) KRAS testing: a tool for the implementation of personalized medicine. Genes Cancer 3:459–466PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Rodney E. Shackelford
    • 1
  • Greg Mayhall
    • 1
  • Shankar Japa
    • 1
  • Aejaz Nasir
    • 2
  • Mokenge Malafa
    • 3
    • 4
  • Domenico Coppola
    • 4
    • 5
    Email author
  1. 1.Department of Pathology and Laboratory MedicineTulane University School of MedicineNew OrleansUSA
  2. 2.Diagnostic & Experimental Pathology & Tailored Therapeutics ProgramEli Lilly & CompanyIndianapolisUSA
  3. 3.Department of Surgical OncologyH. Lee Moffitt Cancer Center & Research InstituteTampaUSA
  4. 4.Department of Oncological SciencesUniversity of South Florida College of MedicineTampaUSA
  5. 5.Department of PathologyH. Lee Moffitt Cancer Center & Research InstituteTampaUSA

Personalised recommendations