Advertisement

Molecular Pathology and Diagnostics of Colorectal Cancer

  • Rodney E. Shackelford
  • Aejaz Nasir
  • Ardeshir Hakam
  • David Shibata
  • Timothy Yeatman
  • Domenico CoppolaEmail author
Chapter
  • 2.6k Downloads
Part of the Cancer Growth and Progression book series (CAGP, volume 16)

Abstract

Colorectal carcinoma (CRC) is the third most common malignancy in the United States and is the second leading cause of cancer deaths. Over the past 20 years, our knowledge of this CRC carcinogenesis has enormously increased; presently, several molecular diagnostic tests are commonly employed to analyze stage IV CRC and familiar CRC syndromes to determine treatment options and CRC inheritance and risk. More recently the number of CRC diagnostic tests has enormously expanded as our knowledge of CRC carcinogenesis has increased. Here, we review the standard tests employed in CRC, such as KRAS and Braf analyses, and also include less commonly employed tests related to familiar CRC and microsatellite instability. Last, we focus on possible future CRC genetic tests and testing modalities, focusing on techniques such as microarray and mass spectrophotometry.

Keywords

Colorectal carcinoma KRAS BRAF FAP UGT1A1 NHPCC PJS APC Mutation Hamartomatous polyposis syndromes 

Abbreviations

8-oxo-G

7,8-dihydro-8-oxo-deoxyguanosine

AFAP

Attenuated familial adenomatous polyposis

APC

Adenomatous polyposis

ARMS

Amplification resistant mutation system

CRC

Colorectal carcinoma

CSGE

Conformation strand gel electrophoresis

EGFR

Epidermal growth factor receptor

FAP

Familial adenomatous polyposis

GTP

Guanosine-5′-triphosphate

HNPCC

Polyposis hereditary nonpolyposis colon cancer

HRM

High-resolution melting

JPS

Juvenile polyposis syndrome

MAP

MYH-associated polyposis

mCRC

Metastatic CRC

MLH1

MutL homolog 1

MLH3

MutS homolog 3

MLPA

Multiplex ligation-dependent probe amplification

MSH2

MutS homolog 2

MSH6

MutS homolog 6

MSI

Microsatellite instability

NCCN

National Comprehensive Cancer Network

PCR

Polymerase chain reaction

PJS

Peutz-Jeghers syndrome

PMS2

Postmeiotic segregation increased 2

PTT

Protein truncation test

SSCP

Single strand conformation polymorphism

T-ARMS-PCR

Tetra-primer amplification refractory mutation system PCR

Notes

Acknowledgements

We would like to thank Jennifer Burton for her help with proofreading this manuscript.

References

  1. 1.
    Parkin DM, Pisani P, Ferlay J (1999) Global cancer statistics. CA Cancer J Clin 52:33–64Google Scholar
  2. 2.
    van der Voort van Zijp J, Hoekstra HJ, Basson MD (2008) Evolving management of colorectal cancer. World J Gastroenterol 14:3956–3967Google Scholar
  3. 3.
    Markowitz SD, Bertagnolli MM (2009) Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med 361:2449–2460PubMedGoogle Scholar
  4. 4.
    Parkin DM, Muir CS, Whelan SL, Gao YT, Ferlay J, Powell J (1992) Cancer incidence in five continents. Vol. 6, vol 120. International Agency for Research on Cancer, Lyon, pp 301–353Google Scholar
  5. 5.
    Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K (2000) Environmental and heritable factors in the causation of cancer–analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343:78–85PubMedGoogle Scholar
  6. 6.
    Picelli S, Von Holst S, Wessendorf P (2009) The continuing search for predisposing colorectal cancer variants. Cancer Genomics Proteomics 6:305–316PubMedGoogle Scholar
  7. 7.
    Johns LE, Houlston RS (2001) A systematic review and meta-analysis of familial colorectal cancer risk. Am J Gastroenterol 96:2992–3003PubMedGoogle Scholar
  8. 8.
    Cannon-Albright LA, Skolnick MH, Bishop DT, Lee RG, Burt RW (1988) Common inheritance of susceptibility to colonic adenomatous polyps and associated colorectal cancers. N Engl J Med 319:533–537PubMedGoogle Scholar
  9. 9.
    Potter JD (1999) Colorectal cancer: molecules and populations. J Natl Cancer Inst 91:916–932PubMedGoogle Scholar
  10. 10.
    Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I, Fuchs CS, Colditz GA (2003) Night-shift work and risk of colorectal cancer in the nurses’ health study. J Natl Cancer Inst 95:825–828PubMedGoogle Scholar
  11. 11.
    Giovannucci E (2007) Metabolic syndrome, hyperinsulinemia, and colon cancer: a review. Am J Clin Nutr 86:s836–s842PubMedGoogle Scholar
  12. 12.
    Stallmach A, Bielecki C, Schmidt C (2009) Malignant transformation in inflammatory bowel disease—surveillance guide. Dig Dis 27:584–590PubMedGoogle Scholar
  13. 13.
    Pais R, Silaghi H, Silaghi AC, Rusu ML, Dumitrascu DL (2009) Metabolic syndrome and risk of subsequent colorectal cancer. World J Gastroenterol 15:5141–5148PubMedGoogle Scholar
  14. 14.
    Saltz L (2008) Colorectal cancer treatment: what’s next? (or: is there life after EGFR and VEGF?). Gastrointest Cancer Res 2(4 Suppl):S20–S22PubMedGoogle Scholar
  15. 15.
    Sobel ME, Bagg A, Caliendo AM, Ladanyi M, Zehnbauer B (2008) The evolution of molecular genetic pathology: advancing 20th-century diagnostic methods into potent tools for the new millennium. J Mol Diagn 10:480–483PubMedGoogle Scholar
  16. 16.
    Tsongalis GJ, Silverman LM (2006) Molecular diagnostics: a historical perspective. Clin Chim Acta 369:188–192PubMedGoogle Scholar
  17. 17.
    Wang HL, Lopategui J, Amin MB, Patterson SD (2010) KRAS mutation testing in human cancers: the pathologist’s role in the era of personalized medicine. Adv Anat Pathol 17:23–32PubMedGoogle Scholar
  18. 18.
    O-charoenrat P, Rhys-Evans P, Eccles S (2000) Expression and regulation of c-ERBB ligands in human head and neck squamous carcinoma cells. Int J Cancer 88:759–765PubMedGoogle Scholar
  19. 19.
    Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signaling network. Nat Rev Mol Cell Biol 2:127–137PubMedGoogle Scholar
  20. 20.
    Mayer A, Takimoto M, Fritz E, Schellander G, Kofler K, Ludwig H (1993) The prognostic significance of proliferating cell nuclear antigen, epidermal growth factor receptor, and mdr gene expression in colorectal cancer. Cancer 71:2454–2460PubMedGoogle Scholar
  21. 21.
    Nicholson RI, Gee JM, Harper ME (2001) EGFR and cancer prognosis. Eur J Cancer 37(Suppl 4):S9–S15PubMedGoogle Scholar
  22. 22.
    Kopp R, Rothbauer E, Mueller E, Schildberg FW, Jauch KW, Pfeiffer A (2003) Reduced survival of rectal cancer patients with increased tumor epidermal growth factor receptor levels. Dis Colon Rectum 46:1391–1399PubMedGoogle Scholar
  23. 23.
    Tol J, Dijkstra JR, Klomp M, Teerenstra S, Dommerholt M, Vink-Börger ME, van Cleef PH, van Krieken JH, Punt CJ, Nagtegaal ID (2010) Markers for EGFR pathway activation as predictor of outcome in metastatic colorectal cancer patients treated with or without cetuximab. Eur J Cancer 46:1997–2009PubMedGoogle Scholar
  24. 24.
    Ziober BL, Willson JK, Hymphrey LE, Childress-Fields K, Brattain MG (1993) Autocrine transforming growth factor-alpha is associated with progression of transformed properties in human colon cancer cells. J Biol Chem 268:691–698PubMedGoogle Scholar
  25. 25.
    Untawale S, Zorbas MA, Hodgson CP, Coffey RJ, Gallick GE, North SM, Wildrick DM, Olive M, Blick M, Yeoman LC et al (1993) Transforming growth factor-alpha production and autoinduction in a colorectal carcinoma cell line (DiFi) with an amplified epidermal growth factor receptor gene. Cancer Res 53:1630–1636PubMedGoogle Scholar
  26. 26.
    Tsushima H, Kawata S, Tamura S, Ito N, Shirai Y, Kiso S, Imai Y, Shimomukai H, Nomura Y, Matsuda Y, Matsuzawa Y (1996) High levels of transforming growth factor beta 1 in patients with colorectal cancer: association with disease progression. Gastroenterology 110:375–382PubMedGoogle Scholar
  27. 27.
    Pennell NA, Lynch TJ Jr (2009) Combined inhibition of the VEGFR and EGFR signaling pathways in the treatment of NSCLC. Oncologist 14:399–411PubMedGoogle Scholar
  28. 28.
    Malumbres M, Barbacid M (2003) RAS oncogenes: the first 30 years. Nat Rev Cancer 3:459–465PubMedGoogle Scholar
  29. 29.
    Der CJ, Krontiris TG, Cooper GM (1982) Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses. Proc Natl Acad Sci USA 79:3637–3640PubMedGoogle Scholar
  30. 30.
    Graziani A, Gramaglia D, Zonca PD, Comoglio PM (1993) Hepatocyte growth factor/scatter factor stimulates the Ras-guanine nucleotide exchanger. J Biol Chem 268:9165–9168PubMedGoogle Scholar
  31. 31.
    Hu YP, Patil SB, Panasiewicz M, Li W, Hauser J, Humphrey LE, Brattain MG (2008) Heterogeneity of receptor function in colon carcinoma cells determined by cross-talk between type I insulin-like growth factor receptor and epidermal growth factor receptor. Cancer Res 68:8004–8013PubMedGoogle Scholar
  32. 32.
    Bos JL (1989) Ras oncogenes in human cancer: a review. Cancer Res 49:4682–4689PubMedGoogle Scholar
  33. 33.
    McCormick F (1989) Ras GTPase activating protein: signal transmitter and signal terminator. Cell 56:5–8PubMedGoogle Scholar
  34. 34.
    Bourne HR, Sanders DA, McCormick F (1990) The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348:125–132PubMedGoogle Scholar
  35. 35.
    Cunningham D, Humblet Y, Siena S et al (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351:337–345PubMedGoogle Scholar
  36. 36.
    Bonner JA, Harari PM, Giralt J et al (2006) Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 354:567–578PubMedGoogle Scholar
  37. 37.
    Vermorken JB, Trigo J, Hitt R et al (2007) Open-label, uncontrolled, multicenter phase II study to evaluate the efficacy and toxicity of cetuximab as a single agent in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck who failed to respond to platinum based therapy. J Clin Oncol 25:2171–2177PubMedGoogle Scholar
  38. 38.
    Goldstein NI, Prewett M, Zuklys K, Rockwell P, Mendelsohn J (1995) Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model. Clin Cancer Res 1:1311–1318PubMedGoogle Scholar
  39. 39.
    Li S, Schmitz KR, Jeffrey PD et al (2005) Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell 7:301–311PubMedGoogle Scholar
  40. 40.
    Gill GN, Kawamoto T, Cochet C et al (1984) Monoclonal anti-epidermal growth factor receptor antibodies which are inhibitors of epidermal growth factor binding and antagonists of epidermal growth factor binding and antagonists of epidermal growth factor-stimulated tyrosine protein kinase activity. J Biol Chem 259:7755–7760PubMedGoogle Scholar
  41. 41.
    Peng D, Fan Z, Lu Y et al (1996) Anti-epidermal growth factor receptor monoclonal antibody 225 up-regulates p27KIP1 and induces G1 arrest in prostatic cancer cell line DU145. Cancer Res 56:3666–3669PubMedGoogle Scholar
  42. 42.
    Roda JM, Joshi T, Butchar JP, McAlees JW, Lehman A, Tridandapani S, Carson WE 3rd (2007) The activation of natural killer cell effector functions by cetuximab-coated, epidermal growth factor receptor positive tumor cells is enhanced by cytokines. Clin Cancer Res 13:6419–6428PubMedGoogle Scholar
  43. 43.
    Yang XD, Jia XC, Corvalan JR et al (2001) Development of ABX-EGF, a fully human anti-EGF receptor monoclonal antibody for cancer therapy. Crit Rev Oncol Hematol 38:17–23PubMedGoogle Scholar
  44. 44.
    Foon KA, Yang XD, Weiner LM, Belldegrun AS, Figlin RA, Crawford J, Rowinsky EK, Dutcher JP, Vogelzang NJ, Gollub J, Thompson JA, Schwartz G, Bukowski RM, Roskos LK, Schwab GM (2004) Preclinical and clinical evaluations of ABX-EGF, a fully human anti-epidermal growth factor receptor antibody. Int J Radiat Oncol Biol Phys 58:984–990PubMedGoogle Scholar
  45. 45.
    Van Cutsem E, Peeters M, Siena S, Humblet Y, Hendlisz A, Neyns B, Canon JL, Van Laethem JL, Maurel J, Richardson G, Wolf M, Amado RG (2007) Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol 25:1658–1664PubMedGoogle Scholar
  46. 46.
    Chung KY, Shia J, Kemeny NE, Shah M, Schwartz GK, Tse A, Hamilton A, Pan D, Schrag D, Schwartz L, Klimstra DS, Fridman D, Kelsen DP, Saltz LB (2005) Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. J Clin Oncol 23:1803–1810PubMedGoogle Scholar
  47. 47.
    Lièvre A, Bachet JB, Boige V, Cayre A, Le Corre D, Buc E, Ychou M, Bouché O, Landi B, Louvet C, André T, Bibeau F, Diebold MD, Rougier P, Ducreux M, Tomasic G, Emile JF, Penault-Llorca F, Laurent-Puig P (2008) KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol 26:374–379PubMedGoogle Scholar
  48. 48.
    Barault L, Veyrie N, Jooste V, Lecorre D, Chapusot C, Ferraz JM, Lièvre A, Cortet M, Bouvier AM, Rat P, Roignot P, Faivre J, Laurent-Puig P, Piard F (2008) Mutations in the RAS-MAPK, PI(3)K (phosphatidylinositol-3-OH kinase) signaling network correlate with poor survival in a population-based series of colon cancers. Int J Cancer 122:2255–2259PubMedGoogle Scholar
  49. 49.
    Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ, Juan T, Sikorski R, Suggs S, Radinsky R, Patterson SD, Chang DD (2008) Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 26:1626–1634PubMedGoogle Scholar
  50. 50.
    Zavodna K, Konecny M, Krivulcik T, Spanik S, Behulova R, Vizvaryova M, Weismanova E, Galbavy S, Kausitz J (2009) Genetic analysis of KRAS mutation status in metastatic colorectal cancer patients. Neoplasma 56:275–278PubMedGoogle Scholar
  51. 51.
    Kislitsin D, Lerner A, Rennert G, Lev Z (2002) K-ras mutations in sporadic colorectal tumors in Israel: unusual high frequency of codon 13 mutations and evidence for nonhomogeneous representation of mutation subtypes. Dig Dis Sci 47:1073–1079PubMedGoogle Scholar
  52. 52.
    Breivik J, Meling GI, Spurkland A, Rognum TO, Gaudernack G (1994) K-ras mutation in colorectal cancer: relations to patient age, sex and tumour location. Br J Cancer 69:367–371PubMedGoogle Scholar
  53. 53.
    Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White R, Smits AM, Bos JL (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319:525–532PubMedGoogle Scholar
  54. 54.
    Zlobec I, Kovac M, Erzberger P, Molinari F, Bihl MP, Rufle A, Foerster A, Frattini M, Terracciano L, Heinimann K, Lugli A (2010) Combined analysis of specific KRAS mutation, BRAF and microsatellite instability identifies prognostic subgroups of sporadic and hereditary colorectal cancer. Int J Cancer 127:2569–2575PubMedGoogle Scholar
  55. 55.
    De Roock W, Jonker DJ, Di Nicolantonio F, Sartore-Bianchi A, Tu D, Siena S, Lamba S, Arena S, Frattini M, Piessevaux H, Van Cutsem E, O’Callaghan CJ, Khambata-Ford S, Zalcberg JR, Simes J, Karapetis CS, Bardelli A, Tejpar S (2010) Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab. JAMA 304:1812–1820PubMedGoogle Scholar
  56. 56.
    Lièvre A, Bachet JB, Le Corre D, Boige V, Landi B, Emile JF, Côté JF, Tomasic G, Penna C, Ducreux M, Rougier P, Penault-Llorca F, Laurent-Puig P (2006) KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res 66:3992–3995PubMedGoogle Scholar
  57. 57.
    Karapetis CS, Khambata-Ford S, Jonker DJ, O’Callaghan CJ, Tu D, Tebbutt NC, Simes RJ, Chalchal H, Shapiro JD, Robitaille S, Price TJ, Shepherd L, Au HJ, Langer C, Moore MJ, Zalcberg JR (2008) K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 359:1757–1765PubMedGoogle Scholar
  58. 58.
    De Roock W, Piessevaux H, De Schutter J, Janssens M, De Hertogh G, Personeni N, Biesmans B, Van Laethem JL, Peeters M, Humblet Y, Van Cutsem E, Tejpar S (2008) KRAS wild-type state predicts survival and is associated to early radiological response in metastatic colorectal cancer treated with cetuximab. Ann Oncol 19:508–515PubMedGoogle Scholar
  59. 59.
    Bokemeyer C, Bondarenko I, Makhson A, Hartmann JT, Aparicio J, de Braud F, Donea S, Ludwig H, Schuch G, Stroh C, Loos AH, Zubel A, Koralewski P (2009) Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol 27:663–671PubMedGoogle Scholar
  60. 60.
    National Comprehensive Cancer Network (2012) NCCI clinical practice guidelines in oncology. Non Small Cell Lung Cancer (Version 2.2009) and Colon Cancer (Version 3.2009). http://www.nccn.org/professionals/physician_gls/PDF/colon.ncl.pdf, http://www.nccn.org/professionals/physician_gls/PDF/colon.pdf
  61. 61.
    Gilbert MT, Haselkorn T, Bunce M, Sanchez JJ, Lucas SB, Jewell LD, Van Marck E, Worobey M (2007) The isolation of nucleic acids from fixed, paraffin-embedded tissues-which methods are useful when? PLoS One 2:e537PubMedGoogle Scholar
  62. 62.
    Williams C, Pontén F, Moberg C, Söderkvist P, Uhlén M, Pontén J, Sitbon G, Lundeberg J (1999) A high frequency of sequence alterations is due to formalin fixation of archival specimens. Am J Pathol 155:1467–1471PubMedGoogle Scholar
  63. 63.
    Esposito G (2007) Complementary techniques: laser capture microdissection–increasing specificity of gene expression profiling of cancer specimens. Adv Exp Med Biol 593:54–65PubMedGoogle Scholar
  64. 64.
    Chien CC, Chen SH, Liu CC, Lee CL, Yang RN, Yang SH, Huang CJ (2007) Correlation of K-ras codon 12 mutations in human feces and ages of patients with colorectal cancer (CRC). Transl Res 149:96–102PubMedGoogle Scholar
  65. 65.
    Brink M, de Goeij AF, Weijenberg MP, Roemen GM, Lentjes MH, Pachen MM, Smits KM, de Bruïne AP, Goldbohm RA, van den Brandt PA (2003) K-ras oncogene mutations in sporadic colorectal cancer in The Netherlands cohort study. Carcinogenesis 24:703–710PubMedGoogle Scholar
  66. 66.
    Do H, Krypuy M, Mitchell PL, Fox SB, Dobrovic A (2008) High resolution melting analysis for rapid and sensitive EGFR and KRAS mutation detection in formalin fixed paraffin embedded biopsies. BMC Cancer 8:142PubMedGoogle Scholar
  67. 67.
    Tsiatis AC, Norris-Kirby A, Rich RG, Hafez MJ, Gocke CD, Eshleman JR, Murphy KM (2010) Comparison of Sanger sequencing, pyrosequencing, and melting curve analysis for the detection of KRAS mutations. Diagnostic and clinical implications. J Mol Diagn 12:425–432PubMedGoogle Scholar
  68. 68.
    Huang MM, Arnheim N, Goodman MF (1992) Extension of base mispairs by Taq DNA polymerase: implications for single nucleotide discrimination in PCR. Nucleic Acids Res 20:4567–4573PubMedGoogle Scholar
  69. 69.
    Clayton SJ, Scott FM, Walker J, Callaghan K, Haque K, Liloglou T, Xinarianos G, Shawcross S, Ceuppens P, Field JK, Fox JC (2000) K-ras point mutation detection in lung cancer: comparison of two approaches to somatic mutation detection using ARMS allele-specific amplification. Clin Chem 46:1929–1938PubMedGoogle Scholar
  70. 70.
    Franklin WA, Haney J, Sugita M, Bemis L, Jimeno A, Messersmith WA (2010) KRAS mutation: comparison of testing methods and tissue sampling techniques in colon cancer. J Mol Diagn 12:43–50PubMedGoogle Scholar
  71. 71.
    Kimura H, Kasahara K, Kawaishi M, Kunitoh H, Tamura T, Holloway B, Nishio K (2006) Detection of epidermal growth factor receptor mutations in serum as a predictor of the response to gefitinib in patients with non-small-cell lung cancer. Clin Cancer Res 12:3915–3921PubMedGoogle Scholar
  72. 72.
    Weichert W, Schewe C, Lehmann A, Sers C, Denkert C, Budczies J, Stenzinger A, Joos H, Landt O, Heiser V, Röcken C, Dietel M (2010) KRAS genotyping of paraffin-embedded colorectal cancer tissue in routine diagnostics: comparison of methods and impact of histology. J Mol Diagn 12:35–42PubMedGoogle Scholar
  73. 73.
    Kobunai T, Watanabe T, Yamamoto Y, Eshima K (2010) The frequency of KRAS mutation detection in human colon carcinoma is influenced by the sensitivity of assay methodology: a comparison between direct sequencing and real-time PCR. Biochem Biophys Res Commun 395:158–162PubMedGoogle Scholar
  74. 74.
    Loupakis F, Ruzzo A, Cremolini C, Vincenzi B, Salvatore L, Santini D, Masi G, Stasi I, Canestrari E, Rulli E, Floriani I, Bencardino K, Galluccio N, Catalano V, Tonini G, Magnani M, Fontanini G, Basolo F, Falcone A, Graziano F (2009) KRAS codon 61, 146 and BRAF mutations predict resistance to cetuximab plus irinotecan in KRAS codon 12 and 13 wild-type metastatic colorectal cancer. Br J Cancer 101:715–721PubMedGoogle Scholar
  75. 75.
    Benvenuti S, Sartore-Bianchi A, Di Nicolantonio F, Zanon C, Moroni M, Veronese S, Siena S, Bardelli A (2007) Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies. Cancer Res 67:2643–2648PubMedGoogle Scholar
  76. 76.
    Tang KT, Lee CH (2010) BRAF mutation in papillary thyroid carcinoma: pathogenic role and clinical implications. J Chin Med Assoc 73:113–128PubMedGoogle Scholar
  77. 77.
    Shepherd C, Puzanov I, Sosman JA (2010) B-RAF inhibitors: an evolving role in the therapy of malignant melanoma. Curr Oncol Rep 12:146–152PubMedGoogle Scholar
  78. 78.
    Vang R, IeM S, Kurman RJ (2009) Ovarian low-grade and high-grade serous carcinoma: pathogenesis, clinicopathologic and molecular biologic features, and diagnostic problems. Adv Anat Pathol 16:267–282PubMedGoogle Scholar
  79. 79.
    Fransén K, Klintenäs M, Osterström A, Dimberg J, Monstein HJ, Söderkvist P (2004) Mutation analysis of the BRAF, ARAF and RAF-1 genes in human colorectal adenocarcinomas. Carcinogenesis 25:527–533PubMedGoogle Scholar
  80. 80.
    Domingo E, Espín E, Armengol M, Oliveira C, Pinto M, Duval A, Brennetot C, Seruca R, Hamelin R, Yamamoto H, Schwartz S Jr (2004) Activated BRAF targets proximal colon tumors with mismatch repair deficiency and MLH1 inactivation. Genes Chromosomes Cancer 39:138–142PubMedGoogle Scholar
  81. 81.
    Kumara T, Simms LA, Whitehall VL, Spring KJ, Wynter CV, Walsh MD, Barker MA, Arnold S, McGivern A, Matsubara N, Tanaka N, Higuchi T, Young J, Jass JR, Leggett BA (2004) BRAF mutation is associated with DNA methylation in serrated polyps and cancers of the colorectum. Gut 53:1137–1144Google Scholar
  82. 82.
    Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, Jones CM, Marshall CJ, Springer CJ, Barford D, Marais R (2004) Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116:855–867PubMedGoogle Scholar
  83. 83.
    Benlloch S, Payá A, Alenda C, Bessa X, Andreu M, Jover R, Castells A, Llor X, Aranda FI, Massutí B (2006) Detection of BRAF V600E mutation in colorectal cancer: comparison of automatic sequencing and real-time chemistry methodology. J Mol Diagn 8:540–543PubMedGoogle Scholar
  84. 84.
    McGivern A, Wynter CV, Whitehall VL, Kambara T, Spring KJ, Walsh MD, Barker MA, Arnold S, Simms LA, Leggett BA, Young J, Jass JR (2004) Promoter hypermethylation frequency and BRAF mutations distinguish hereditary non-polyposis colon cancer from sporadic MSI-H colon cancer. Fam Cancer 3:101–107PubMedGoogle Scholar
  85. 85.
    Kadiyska TK, Konstantinova DV, Atanasov VR, Kremensky IM, Mitev VI (2007) Frequency and application of the hot spot BRAF gene mutation (p.V600E) in the diagnostic strategy for hereditary nonpolyposis colorectal cancer. Cancer Detect Prev 31:254–256PubMedGoogle Scholar
  86. 86.
    Eychene A, Barnier JV, Apiou F, Dutrillaux B, Calothy G (1992) Chromosomal assignment of two human B-raf (Rmil) proto-oncogene loci: B-raf-1 encoding the p94Braf/Rmil and B-raf-2, a processed pseudogene. Oncogene 7:1657–1660PubMedGoogle Scholar
  87. 87.
    Zou M, Baitei EY, Alzahrani AS, Al-Mohanna F, Farid NR, Meyer B, Shi Y (2009) Oncogenic activation of MAP kinase by BRAF pseudogene in thyroid tumors. Neoplasia 11:57–65PubMedGoogle Scholar
  88. 88.
    Lurkin I, Stoehr R, Hurst CD, van Tilborg AA, Knowles MA, Hartmann A, Zwarthoff EC (2010) Two multiplex assays that simultaneously identify 22 possible mutation sites in the KRAS, BRAF, NRAS and PIK3CA genes. PLoS One 5:e8802PubMedGoogle Scholar
  89. 89.
    Albitar M, Yeh C, Ma W (2009) K-ras mutations and cetuximab in colorectal cancer. N Engl J Med 360:834PubMedGoogle Scholar
  90. 90.
    De Roock W, Lambrechts D, Tejpar S (2009) K-ras mutations and cetuximab in colorectal cancer [letter to editor]. N Engl J Med 360:834PubMedGoogle Scholar
  91. 91.
    Samuels Y, Velculescu VE (2004) Oncogenic mutations of PIK3CA in human cancers. Cell Cycle 3:1221–1224PubMedGoogle Scholar
  92. 92.
    Wong KK, Engelman JA, Cantley LC (2010) Targeting the PI3K signaling pathway in cancer. Curr Opin Genet Dev 20:87–90PubMedGoogle Scholar
  93. 93.
    Liu P, Cheng H, Roberts TM, Zhao JJ (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8:627–644PubMedGoogle Scholar
  94. 94.
    Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657PubMedGoogle Scholar
  95. 95.
    Jhawer M, Goel S, Wilson AJ, Montagna C, Ling YH et al (2008) PIK3CA mutation/PTEN expression status predicts response of colon cancer cells to the epidermal growth factor receptor inhibitor cetuximab. Cancer Res 68:1953–1961PubMedGoogle Scholar
  96. 96.
    Prenen H, De Schutter J, Jacobs B, De Roock W, Biesmans B et al (2009) PIK3CA mutations are not a major determinant of resistance to the epidermal growth factor receptor inhibitor cetuximab in metastatic colorectal cancer. Clin Cancer Res 15:3184–3188PubMedGoogle Scholar
  97. 97.
    Perrone F, Lampis A, Orsenigo M, Di Bartolomeo M, Gevorgyan A, Losa M, Frattini M, Riva C, Andreola S, Bajetta E, Bertario L, Leo E, Pierotti MA, Pilotti S (2009) PI3KCA/PTEN deregulation contributes to impaired responses to cetuximab in metastatic colorectal cancer patients. Ann Oncol 20:84–90PubMedGoogle Scholar
  98. 98.
    Velho S, Oliveira C, Ferreira A, Ferreira AC, Suriano G, Schwartz S Jr, Duval A, Carneiro F, Machado JC, Hamelin R, Seruca R (2005) The prevalence of PIK3CA mutations in gastric and colon cancer. Eur J Cancer 41:1649–1654PubMedGoogle Scholar
  99. 99.
    Lambrechts D, De Roock W, Prenen H, De Schutter J, Jacobs B, Biesmans B, Claes B, De Hertogh G, Van Cutsem E, Tejpar S (2009) The role of KRAS, BRAF, NRAS, and PIK3CA mutations as markers of resistance to cetuximab in chemorefractory metastatic colorectal cancer. J Clin Oncol 27:4020Google Scholar
  100. 100.
    Russo A, Rizzo S, Bronte G, Silvestris N, Colucci G, Gebbia N, Bazan V, Fulfaro F (2009) The long and winding road to useful predictive factors for anti-EGFR therapy in metastatic colorectal carcinoma: the KRAS/BRAF pathway. Oncology 77(Suppl 1):57–68PubMedGoogle Scholar
  101. 101.
    Luschka H (1861) Ueber polypose Vegetationen der gesammten Dickdarmschleimhaut. Arch Pathol Anat Physiol Klin Med 20:133–142Google Scholar
  102. 102.
    Aretz S, Stienen D, Uhlhaas S, Loff S, Back W, Pagenstecher C, McLeod DR, Graham GE, Mangold E, Santer R, Propping P, Friedl W (2005) High proportion of large genomic STK11 deletions in Peutz-Jeghers syndrome. Hum Mutat 26:513–519PubMedGoogle Scholar
  103. 103.
    Aretz S, Stienen D, Uhlhaas S, Stolte M, Entius MM, Loff S, Back W, Kaufmann A, Keller KM, Blaas SH, Siebert R, Vogt S, Spranger S, Holinski-Feder E, Sunde L, Propping P, Friedl W (2007) High proportion of large genomic deletions and a genotype phenotype update in 80 unrelated families with juvenile polyposis syndrome. J Med Genet 44:702–709PubMedGoogle Scholar
  104. 104.
    Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87:159–170PubMedGoogle Scholar
  105. 105.
    Half E, Bercovich D, Rozen P (2009) Familial adenomatous polyposis. Orphanet J Rare Dis 4:22PubMedGoogle Scholar
  106. 106.
    Offerhaus GJ, Giardiello FM, Krush AJ et al (1992) The risk of upper gastrointestinal cancer in familial adenomatous polyposis. Gastroenterology 102:1980–1982PubMedGoogle Scholar
  107. 107.
    Park JG, Park KJ, Ahn YO et al (1992) Risk of gastric cancer among Korean familial adenomatous polyposis patients. Report of three cases. Dis Colon Rectum 35:996–998PubMedGoogle Scholar
  108. 108.
    Brosens LA, Keller JJ, Offerhaus GJ, Goggins M, Giardiello FM (2005) Prevention and management of duodenal polyps in familial adenomatous polyposis. Gut 54:1034–1043PubMedGoogle Scholar
  109. 109.
    Johnson JC, DiSario JA, Grady WM (2004) Surveillance and treatment of periampullary and duodenal adenomas in familial adenomatous polyposis. Curr Treat Options Gastroenterol 7:79–89PubMedGoogle Scholar
  110. 110.
    Anaya DA, Chang GJ, Rodriguez-Bigas MA (2008) Extracolonic manifestations of hereditary colorectal cancer syndromes. Clin Colon Rectal Surg 21:263–272PubMedGoogle Scholar
  111. 111.
    Laken SJ, Papadopoulos N, Petersen GM, Gruber SB, Hamilton SR, Giardiello FM, Brensinger JD, Vogelstein B, Kinzler KW (1999) Analysis of masked mutations in familial adenomatous polyposis. Proc Natl Acad Sci USA 96:2322–2326PubMedGoogle Scholar
  112. 112.
    Sampson JR, Jones S, Dolwani S, Cheadle JP (2005) MutYH (MYH) and colorectal cancer. Biochem Soc Trans 33:679–683PubMedGoogle Scholar
  113. 113.
    Bisgaard ML, Ripa R, Knudsen AL, Bülow S (2004) Familial adenomatous polyposis patients without an identified APC germline mutation have a severe phenotype. Gut 53:266–270PubMedGoogle Scholar
  114. 114.
    Jones S, Emmerson P, Maynard J et al (2002) Biallelic germline mutations in MYH predispose to multiple colorectal adenoma and somatic G:CRT:a mutations. Hum Mol Genet 11:2961–2967PubMedGoogle Scholar
  115. 115.
    Sieber OM, Lipton L, Crabtree M et al (2003) Multiple colorectal adenomas, classic adenomatous polyposis, and germ-line mutations in MYH. N Engl J Med 348:791–799PubMedGoogle Scholar
  116. 116.
    Béroud C, Soussi T (1996) APC gene: database of germline and somatic mutations in human tumors and cell lines. Nucleic Acids Res 24:121–124PubMedGoogle Scholar
  117. 117.
    Bos JL, Fearon ER, Hamilton SR, de Veerlan v M, van Boom JH, Vogelstein B (1987) Presence of ras gene mutations in human colorectal cancers. Nature 327:293–297PubMedGoogle Scholar
  118. 118.
    Kinzler KW, Nilbert MC, Su LK, Vogelstein B, Bryan TM, Levy DB, Smith KJ, Preisinger AC, Hedge P, McKechnie D, Finniear R, Markham A, Groffen J, Boguski MS, Altschul SF, Horii A, Ando H, Miyoshi Y, Miki Y, Nishisho I, Nakamura Y (1991) Identification of FAP locus genes from chromosome 5q21. Science 253:661–665PubMedGoogle Scholar
  119. 119.
    Fearon ER, Cho KR, Nigro JM, Kern SE, Simons JW, Ruppert JM, Hamilton SR, Preisinger AC, Thomas G, Kinzler KW, Vogelstein B (1990) Identification of a chromosome 18q gene that is altered in colorectal cancers. Science 247:49–56PubMedGoogle Scholar
  120. 120.
    Baker SJ, Fearon ER, Nigro JM, Hamilton SR, Preisinger AC, Jessup JM, van Tuinen P, Ledbetter DH, Barker DF, Nakamura Y, White R, Vogelstein B (1989) Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244:217–221PubMedGoogle Scholar
  121. 121.
    Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767PubMedGoogle Scholar
  122. 122.
    Neufeld KL, White RL (1997) Nuclear and cytoplasmic localizations of the adenomatous polyposis coli protein. Proc Natl Acad Sci USA 94:3034–3039PubMedGoogle Scholar
  123. 123.
    Henderson BR (2000) Nuclear-cytoplasmic shuttling of APC regulates beta-catenin subcellular localization and turnover. Nat Cell Biol 2:653–660PubMedGoogle Scholar
  124. 124.
    Rosin-Arbesfeld R, Townsley F, Bienz M (2000) The APC tumour suppressor has a nuclear export function. Nature 406:1009–1012PubMedGoogle Scholar
  125. 125.
    Smith KJ, Levy DB, Maupin P, Pollard TD, Vogelstein B, Kinzler KW (1994) Wild-type but not mutant APC associates with the microtubule cytoskeleton. Cancer Res 54:3672–3675PubMedGoogle Scholar
  126. 126.
    Kennell J, Cadigan KM (2009) APC and beta-catenin degradation. Adv Exp Med Biol 656:1–12PubMedGoogle Scholar
  127. 127.
    Zhang T, Nanney LB, Luongo C, Lamps L, Heppner KJ, DuBois RN, Beauchamp RD (1997) Concurrent overexpression of cyclin D1 and cyclin-dependent kinase 4 (Cdk4) in intestinal adenomas from multiple intestinal neoplasia (Min) mice and human familial adenomatous polyposis patients. Cancer Res 57:169–175PubMedGoogle Scholar
  128. 128.
    Wilding J, Straub J, Bee J, Churchman M, Bodmer W, Dickson C, Tomlinson I, Ilyas M (2002) Cyclin D1 is not an essential target of beta-catenin signaling during intestinal tumorigenesis, but it may act as a modifier of disease severity in multiple intestinal neoplasia (Min) mice. Cancer Res 62:4562–4565PubMedGoogle Scholar
  129. 129.
    Venesio T, Balsamo A, Scordamaglia A, Bertolaso M, Arrigoni A, Sprujevnik T, Rossini FP, Risio M (2003) Germline APC mutation on the beta-catenin binding site is associated with a decreased apoptotic level in colorectal adenomas. Mod Pathol 16:57–65PubMedGoogle Scholar
  130. 130.
    Shinozaki H, Yang K, Fan K, Edelmann W, Kucherlapati R, Weinstein IB, Lipkin M (2003) Cyclin D1 expression in the intestinal mucosa and tumors of Apc1638N mice. Anticancer Res 23:2217–2226PubMedGoogle Scholar
  131. 131.
    Kaplan KB, Burds AA, Swedlow JR, Bekir SS, Sorger PK, Näthke IS (2001) A role for the adenomatous polyposis coli protein in chromosome segregation. Nat Cell Biol 3:429–432PubMedGoogle Scholar
  132. 132.
    Bisgaard ML, Fenger K, Bülow S, Niebuhr E, Mohr J (2003) Familial adenomatous polyposis (FAP): frequency, penetrance, and mutation rate. Hum Mutat 3:121–125Google Scholar
  133. 133.
    Rozen P, Samuel Z, Rabau M, Goldman G, Shomrat R, Legum C, Orr-Urtreger A (2001) Familial adenomatous polyposis at the Tel Aviv Medical Center: demographic and clinical features. Fam Cancer 1:75–82PubMedGoogle Scholar
  134. 134.
    Olschwang S, Tiret A, Laurent-Puig P, Muleris M, Parc R, Thomas G (1993) Restriction of ocular fundus lesions to a specific subgroup of APC mutations in adenomatous polyposis coli patients. Cell 75:959–968PubMedGoogle Scholar
  135. 135.
    Nagase H, Miyoshi Y, Horii A, Aoki T, Ogawa M, Utsunomiya J, Baba S, Sasazuki T, Nakamura Y (1992) Correlation between the location of germ-line mutations in the APC gene and the number of colorectal polyps in familial adenomatous polyposis patients. Cancer Res 52:4055–4057PubMedGoogle Scholar
  136. 136.
    Powell SM, Petersen GM, Krush AJ, Booker S, Jen J, Giardiello FM, Hamilton SR, Vogelstein B, Kinzler KW (1993) Molecular diagnosis of familial adenomatous polyposis. N Engl J Med 329:1982–1987PubMedGoogle Scholar
  137. 137.
    Hogervorst FB, Cornelis RS, Bout M, van Vliet M, Oosterwijk JC, Olmer R, Bakker B, Klijn JG, Vasen HF, Meijers-Heijboer H et al (1995) Rapid detection of BRCA1 mutations by the protein truncation test. Nat Genet 10:208–212PubMedGoogle Scholar
  138. 138.
    Roest PA, Roberts RG, van der Tuijn AC, Heikoop JC, van Ommen GJ, den Dunnen JT (1993) Protein truncation test (PTT) to rapidly screen the DMD gene for translation terminating mutations. Neuromuscul Disord 3:391–394PubMedGoogle Scholar
  139. 139.
    De Rosa M, Scarano MI, Panariello L, Morelli G, Riegler G, Rossi GB, Tempesta A, Romano G, Renda A, Pettinato G, Izzo P (2003) The mutation spectrum of the APC gene in FAP patients from southern Italy: detection of known and four novel mutations. Hum Mutat 21:655–656PubMedGoogle Scholar
  140. 140.
    Aretz S, Stienen D, Uhlhaas S, Pagenstecher C, Mangold E, Caspari R et al (2005) Large submicroscopic genomic APC deletions are a common cause of typical familial adenomatous polyposis. J Med Genet 42:185–192PubMedGoogle Scholar
  141. 141.
    Gismondi V, Bafico A, Biticchi R et al (1998) 310 Basepair APC deletion with duplication of breakpoint (4394ins15del310) in an Italian polyposis patient. Hum Mutat 1:S220–S222PubMedGoogle Scholar
  142. 142.
    Mihalatos M, Apessos A, Dauwerse H, Velissariou V, Psychias A, Koliopanos A, Petropoulos K, Triantafillidis JK, Danielidis I, Fountzilas G, Agnantis NJ, Nasioulas G (2005) Rare mutations predisposing to familial adenomatous polyposis in Greek FAP patients. BMC Cancer 5:40PubMedGoogle Scholar
  143. 143.
    Pagenstecher C, Gadzicki D, Stienen D, Uhlhaas S, Mangold E, Rahner N, Arslan-Kirchner M, Propping P, Friedl W, Aretz S (2007) A complex rearrangement in the APC gene uncovered by multiplex ligation-dependent probe amplification. J Mol Diagn 9:122–126PubMedGoogle Scholar
  144. 144.
    Castellsagué E, González S, Nadal M, Campos O, Guinó E, Urioste M, Blanco I, Frebourg T, Capellá G (2008) Detection of APC gene deletions using quantitative multiplex PCR of short fluorescent fragments. Clin Chem 54:1132–1140PubMedGoogle Scholar
  145. 145.
    Varesco L, Gismondi V, James R, Robertson M, Grammatico P, Groden J, Casarino L, De Benedetti L, Bafico A, Bertario L et al (1993) Identification of APC gene mutations in Italian adenomatous polyposis coli patients by PCR-SSCP analysis. Am J Hum Genet 52:280–285PubMedGoogle Scholar
  146. 146.
    Trimbath JD, Griffin C, Romans K, Giardiello FM (2003) Attenuated familial adenomatous polyposis presenting as ampullary adenocarcinoma. Gut 52:903–904PubMedGoogle Scholar
  147. 147.
    Watson P, Lynch HT (1993) Extracolonic cancer in hereditary nonpolyposis colorectal cancer. Cancer 71:677–685PubMedGoogle Scholar
  148. 148.
    Aziz O, Athanasiou T, Fazio VW, Nicholls RJ, Darzi AW, Church J, Phillips RK, Tekkis PP (2006) Meta-analysis of observational studies of ileorectal versus ileal pouch-anal anastomosis for familial adenomatous polyposis. Br J Surg 93:407–417PubMedGoogle Scholar
  149. 149.
    Kartheuser AH, Parc R, Penna CP, Tiret E, Frileux P, Hannoun L, Nordlinger B, Loygue J (1996) Ileal pouch-anal anastomosis as the first choice operation in patients with familial adenomatous polyposis: a ten-year experience. Surgery 119:615–623PubMedGoogle Scholar
  150. 150.
    Hirschman BA, Pollock BH, Tomlinson GE (2005) The spectrum of APC mutations in children with hepatoblastoma from familial adenomatous polyposis kindreds. J Pediatr 147:263–266PubMedGoogle Scholar
  151. 151.
    Steinbach G, Lynch PM, Phillips RK, Wallace MH, Hawk E, Gordon GB, Wakabayashi N, Saunders B, Shen Y, Fujimura T, Su LK, Levin B (2000) The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med 342:1946–1952PubMedGoogle Scholar
  152. 152.
    Phillips RK, Wallace MH, Lynch PM, Hawk E, Gordon GB, Saunders BP, Wakabayashi N, Shen Y, Zimmerman S, Godio L, Rodrigues-Bigas M, Su LK, Sherman J, Kelloff G, Levin B, Steinbach G, FAP Study Group (2002) A randomised, double blind, placebo controlled study of celecoxib, a selective cyclooxygenase 2 inhibitor, on duodenal polyposis in familial adenomatous polyposis. Gut 50:857–860PubMedGoogle Scholar
  153. 153.
    Heiskanen I, Luostarinen T, Järvinen HJ (2000) Impact of screening examinations on survival in familial adenomatous polyposis. Scand J Gastroenterol 35:1284–1287PubMedGoogle Scholar
  154. 154.
    Dowton SB, Slaugh RA (1995) Diagnosis of human heritable diseases–laboratory approaches and outcomes. Clin Chem 41:785–794PubMedGoogle Scholar
  155. 155.
    Knudsen AL, Bisgaard ML, Bülow S (2003) Attenuated familial adenomatous polyposis (AFAP). A review of the literature. Fam Cancer 2:43–55PubMedGoogle Scholar
  156. 156.
    Grady WM (2003) Genetic testing for high-risk colon cancer patients. Gastroenterology 124:1574–1594PubMedGoogle Scholar
  157. 157.
    Nishisho I, Nakamura Y, Miyoshi Y, Miki Y, Ando H, Horii A, Koyama K, Utsunomiya J, Baba S, Hedge P (1991) Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 253:665–669PubMedGoogle Scholar
  158. 158.
    Rowley PT (2004) Screening for an inherited susceptibility to colorectal cancer. Genet Test 8:421–430PubMedGoogle Scholar
  159. 159.
    Gardner EJ (1962) Follow-up study of a family group exhibiting dominant inheritance for a syndrome including intestinal polyps, osteomas, fibromas and epidermal cysts. Am J Hum Genet 14:376PubMedGoogle Scholar
  160. 160.
    Fotiadis C, Tsekouras DK, Antonakis P, Sfiniadakis J, Genetzakis M, Zografos GC (2005) Gardner’s syndrome: a case report and review of the literature. World J Gastroenterol 11:5408–5411PubMedGoogle Scholar
  161. 161.
    Turcot J, Després J-P, St Pierre F (1959) Malignant tumors of the central nervous system associated with familial polyposis of the colon: report of two cases. Dis Colon Rectum 2:465–468PubMedGoogle Scholar
  162. 162.
    Hamilton SR, Liu B, Parsons RE, Papadopoulos N, Jen J, Powell SM, Krush AJ, Berk T, Cohen Z, Tetu B et al (1995) The molecular basis of Turcot’s syndrome. N Engl J Med 332:839–847PubMedGoogle Scholar
  163. 163.
    Paraf F, Jothy S, Van Meir EG (1997) Brain tumor-polyposis syndrome: two genetic diseases? J Clin Oncol 15:2744–2758PubMedGoogle Scholar
  164. 164.
    Laken SJ, Petersen GM, Gruber SB, Oddoux C, Ostrer H, Giardiello FM, Hamilton SR, Hampel H, Markowitz A, Klimstra D, Jhanwar S, Winawer S, Offit K, Luce MC, Kinzler KW, Vogelstein B (1997) Familial colorectal cancer in Ashkenazim due to a hypermutable tract in APC. Nat Genet 17:79–83PubMedGoogle Scholar
  165. 165.
    Zauber NP, Sabbath-Solitare M, Marotta S, Zauber AG, Foulkes W, Chan M, Turner F, Bishop DT (2005) Clinical and genetic findings in an Ashkenazi Jewish population with colorectal neoplasms. Cancer 104:719–729PubMedGoogle Scholar
  166. 166.
    Gryfe R, Di Nicola N, Gallinger S, Redston M (1998) Somatic instability of the APC I1307K allele in colorectal neoplasia. Cancer Res 58:4040–4043PubMedGoogle Scholar
  167. 167.
    Niell BL, Long JC, Rennert G, Gruber SB (2003) Genetic anthropology of the colorectal cancer-susceptibility allele APC I1307K: evidence of genetic drift within the Ashkenazim. Am J Hum Genet 73:1250–1260PubMedGoogle Scholar
  168. 168.
    Gryfe R, Di Nicola N, Lal G, Gallinger S, Redston M (1999) Inherited colorectal polyposis and cancer risk of the APC I1307K polymorphism. Am J Hum Genet 64:378–384PubMedGoogle Scholar
  169. 169.
    Rennert G, Almog R, Tomsho LP, Low M, Pinchev M, Chaiter Y, Bonner JD, Rennert HS, Greenson JK, Gruber SB (2005) Colorectal polyps in carriers of the APC I1307K polymorphism. Dis Colon Rectum 48:2317–2321PubMedGoogle Scholar
  170. 170.
    Baris HN, Kedar I, Halpern GJ, Shohat T, Magal N, Ludman MD, Shohat M (2007) Prevalence of breast and colorectal cancer in Ashkenazi Jewish carriers of Fanconi anemia and bloom syndrome. Isr Med Assoc J 9:847–850PubMedGoogle Scholar
  171. 171.
    Shackelford RE, Kaufmann WK, Paules RS (2000) Oxidative stress and cell cycle checkpoint function. Free Radic Biol Med 28:1387–1404PubMedGoogle Scholar
  172. 172.
    Lee SH, Blair IA (2001) Oxidative DNA damage and cardiovascular disease. Trends Cardiovasc Med 11:148–155PubMedGoogle Scholar
  173. 173.
    Cooke MS, Olinski R, Evans MD (2006) Does measurement of oxidative damage to DNA have clinical significance? Clin Chim Acta 365:30–49PubMedGoogle Scholar
  174. 174.
    Marnett LJ (2000) Oxyradicals and DNA damage. Carcinogenesis 21:361–370PubMedGoogle Scholar
  175. 175.
    Slupska MM, Luther WM, Chiang JH, Yang H, Miller JH (1999) Functional expression of hMYH, a human homolog of the Escherichia coli MutY protein. J Bacteriol 181:6210–6213PubMedGoogle Scholar
  176. 176.
    Yang H, Clendenin WM, Wong D, Demple B, Slupska MM, Chiang JH, Miller JH (2001) Enhanced activity of adenine-DNA glycosylase (Myh) by apurinic/apyrimidinic endonuclease (Ape1) in mammalian base excision repair of an A/GO mismatch. Nucleic Acids Res 29:743–752PubMedGoogle Scholar
  177. 177.
    Lipton L, Halford SE, Johnson V, Novelli MR, Jones A, Cummings C, Barclay E, Sieber O, Sadat A, Bisgaard ML, Hodgson SV, Aaltonen LA, Thomas HJ, Tomlinson IP (2003) Carcinogenesis in MYH-associated polyposis follows a distinct genetic pathway. Cancer Res 63:7595–7599PubMedGoogle Scholar
  178. 178.
    Al-Tassan N, Chmiel NH, Maynard J, Fleming N, Livingston AL, Williams GT, Hodges AK, Davies DR, David SS, Sampson JR, Cheadle JP (2002) Inherited variants of MYH associated with somatic G:C → T: a mutations in colorectal tumors. Nat Genet 30:227–232PubMedGoogle Scholar
  179. 179.
    Fleischmann C, Peto J, Cheadle J, Shah B, Sampson J, Houlston RS (2004) Comprehensive analysis of the contribution of germline MYH variation to early-onset colorectal cancer. Int J Cancer 109:554–558PubMedGoogle Scholar
  180. 180.
    Farrington SM, Tenesa A, Barnetson R, Wiltshire A, Prendergast J, Porteous M, Campbell H, Dunlop MG (2005) Germline susceptibility to colorectal cancer due to base-excision repair gene defects. Am J Hum Genet 77:112–119PubMedGoogle Scholar
  181. 181.
    Vogt S, Jones N, Christian D et al (2009) Expanded extracolonic tumor spectrum in MUTYH-associated polyposis. Gastroenterology 137:1976–1985PubMedGoogle Scholar
  182. 182.
    Nielsen M, Franken PF, Reinards TH, Weiss MM, Wagner A, van der Klift H et al (2005) Multiplicity in polyp count and extracolonic manifestations in 40 Dutch patients with MYH associated polyposis coli (MAP). J Med Genet 42:e54PubMedGoogle Scholar
  183. 183.
    Sampson JR, Dolwani S, Jones S, Eccles D, Ellis A, Evans DG, Frayling I, Jordan S, Maher ER, Mak T, Maynard J, Pigatto F, Shaw J, Cheadle JP (2003) Autosomal recessive colorectal adenomatous polyposis due to inherited mutations of MYH. Lancet 362:39–41PubMedGoogle Scholar
  184. 184.
    Barnetson RA, Devlin L, Miller J, Farrington SM, Slater S, Drake AC, Campbell H, Dunlop MG, Porteous ME (2007) Germline mutation prevalence in the base excision repair gene, MYH, in patients with endometrial cancer. Clin Genet 72:551–555PubMedGoogle Scholar
  185. 185.
    O’Shea AM, Cleary SP, Croitoru MA, Kim H, Berk T, Monga N, Riddell RH, Pollett A, Gallinger S (2008) Pathological features of colorectal carcinomas in MYH-associated polyposis. Histopathology 53:184–194PubMedGoogle Scholar
  186. 186.
    Chow E, Thirlwell C, Macrae F, Lipton L (2004) Colorectal cancer and inherited mutations in base-excision repair. Lancet Oncol 5:600–606PubMedGoogle Scholar
  187. 187.
    Prior TW, Bridgeman SJ (2010) Identifying mutations for MYH-associated polyposis. Curr Protoc Hum Genet, Chapter 10:Unit 10.13Google Scholar
  188. 188.
    Piccioli P, Serra M, Gismondi V, Pedemonte S, Loiacono F, Lastraioli S, Bertario L, De Angioletti M, Varesco L, Notaro R (2006) Multiplex tetra-primer amplification refractory mutation system PCR to detect 6 common germline mutations of the MUTYH gene associated with polyposis and colorectal cancer. Clin Chem 52:739–743PubMedGoogle Scholar
  189. 189.
    Gismondi V, Meta M, Bonelli L, Radice P, Sala P, Bertario L, Viel A, Fornasarig M, Arrigoni A, Gentile M, Ponz de Leon M, Anselmi L, Mareni C, Bruzzi P, Varesco L (2004) Prevalence of the Y165C, G382D and 1395delGGA germline mutations of the MYH gene in Italian patients with adenomatous polyposis coli and colorectal adenomas. Int J Cancer 109:680–684PubMedGoogle Scholar
  190. 190.
    Cleary SP, Cotterchio M, Jenkins MA et al (2009) Germline MutY human homologue mutations and colorectal cancer: a multisite case–control study. Gastroenterology 136:1251–1260PubMedGoogle Scholar
  191. 191.
    Jones N, Vogt S, Nielsen M et al (2009) Cancer risks in MUTYH heterozygotes: increased colorectal cancer incidence in obligate carriers of heterozygous mutations in MUTYH. Gastroenterology 137:489–494PubMedGoogle Scholar
  192. 192.
    Olschwang S, Blanché H, de Moncuit C, Thomas G (2007) Similar colorectal cancer risk in patients with monoallelic and biallelic mutations in the MYH gene identified in a population with adenomatous polyposis. Genet Test 11:315–320PubMedGoogle Scholar
  193. 193.
    Hampel H, Frankel WL, Martin E, Arnold M, Khanduja K, Kuebler P, Clendenning M, Sotamaa K, Prior T, Westman JA, Panescu J, Fix D, Lockman J, LaJeunesse J, Comeras I, de la Chapelle A (2008) Feasibility of screening for Lynch syndrome among patients with colorectal cancer. J Clin Oncol 26:5783–5788PubMedGoogle Scholar
  194. 194.
    Lynch HT, Shaw MW, Magnuson CW, Larsen AL, Krush AJ (1966) Hereditary factors in cancer. Study of two large midwestern kindreds. Arch Intern Med 117:206–212PubMedGoogle Scholar
  195. 195.
    Umar A, Boland CR, Terdiman JP et al (2004) Revised Bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 96:261–268PubMedGoogle Scholar
  196. 196.
    Hsieh P, Yamane K (2008) DNA mismatch repair: molecular mechanism, cancer, and ageing. Mech Ageing Dev 129:391–407PubMedGoogle Scholar
  197. 197.
    Zhang Y, Rohde LH, Wu H (2009) Involvement of nucleotide excision and mismatch repair mechanisms in double strand break repair. Curr Genomics 10:250–258PubMedGoogle Scholar
  198. 198.
    Bronner CE, Baker SM, Morrison PT, Warren G, Smith LG, Lescoe MK, Kane M, Earabino C, Lipford J, Lindblom A et al (1994) Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature 368:258–261PubMedGoogle Scholar
  199. 199.
    Mitchell RJ, Farrington SM, Dunlop MG, Campbell H (2002) Mismatch repair genes hMLH1 and hMSH2 and colorectal cancer: a HuGE review. Am J Epidemiol 156:885–902PubMedGoogle Scholar
  200. 200.
    Kuismanen SA, Holmberg MT, Salovaara R, de la Chapelle A, Peltomäki P (2000) Genetic and epigenetic modification of MLH1 accounts for a major share of microsatellite-unstable colorectal cancers. Am J Pathol 156:1773–1779PubMedGoogle Scholar
  201. 201.
    Wijnen J, Khan PM, Vasen H, van der Klift H, Mulder A, van Leeuwen-Cornelisse I, Bakker B, Losekoot M, Møller P, Fodde R (1997) Hereditary nonpolyposis colorectal cancer families not complying with the Amsterdam criteria show extremely low frequency of mismatch-repair-gene mutations. Am J Hum Genet 61:329–335PubMedGoogle Scholar
  202. 202.
    Peltomaki P (2003) Role of DNA mismatch repair defects in the pathogenesis of human cancer. J Clin Oncol 21:1174–1179PubMedGoogle Scholar
  203. 203.
    Miyaki M, Konishi M, Tanaka K, Kikuchi-Yanoshita R, Muraoka M, Yasuno M, Igari T, Koike M, Chiba M, Mori T (1997) Germline mutation of MSH6 as the cause of hereditary nonpolyposis colorectal cancer. Nat Genet 17:271–272PubMedGoogle Scholar
  204. 204.
    Berends MJ, Wu Y, Sijmons RH, Mensink RG, van der Sluis T, Hordijk-Hos JM, de Vries EG, Hollema H, Karrenbeld A, Buys CH, van der Zee AG, Hofstra RM, Kleibeuker JH (2002) Molecular and clinical characteristics of MSH6 variants: an analysis of 25 index carriers of a germline variant. Am J Hum Genet 70:26–37PubMedGoogle Scholar
  205. 205.
    Wijnen J, de Leeuw W, Vasen H, van der Klift H, Moller P, Stormorken A, Meijers-Heijboer H, Lindhout D, Menko F, Vossen S, Moslein G, Tops C, Brocker-Vriends A, Wu Y, Hofstra R, Sijmons R, Cornelisse C, Morreau H, Fodde R (1999) Familial endometrial cancer in female carriers of MSH6 germline mutations. Nat Genet 23:142–144PubMedGoogle Scholar
  206. 206.
    Plaschke J, Engel C, Krüger S, Holinski-Feder E, Pagenstecher C, Mangold E, Moeslein G, Schulmann K, Gebert J, von Knebel DM, Rüschoff J, Loeffler M, Schackert HK (2004) Lower incidence of colorectal cancer and later age of disease onset in 27 families with pathogenic MSH6 germline mutations compared with families with MLH1 or MSH2 mutations: the German hereditary nonpolyposis colorectal cancer consortium. J Clin Oncol 22:4486–4494PubMedGoogle Scholar
  207. 207.
    Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ, Qin J (2000) BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev 14:927–939PubMedGoogle Scholar
  208. 208.
    Wu Y, Berends MJ, Sijmons RH, Mensink RG, Verlind E, Kooi KA, van der Sluis T, Kempinga C, van dDer Zee AG, Hollema H, Buys CH, Kleibeuker JH, Hofstra RM (2001) A role for MLH3 in hereditary nonpolyposis colorectal cancer. Nat Genet 29:137–138PubMedGoogle Scholar
  209. 209.
    Duval A, Hamelin R (2002) Mutations at coding repeat sequences in mismatch repair-deficient human cancers: toward a new concept of target genes for instability. Cancer Res 62:2447–2454PubMedGoogle Scholar
  210. 210.
    Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, Fan RS, Zborowska E, Kinzler KW, Vogelstein B, Brattain M, Willson JKV (1995) Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability. Science 268:1336–1338PubMedGoogle Scholar
  211. 211.
    Perucho M (1996) Microsatellite instability: the mutator that mutates the other mutator. Nat Med 2:630–631PubMedGoogle Scholar
  212. 212.
    Loukola A, Eklin K, Laiho P, Salovaara R, Kristo P, Jarvinen H, Mecklin JP, Launonen V, Aaltonen LA (2001) Microsatellite marker analysis in screening for hereditary nonpolyposis colorectal cancer (HNPCC). Cancer Res 61:4545–4549PubMedGoogle Scholar
  213. 213.
    Yuan ZQ, Legendre B, Cai DQ, Cao J, Zhu J, Weber TK (2009) High throughput detection of microsatellite instability (MSI) in sporadic colorectal cancer by MSI COPPER denaturing high performance liquid chromatography. Pathology 41:393–394PubMedGoogle Scholar
  214. 214.
    Chialina SG, Fornes C, Landi C, de la Vega Elena CD, Nicolorich MV, Dourisboure RJ, Solano A, Solis EA (2006) Microsatellite instability analysis in hereditary non-polyposis colon cancer using the Bethesda consensus panel of microsatellite markers in the absence of proband normal tissue. BMC Med Genet 7:5PubMedGoogle Scholar
  215. 215.
    Piñol V, Castells A, Andreu M, Castellví-Bel S, Alenda C, Llor X, Xicola RM, Rodríguez-Moranta F, Payá A, Jover R, Bessa X (2005) Accuracy of revised Bethesda guidelines, microsatellite instability, and immunohistochemistry for the identification of patients with hereditary nonpolyposis colorectal cancer. JAMA 293:1986–1994PubMedGoogle Scholar
  216. 216.
    Lindor NM, Burgart LJ, Leontovich O, Goldberg RM, Cunningham JM, Sargent DJ, Walsh-Vockley C, Petersen GM, Walsh MD, Leggett BA, Young JP, Barker MA, Jass JR, Hopper J, Gallinger S, Bapat B, Redston M, Thibodeau SN (2002) Immunohistochemistry versus microsatellite instability testing in phenotyping colorectal tumors. J Clin Oncol 20:1043–1048PubMedGoogle Scholar
  217. 217.
    Debniak T, Kurzawski G, Gorski B et al (2000) Value of pedigree/clinical data, immunohistochemistry and microsatellite instability analyses in reducing the cost of determining hMLH1 and hMSH2 gene mutations in patients with colorectal cancer. Eur J Cancer 36:49–54PubMedGoogle Scholar
  218. 218.
    Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M (1993) Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363:558–561PubMedGoogle Scholar
  219. 219.
    Thibodeau SN, Bren G, Schaid D (1993) Microsatellite instability in cancer of the proximal colon. Science 260:816–819PubMedGoogle Scholar
  220. 220.
    Domingo E, Laiho P, Ollikainen M, Pinto M, Wang L, French AJ, Westra J, Frebourg T, Espín E, Armengol M, Hamelin R, Yamamoto H, Hofstra RM, Seruca R, Lindblom A, Peltomäki P, Thibodeau SN, Aaltonen LA, Schwartz S Jr (2004) BRAF screening as a low-cost effective strategy for simplifying HNPCC genetic testing. J Med Genet 41:664–668PubMedGoogle Scholar
  221. 221.
    Domingo E, Niessen RC, Oliveira C, Alhopuro P, Moutinho C, Espín E, Armengol M, Sijmons RH, Kleibeuker JH, Seruca R, Aaltonen LA, Imai K, Yamamoto H, Schwartz S Jr, Hofstra RM (2005) BRAF-V600E is not involved in the colorectal tumorigenesis of HNPCC in patients with functional MLH1 and MSH2 genes. Oncogene 24:3995–3998PubMedGoogle Scholar
  222. 222.
    Baudhuin LM, Mai M, French AJ, Kruckeberg KE, Swanson RL, Winters JL, Courteau LK, Thibodeau SN (2005) Analysis of hMLH1 and hMSH2 gene dosage alterations in hereditary nonpolyposis colorectal cancer patients by novel methods. J Mol Diagn 7:226–235PubMedGoogle Scholar
  223. 223.
    Miyaki M, Konishi M, Muraoka M, Kikuchi-Yanoshita R, Tanaka K, Iwama T, Mori T, Koike M, Ushio K, Chiba M et al (1995) Germ line mutations of hMSH2 and hMLH1 genes in Japanese families with hereditary nonpolyposis colorectal cancer (HNPCC): usefulness of DNA analysis for screening and diagnosis of HNPCC patients. J Mol Med 73:515–520PubMedGoogle Scholar
  224. 224.
    Wijnen J, Vasen H, Khan PM, Menko FH, van der Klift H, van Leeuwen C, van den Broek M, van Leeuwen-Cornelisse I, Nagengast F, Meijers-Heijboer A et al (1995) Seven new mutations in hMSH2, an HNPCC gene, identified by denaturing gradient-gel electrophoresis. Am J Hum Genet 56:1060–1066PubMedGoogle Scholar
  225. 225.
    Charbonnier F, Raux G, Wang Q, Drouot N, Cordier F, Limacher JM, Saurin JC, Puisieux A, Olschwang S, Frebourg T (2000) Detection of exon deletions and duplications of the mismatch repair genes in hereditary nonpolyposis colorectal cancer families using multiplex polymerase chain reaction of short fluorescent fragments. Cancer Res 60:2760–2763PubMedGoogle Scholar
  226. 226.
    Peltoma¨ki P, Vasen H (1997) The international collaborative group on hereditary nonpolyposis colorectal cancer. Mutations predisposing to hereditary nonpolyposis colorectal cancer: database and results of a collaborative study. Gastroenterology 113:1146–1158Google Scholar
  227. 227.
    Mauillon J, Michel P, Limacher JM, Dechelotte P, Charbonnier F, Martin C, Moreau V, Metayer J, Paillot B, Frebourg T (1996) Identification of novel germline hMLH1 mutations including a 22-kb Alu-mediated deletion in patients with familial colorectal cancer. Cancer Res 56:5728–5733PubMedGoogle Scholar
  228. 228.
    Vasen HFA, Nagengast FM, Khan PM (1995) Interval cancers in hereditary non-polyposis colorectal cancer (Lynch syndrome). Lancet 345:1183–1184PubMedGoogle Scholar
  229. 229.
    Järvinen HJ, Aarnio M, Mustonen H et al (2000) Controlled 15-year trial on screening for colorectal cancer in families with hereditary nonpolyposis colorectal cancer. Gastroenterology 118:829–834PubMedGoogle Scholar
  230. 230.
    Hurlstone DP, Cross SS, Slater R, Sanders DS, Brown S (2004) Detecting diminutive colorectal lesions at colonoscopy: a randomized controlled trial of pan-colonic versus targeted chromoscopy. Gut 53:376–380PubMedGoogle Scholar
  231. 231.
    Lindor NM, Petersen GM, Hadley DW, Kinney AY, Miesfeldt S, Lu KH, Lynch P, Burke W, Press N (2006) Recommendations for the care of individuals with an inherited predisposition to Lynch syndrome: a systematic review. JAMA 296:1507–1517PubMedGoogle Scholar
  232. 232.
    Dunlop MG, Farrington SM, Carothers AD, Wyllie AH, Sharp L, Burn J, Liu B, Kinzler KW, Vogelstein B (1997) Cancer risk associated with germline DNA mismatch repair gene mutations. Hum Mol Genet 6:105–110PubMedGoogle Scholar
  233. 233.
    Vasen HF, Wijnen JT, Menko FH, Kleibeuker JH, Taal BG, Griffioen G, Nagengast FM, Meijers-Heijboer EH, Bertario L, Varesco L, Bisgaard ML, Mohr J, Fodde R, Khan PM (1996) Cancer risk in families with hereditary nonpolyposis colorectal cancer diagnosed by mutation analysis. Gastroenterology 110:1020–1027PubMedGoogle Scholar
  234. 234.
    Schmeler KM, Lynch HT, Chen L-M et al (2006) Prophylactic surgery to reduce the risk of gynecologic cancers in the Lynch syndrome. N Engl J Med 354:261–269PubMedGoogle Scholar
  235. 235.
    Diamond M (1939) Adenoma of the rectum in children: report of a case in a thirty month old girl. Am J Dis Children 57:360Google Scholar
  236. 236.
    Stemper TJ, Kent TH, Summers RW (1975) Juvenile polyposis and gastrointestinal carcinoma. Ann Intern Med 83:639–646PubMedGoogle Scholar
  237. 237.
    Goodman ZD, Yardley JH, Milligan FD (1979) Pathogenesis of colonic polyps in multiple juvenile polyposis. Cancer 43:1906–1913PubMedGoogle Scholar
  238. 238.
    Yoshida T, Haraguchi Y, Tanaka A, Higa A, Daimon Y, Mizuta Y, Tamaki M et al (1988) A case of generalized juvenile gastrointestinal polyposis associated with gastric carcinoma. Endoscopy 20:33–35PubMedGoogle Scholar
  239. 239.
    Walpole IR, Cullity G (1989) Juvenile polyposis: a case with early presentation and death attributable to adenocarcinoma of the pancreas. Am J Med Genet 32:1–8PubMedGoogle Scholar
  240. 240.
    Bentley E, Chandrasoma P, Radin R, Cohen H (1989) Generalized juvenile polyposis with carcinoma. Am J Gastroenterol 84:1456–1459PubMedGoogle Scholar
  241. 241.
    Jarvinen HJ, Franssila KO (1984) Familial juvenile polyposis coli: increased risk of colorectal cancer. Gut 25:792–800PubMedGoogle Scholar
  242. 242.
    Jass JR (1990) Pathology of polyposis syndromes with special reference to juvenile polyposis. In: Utsunomiya J, Lynch HT (eds) Hereditary colorectal cancer. Springer, Tokyo, pp 343–350Google Scholar
  243. 243.
    Jass JR, Williams CB, Bussey HJ, Morson BC (1988) Juvenile polyposis–a precancerous condition. Histopathology 13:619–630PubMedGoogle Scholar
  244. 244.
    Sachatello CR (1972) Polypoid diseases of the gastrointestinal tract. J Ky Med Assoc 70:540PubMedGoogle Scholar
  245. 245.
    Bussey HJ, Veale AM, Morson BC (1978) Genetics of gastrointestinal polyposis. Gastroenterology 74:1325PubMedGoogle Scholar
  246. 246.
    Burt RW, Bishop DT, Lynch HT, Rozen P, Winawer SJ (1990) Risk and surveillance of individuals with heritable factors for colorectal cancer. WHO collaborating centre for the prevention of colorectal cancer. Bull World Health Organ 68:655–665PubMedGoogle Scholar
  247. 247.
    Howe JR, Sayed MG, Ahmed AF, Ringold J, Larsen-Haidle J, Merg A, Mitros FA, Vaccaro CA, Petersen GM, Giardiello FM, Tinley ST, Aaltonen LA, Lynch HT (2004) The prevalence of MADH4 and BMPR1A mutations in juvenile polyposis and absence of BMPR2, BMPR1B, and ACVR1 mutations. J Med Genet 41:484–491PubMedGoogle Scholar
  248. 248.
    Mishina Y (2003) Function of bone morphogenetic protein signaling during mouse development. Front Biosci 8:d855–d869PubMedGoogle Scholar
  249. 249.
    Howe JR, Roth S, Ringold JC, Summers RW, Järvinen HJ, Sistonen P, Tomlinson IP, Houlston RS, Bevan S, Mitros FA, Stone EM, Aaltonen LA (1998) Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science 280:1086–1088PubMedGoogle Scholar
  250. 250.
    Calva-Cerqueira D, Chinnathambi S, Pechman B, Bair J, Larsen-Haidle J, Howe JR (2009) The rate of germline mutations and large deletions of SMAD4 and BMPR1A in juvenile polyposis. Clin Genet 75:79–85PubMedGoogle Scholar
  251. 251.
    Sweet K, Willis J, Zhou XP, Gallione C, Sawada T, Alhopuro P, Khoo SK, Patocs A, Martin C, Bridgeman S, Heinz J, Pilarski R, Lehtonen R, Prior TW, Frebourg T, Teh BT, Marchuk DA, Aaltonen LA, Eng C (2005) Molecular classification of patients with unexplained hamartomatous and hyperplastic polyposis. JAMA 294:2465–2473PubMedGoogle Scholar
  252. 252.
    Calva D, Howe JR (2008) Hamartomatous polyposis syndromes. Surg Clin North Am 88:779–817PubMedGoogle Scholar
  253. 253.
    Grosfeld JL, West KW (1986) Generalized juvenile polyposis coli. Arch Surg 121:530PubMedGoogle Scholar
  254. 254.
    Järvinen H (1993) Juvenile gastrointestinal polyposis. Probl Gen Surg 10:749–757Google Scholar
  255. 255.
    Peutz JL (1921) Over een zeer merkwaardige, gecombineerde familiaire pollyposis van de sligmliezen van den tractus intestinalis met die van de neuskeelholte en gepaard met eigenaardige pigmentaties van huid-en slijmvliezen. Ned Maandschr v Gen 10:134Google Scholar
  256. 256.
    Brosens LA, van Hattem WA, Jansen M, de Leng WW, Giardiello FM, Offerhaus GJ (2007) Gastrointestinal polyposis syndromes. Curr Mol Med 7:29–46PubMedGoogle Scholar
  257. 257.
    Boardman LA, Thibodeau SN, Schaid DJ, Lindor NM, McDonnell SK, Burgart LJ, Ahlquist DA, Podratz KC, Pittelkow M, Hartmann LC (1998) Increased risk for cancer in patients with the Peutz-Jeghers syndrome. Ann Intern Med 128:896–899PubMedGoogle Scholar
  258. 258.
    Giardiello FM, Welsh SB, Hamilton SR, Offerhaus GJ, Gittelsohn AM, Booker SV, Krush AJ, Yardley JH, Luk GD (1987) Increased risk of cancer in the Peutz-Jeghers syndrome. N Engl J Med 316:1511–1514PubMedGoogle Scholar
  259. 259.
    Zbuk KM, Eng C (2007) Hamartomatous polyposis syndromes. Nat Clin Pract Gastroenterol Hepatol 4:492–502PubMedGoogle Scholar
  260. 260.
    Collins SP, Reoma JL, Gamm DM, Uhler MD (2000) LKB1, a novel serine/threonine protein kinase and potential tumour suppressor, is phosphorylated by cAMP-dependent protein kinase (PKA) and prenylated in vivo. Biochem J 345:673–680PubMedGoogle Scholar
  261. 261.
    Tiainen M, Ylikorkala A, Makela TP (1999) Growth suppression by Lkb1 is mediated by a G(1) cell cycle arrest. Proc Natl Acad Sci USA 96:9248–9251PubMedGoogle Scholar
  262. 262.
    Karuman P, Gozani O, Odze RD et al (2001) The Peutz–Jegher gene product LKB1 is a mediator of p53-dependent cell death. Mol Cell 7:1307–1319PubMedGoogle Scholar
  263. 263.
    Ylikorkala A, Rossi DJ, Korsisaari N et al (2001) Vascular abnormalities and deregulation of VEGF in Lkb1-deficient mice. Science 293:1323–1326PubMedGoogle Scholar
  264. 264.
    Spicer J, Rayter S, Young N, Elliott R, Ashworth A, Smith D (2003) Regulation of the Wnt signalling component PAR1A by the Peutz–Jeghers syndrome kinase LKB1. Oncogene 22:4752–4756PubMedGoogle Scholar
  265. 265.
    Rosner M, Hanneder M, Siegel N, Valli A, Fuchs C, Hengstschlager M (2008) The mTOR pathway and its role in human genetic diseases. Mutat Res 659:284–292PubMedGoogle Scholar
  266. 266.
    Scott RJ, Crooks R, Meldrum CJ, Thomas L, Smith CJ, Mowat D, McPhillips M, Spigelman AD (2002) Mutation analysis of the STK11/LKB1 gene and clinical characteristics of an Australian series of Peutz-Jeghers syndrome patients. Clin Genet 62:282–287PubMedGoogle Scholar
  267. 267.
    Ylikorkala A, Avizienyte E, Tomlinson IP et al (1999) Mutations and impaired function of LKB1 in familial and non-familial Peutz–Jeghers syndrome and a sporadic testicular cancer. Hum Mol Genet 8:45–51PubMedGoogle Scholar
  268. 268.
    Lim W, Hearle N, Shah B et al (2003) Further observations on LKB1/STK11 status and cancer risk in Peutz–Jeghers syndrome. Br J Cancer 89:308–313PubMedGoogle Scholar
  269. 269.
    Olschwang S, Boisson C, Thomas G (2001) Peutz–Jeghers families unlinked to STK11/LKB1 gene mutations are highly predisposed to primitive biliary adenocarcinoma. J Med Genet 38:356–360PubMedGoogle Scholar
  270. 270.
    Mehenni H, Blouin JL, Radhakrishna U, Bhardwaj SS, Bhardwaj K, Dixit VB, Richards KF, Bermejo-Fenoll A, Leal AS, Raval RC, Antonarakis SE (1997) Peutz-Jeghers syndrome: confirmation of linkage to chromosome 19p13.3 and identification of a potential second locus, on 19q13.4. Am J Hum Genet 61:1327–1334PubMedGoogle Scholar
  271. 271.
    Olschwang S, Markie D, Seal S, Neale K, Phillips R, Cottrell S, Ellis I, Hodgson S, Zauber P, Spigelman A, Iwama T, Loff S, McKeown C, Marchese C, Sampson J, Davies S, Talbot I, Wyke J, Thomas G, Bodmer W, Hemminki A, Avizienyte E, de la Chapelle A, Aaltonen L, Stratton M, Houlston R, Tomlinson I (1998) Peutz-Jeghers disease: most, but not all, families are compatible with linkage to 19p13.3. J Med Genet 35:42–44PubMedGoogle Scholar
  272. 272.
    Hearle N, Schumacher V, Menko FH, Olschwang S, Boardman LA, Gille JJ, Keller JJ, Westerman AM, Scott RJ, Lim W, Trimbath JD, Giardiello FM, Gruber SB, Offerhaus GJ, Rooij FW, Wilson JH, Hansmann A, Möslein G, Royer-Pokora B, Vogel T, Phillips RK, Spigelman AD, Houlston RS (2006) STK11 status and intussusception risk in Peutz-Jeghers syndrome. J Med Genet 43:e41PubMedGoogle Scholar
  273. 273.
    Volikos E, Robinson J, Aittomäki K, Mecklin JP, Järvinen H, Westerman AM, de Rooji FW, Vogel T, Moeslein G, Launonen V, Tomlinson IP, Silver AR, Aaltonen LA (2006) LKB1 exonic and whole gene deletions are a common cause of Peutz-Jeghers syndrome. J Med Genet 43:e18PubMedGoogle Scholar
  274. 274.
    Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A, Bignell G, Warren W, Aminoff M, Höglund P, Järvinen H, Kristo P, Pelin K, Ridanpää M, Salovaara R, Toro T, Bodmer W, Olschwang S, Olsen AS, Stratton MR, de la Chapelle A, Aaltonen LA (1998) A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 391(6663):184–187PubMedGoogle Scholar
  275. 275.
    Jiang CY, Esufali S, Berk T, Gallinger S, Cohen Z, Tobi M, Redston M, Bapat B (1999) STK11/LKB1 germline mutations are not identified in most Peutz-Jeghers syndrome patients. Clin Genet 56:136–141PubMedGoogle Scholar
  276. 276.
    Boardman LA, Couch FJ, Burgart LJ, Schwartz D, Berry R, McDonnell SK, Schaid DJ, Hartmann LC, Schroeder JJ, Stratakis CA, Thibodeau SN (2000) Genetic heterogeneity in Peutz-Jeghers syndrome. Hum Mutat 16:23–30PubMedGoogle Scholar
  277. 277.
    Mehenni H, Gehrig C, Nezu J, Oku A, Shimane M, Rossier C, Guex N, Blouin JL, Scott HS, Antonarakis SE (1998) Loss of LKB1 kinase activity in Peutz-Jeghers syndrome, and evidence for allelic and locus heterogeneity. Am J Hum Genet 63:1641–1650PubMedGoogle Scholar
  278. 278.
    Wang ZJ, Churchman M, Avizienyte E, McKeown C, Davies S, Evans DG, Ferguson A, Ellis I, Xu WH, Yan ZY, Aaltonen LA, Tomlinson IP (1999) Germline mutations of the LKB1 (STK11) gene in Peutz-Jeghers patients. J Med Genet 36:365–368PubMedGoogle Scholar
  279. 279.
    Abed AA, Günther K, Kraus C, Hohenberger W, Ballhausen WG (2001) Mutation screening at the RNA level of the STK11/LKB1 gene in Peutz-Jeghers syndrome reveals complex splicing abnormalities and a novel mRNA isoform (STK11 c.597(insertion mark)598insIVS4). Hum Mutat 18:397–410PubMedGoogle Scholar
  280. 280.
    Yoon KA, Ku JL, Choi HS, Heo SC, Jeong SY, Park YJ, Kim NK, Kim JC, Jung PM, Park JG (2000) Germline mutations of the STK11 gene in Korean Peutz-Jeghers syndrome patients. Br J Cancer 82:1403–1406PubMedGoogle Scholar
  281. 281.
    Saranrittichai S (2008) Peutz-jeghers syndrome and colon cancer in a 10-year-old girl: implications for when and how to start screening? Asian Pac J Cancer Prev 9:159–161PubMedGoogle Scholar
  282. 282.
    Kopacova M, Tacheci I, Rejchrt S, Bures J (2009) Peutz-Jeghers syndrome: diagnostic and therapeutic approach. World J Gastroenterol 15:5397–5408PubMedGoogle Scholar
  283. 283.
    Giardiello FM, Trimbath JD (2006) Peutz-Jeghers syndrome and management recommendations. Clin Gastroenterol Hepatol 4:408–415PubMedGoogle Scholar
  284. 284.
    Wei C, Amos CI, Zhang N, Wang X, Rashid A, Walker CL, Behringer RR, Frazier ML (2008) Suppression of Peutz-Jeghers polyposis by targeting mammalian target of rapamycin signaling. Clin Cancer Res 14:1167–1171PubMedGoogle Scholar
  285. 285.
    Udd L, Katajisto P, Rossi DJ, Lepistö A, Lahesmaa AM, Ylikorkala A, Järvinen HJ, Ristimäki AP, Mäkelä TP (2004) Suppression of Peutz-Jeghers polyposis by inhibition of cyclooxygenase-2. Gastroenterology 127:1030–1037PubMedGoogle Scholar
  286. 286.
    Kawato Y, Aonuma M, Matsumoto K, Sato K (1991) Production of SN-38, a main metabolite of the camptothecin derivative CPT-11, and its species and tissue specificities. Yakubutsu Dotai 6:899–907Google Scholar
  287. 287.
    Ratain MJ (2002) Irinotecan dosing: does the CPT in CPT-11 stand for “can’t predict toxicity”? J Clin Oncol 20:7–8PubMedGoogle Scholar
  288. 288.
    Fuchs CS, Moore MR, Harker G, Villa L, Rinaldi D, Hecht JR (2003) Phase III comparison of two irinotecan dosing regimens in second-line therapy of metastatic colorectal cancer. J Clin Oncol 21:807–814PubMedGoogle Scholar
  289. 289.
    Kunimoto T, Nitta K, Tanaka T, Uehara N, Baba H, Takeuchi M, Yokokura T, Sawada S, Miyasaka T, Mutai M (1987) Antitumor activity of inhibitor 7-ethyl-10-[4-(1-piperidino)-1-piperidino]-carbonyloxy-camptothecin, a novel water-soluble derivative of camptothecin against murine tumors. Cancer Res 47:5944–5947PubMedGoogle Scholar
  290. 290.
    Kawato Y, Nagata H, Furuta T, Yokokura T (1991) Intracellular roles of SN-38, a metabolite of the camptothecin derivative CPT-11, in the antitumor effect of CPT-11. Cancer Res 51:4187–4191PubMedGoogle Scholar
  291. 291.
    Takasuna K, Kasai Y, Kitano Y, Mori K, Kakihata K, Hirohashi M, Nomura M (1995) Study of mechanisms of diarrhea induced by the new anticancer agent drug irinotecan hydrochloride (CPT-11). Folia Pharmacol Jpn 105:447–460Google Scholar
  292. 292.
    Iyer L, King CD, Whitington PF, Green MD, Roy SK, Tephly TR, Coffman BL, Ratain MJ (1998) Genetic predisposition to the metabolism of irinotecan (CPT-11). Role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes. J Clin Invest 101:847–854PubMedGoogle Scholar
  293. 293.
    Ritter JK, Chen F, Sheen YY, Tran HM, Kimura S, Yeatman MT, Owens IS (1992) A novel complex locus UGT1 encodes human bilirubin, phenol and other UDP-glucuronosyltransferase isozymes with identical carboxyl termini. J Biol Chem 267:3257–3261PubMedGoogle Scholar
  294. 294.
    Owens IS, Ritter JK (1995) Gene structure at the human UGT1 locus creates diversity in isozyme structure, structure specificity and regulation. Prog Nucleic Acid Res 51:306–308Google Scholar
  295. 295.
    Hasegawa Y, Ando Y, Ando M, Hashimoto N, Imaizumi K, Shimokata K (2006) Pharmacogenetic approach for cancer treatment-tailored medicine in practice. Ann N Y Acad Sci 1086:223–232PubMedGoogle Scholar
  296. 296.
    Ando Y, Saka H, Ando M, Sawa T, Muro K, Ueoka H, Yokohama A, Saitoh S, Shimokata K, Hasegawa Y (2000) Polymorphisms of UDP-glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetic analysis. Cancer Res 60:6921–6926PubMedGoogle Scholar
  297. 297.
    Innocenti F, Undevia SD, Iyer L, Chen PX, Das S, Kocherginsky M, Karrison T, Janisch L, Ramírez J, Rudin CM, Vokes EE, Ratain MJ (2004) Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol 22:1382–1388PubMedGoogle Scholar
  298. 298.
    Iyer L, Das S, Janisch L, Wen M, Ramírez J, Karrison T, Fleming GF, Vokes EE, Schilsky RL, Ratain MJ (2002) UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenomics J 2:43–47PubMedGoogle Scholar
  299. 299.
    Beutler E, Gelbart T, Demina A (1998) Racial variability in the UDP-glucuronosyltransferase 1 (UGT1A1) promoter: a balanced polymorphism for regulation of bilirubin metabolism? Proc Natl Acad Sci USA 95:8170–8174PubMedGoogle Scholar
  300. 300.
    Gagné JF, Montminy V, Belanger P, Journault K, Gaucher G, Guillemette C (2002) Common human UGT1A polymorphisms and the altered metabolism of irinotecan active metabolite 7-ethyl-10-hydroxycamptothecin (SN-38). Mol Pharmacol 62:608–617PubMedGoogle Scholar
  301. 301.
    Yamamoto K, Sato H, Fujiyama Y, Doida Y, Bamba T (1998) Contribution of two missense mutations (G71R and Y486D) of the bilirubin UDP glycosyltransferase (UGT1A1) gene to phenotypes of Gilbert’s syndrome and Crigler-Najjar syndrome type II. Biochim Biophys Acta 1406:267–273PubMedGoogle Scholar
  302. 302.
    Marcuello E, Altés A, Menoyo A, Del Rio E, Gómez-Pardo M, Baiget M (2004) UGT1A1 gene variations and irinotecan treatment in patients with metastatic colorectal cancer. Br J Cancer 91:678–682PubMedGoogle Scholar
  303. 303.
    Onoue M, Terada T, Kobayashi M, Katsura T, Matsumoto S, Yanagihara K, Nishimura T, Kanai M, Teramukai S, Shimizu A, Fukushima M, Inui K (2009) UGT1A1*6 polymorphism is most predictive of severe neutropenia induced by irinotecan in Japanese cancer patients. Int J Clin Oncol 14:136–142PubMedGoogle Scholar
  304. 304.
    Han JY, Lim HS, Shin ES, Yoo YK, Park YH, Lee JE, Jang IJ, Lee DH, Lee JS (2006) Comprehensive analysis of UGT1A polymorphisms predictive for pharmacokinetics and treatment outcome in patients with non-small-cell lung cancer treated with irinotecan and cisplatin. J Clin Oncol 24:2237–2244PubMedGoogle Scholar
  305. 305.
    Takane H, Kawamoto K, Sasaki T, Moriki K, Moriki K, Kitano H, Higuchi S, Otsubo K, Ieiri I (2009) Life-threatening toxicities in a patient with UGT1A1*6/*28 and SLCO1B1*15/*15 genotypes after irinotecan-based chemotherapy. Cancer Chemother Pharmacol 63:1165–1169PubMedGoogle Scholar
  306. 306.
    Monaghan G, Ryan M, Seddon R, Hume R, Burchell B (1996) Genetic variation in bilirubin UPD-glucuronosyltransferase gene promoter and Gilbert’s syndrome. Lancet 347:578–581PubMedGoogle Scholar
  307. 307.
    Pirulli D, Giordano M, Puzzer D, Crovella S, Rigato I, Tiribelli C, Momigliano-Richiardi P, Amoroso A (2000) Rapid method for detection of extra (TA) in the promoter of the bilirubin-UDP-glucuronosyl transferase 1 gene associated with Gilbert syndrome. Clin Chem 46:129–131PubMedGoogle Scholar
  308. 308.
    Hasegawa Y, Sarashina T, Ando M, Kitagawa C, Mori A, Yoneyama M, Ando Y, Shimokata K (2004) Rapid detection of UGT1A1 gene polymorphisms by newly developed invader assay. Clin Chem 50:1479–1480PubMedGoogle Scholar
  309. 309.
    Recommendations from the EGAPP Working Group (2009) Can UGT1A1 genotyping reduce morbidity and mortality in patients with metastatic colorectal cancer treated with irinotecan? Genet Med 11:15–20Google Scholar
  310. 310.
    Hazama S, Nagashima A, Kondo H, Yoshida S, Shimizu R, Araki A, Yoshino S, Okayama N, Hinoda Y, Oka M (2010) Phase I study of irinotecan and doxifluridine for metastatic colorectal cancer focusing on the UGT1A1*28 polymorphism. Cancer Sci 101:722–727PubMedGoogle Scholar
  311. 311.
    Murff HJ, Byrne D, Syngal S (2004) Cancer risk assessment: quality and impact of the family history interview. Am J Prev Med 27:239–245PubMedGoogle Scholar
  312. 312.
    Bedoya F, Rubio JC, Morales-Gutierrez C, Abad-Barahona A, Lora Pablos D, Meneu JC, Moreno-Gonzalez E, Enriquez de Salamanca R, Vegh I (2009) Single nucleotide change in the cannabinoid receptor-1 (CNR1) gene in colorectal cancer outcome. Oncology 76:435–441PubMedGoogle Scholar
  313. 313.
    McHugh SM, O’Donnell J, Gillen P (2009) Genomic and oncoproteomic advances in detection and treatment of colorectal cancer. World J Surg Oncol 7:36PubMedGoogle Scholar
  314. 314.
    Likui W, Hong W, Shuwen Z (2010) Clinical significance of the upregulated osteopontin mRNA expression in human colorectal cancer. J Gastrointest Surg 14:74–81PubMedGoogle Scholar
  315. 315.
    Bezabeh T, Somorjai R, Dolenko B, Bryskina N, Levin B, Bernstein CN, Jeyarajah E, Steinhart AH, Rubin DT, Smith IC (2009) Detecting colorectal cancer by 1H magnetic resonance spectroscopy of fecal extracts. NMR Biomed 22:593–600PubMedGoogle Scholar
  316. 316.
    Snyder M, Du J, Gerstein M (2010) Personal genome sequencing: current approaches and challenges. Genes Dev 24:423–431PubMedGoogle Scholar
  317. 317.
    Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA, Shendure J (2011) Exome sequencing as a tool for mendelian disease gene discovery. Nat Rev Genet 12:745–755PubMedGoogle Scholar
  318. 318.
    Choi M, Scholl UI, Ji W, Liu T, Tikhonova IR, Zumbo P, Nayir A, Bakkaloğlu A, Ozen S, Sanjad S, Nelson-Williams C, Farhi A, Mane S, Lifton RP (2009) Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci USA 106:19096–19101PubMedGoogle Scholar
  319. 319.
    Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655PubMedGoogle Scholar
  320. 320.
    Wu WK, Law PT, Lee CW, Cho CH, Fan D, Wu K, Yu J, Sung JJ (2011) MicroRNA in colorectal cancer: from benchtop to bedside. Carcinogenesis 32:247–253PubMedGoogle Scholar
  321. 321.
    Lao VV, Grady WM (2011) Epigenetics and colorectal cancer. Nat Rev Gastroenterol Hepatol 8:686–700PubMedGoogle Scholar
  322. 322.
    Khare S, Verma M (2012) Epigenetics of colon cancer. Methods Mol Biol 863:177–185PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Rodney E. Shackelford
    • 1
  • Aejaz Nasir
    • 2
  • Ardeshir Hakam
    • 3
  • David Shibata
    • 4
  • Timothy Yeatman
    • 5
  • Domenico Coppola
    • 3
    Email author
  1. 1.Department of Pathology and Laboratory MedicineTulane University School of MedicineNew OrleansUSA
  2. 2.Diagnostic & Experimental Pathology & Tailored Therapeutics ProgramEli Lilly & CompanyIndianapolisUSA
  3. 3.Department of Anatomic Pathology and Oncological SciencesH. Lee Moffitt Cancer Center & Research Institute and University of South FloridaTampaUSA
  4. 4.Department of Surgical OncologyH. Lee Moffitt Cancer Center & Research Institute and University of South FloridaTampaUSA
  5. 5.Gibbs Research Institute and Cancer CenterSpartanburgUSA

Personalised recommendations