Molecular Pathology and Diagnostics of Breast Cancer

  • William Kong
  • Ted Richards
  • Jin Q. Cheng
  • Domenico CoppolaEmail author
Part of the Cancer Growth and Progression book series (CAGP, volume 16)


Proper treatment of breast cancer often depends on timely and accurate diagnosis. Due to the heterogeneic nature of breast cancer, it is important to continually develop diagnostic methods and tools that strive to provide consistent and reliable results for optimal patient specific care. Early microscopic observations of tumor sections have revealed that specific morphological structures of the mammary gland, such as luminal or basal layers, are often mimicked by cancer cells. This has resulted in a hypothesis that hyperplastic cells originate from their respective anatomical sites. Newer findings now suggest breast cancer arises from mammary stem or progenitor cells, which then differentiate into various lineages by molecular mechanisms not yet fully understood. Subtypes of breast cancers are reliably labeled aggressive, including triple negative and hereditary breast cancers. Molecular diagnosis is currently available through various platforms, including: MammaPrint®, Veridex®, Theros®, and Oncotype DX®, which have improved the resolution of diagnosis. Significant advancements in a variety of scientific disciplines in basic research, integration of next-generation sequencing technologies, and innovative computational and mathematical methods in integration of diverse data types on a large scale will likely translate into clinical applications such as breast cancer diagnosis.


Molecular diagnosis Breast cancer Mammary development miR-155 BRCA 



Estrogen receptor


Human epidermal growth factor receptor 2




Normal mouse mammary gland epithelial cells


Progesterone receptor


Recurrence score


  1. 1.
    Azzopardi JG, Ahmed A, Millis RR (1979) Problems in breast pathology. Major Probl Pathol 11:1–466, i-xviGoogle Scholar
  2. 2.
    Tavassoli FA (1992) Classification of metaplastic carcinomas of the breast. Pathol Annu 27(Pt 2):89–119PubMedGoogle Scholar
  3. 3.
    Mourad WA (1998) Book review: Rosen’s breast pathology. Ann Saudi Med 18:278PubMedGoogle Scholar
  4. 4.
    Weigelt B, Reis-Filho JS (2009) Histological and molecular types of breast cancer: is there a unifying taxonomy? Nat Rev Clin Oncol 6:718–730PubMedGoogle Scholar
  5. 5.
    Veltmaat JM, Mailleux AA, Thiery JP, Bellusci S (2003) Mouse embryonic mammogenesis as a model for the molecular regulation of pattern formation. Differentiation 71:1–17PubMedGoogle Scholar
  6. 6.
    Tiede B, Kang Y (2011) From milk to malignancy: the role of mammary stem cells in development, pregnancy and breast cancer. Cell Res 21:245–257PubMedGoogle Scholar
  7. 7.
    Woodward WA, Chen MS, Behbod F, Rosen JM (2005) On mammary stem cells. J Cell Sci 118:3585–3594PubMedGoogle Scholar
  8. 8.
    Reis-Filho JS, Lakhani SR (2008) Breast cancer special types: why bother? J Pathol 216:394–398PubMedGoogle Scholar
  9. 9.
    Simpson PT, Reis-Filho JS, Gale T, Lakhani SR (2005) Molecular evolution of breast cancer. J Pathol 205:248–254PubMedGoogle Scholar
  10. 10.
    Vargo-Gogola T, Rosen JM (2007) Modelling breast cancer: one size does not fit all. Nat Rev Cancer 7:659–672PubMedGoogle Scholar
  11. 11.
    Visvader JE (2009) Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev 23:2563–2577PubMedGoogle Scholar
  12. 12.
    Petersen OW, Polyak K (2010) Stem cells in the human breast. Cold Spring Harb Perspect Biol 2(5):a003160PubMedGoogle Scholar
  13. 13.
    Wellings SR, Jensen HM (1973) On the origin and progression of ductal carcinoma in the human breast. J Natl Cancer Inst 50:1111–1118PubMedGoogle Scholar
  14. 14.
    Wellings SR, Jensen HM, Marcum RG (1975) An atlas of subgross pathology of the human breast with special reference to possible precancerous lesions. J Natl Cancer Inst 55:231–273PubMedGoogle Scholar
  15. 15.
    Basaran G, Devrim C, Caglar HB, Gulluoglu B, Kaya H, Seber S, Korkmaz T, Telli F, Kocak M, Dane F, Yumuk FP, Turhal SN (2011) Clinical outcome of breast cancer patients with N3a (>/=10 positive lymph nodes) disease: has it changed over years? Med Oncol 28:726–732PubMedGoogle Scholar
  16. 16.
    Colzani E, Liljegren A, Johansson AL, Adolfsson J, Hellborg H, Hall PF, Czene K (2011) Prognosis of patients with breast cancer: causes of death and effects of time since diagnosis, age, and tumor characteristics. J Clin Oncol 29:4014–4021PubMedGoogle Scholar
  17. 17.
    Kuru B (2006) Prognostic significance of total number of nodes removed, negative nodes removed, and ratio of positive nodes to removed nodes in node positive breast carcinoma. Eur J Surg Oncol 32:1082–1088PubMedGoogle Scholar
  18. 18.
    Leitner SP, Swern AS, Weinberger D, Duncan LJ, Hutter RV (1995) Predictors of recurrence for patients with small (one centimeter or less) localized breast cancer (T1a, b N0 M0). Cancer 76:2266–2274PubMedGoogle Scholar
  19. 19.
    Singletary SE, Allred C, Ashley P et al (2002) Revision of the American Joint Committee on Cancer staging system for breast cancer. J Clin Oncol 20:3628–3636PubMedGoogle Scholar
  20. 20.
    Singletary SE, Allred C, Ashley P et al (2003) Staging system for breast cancer: revisions for the 6th edition of the AJCC cancer staging manual. Surg Clin North Am 83:803–819PubMedGoogle Scholar
  21. 21.
    Bodmer A, Castiglione-Gertsch M (2011) Role of hormonal manipulations in patients with hormone-sensitive metastatic breast cancer. Eur J Cancer 47(Suppl 3):S28–S37PubMedGoogle Scholar
  22. 22.
    Higgins MJ, Baselga J (2011) Targeted therapies for breast cancer. J Clin Invest 121:3797–3803PubMedGoogle Scholar
  23. 23.
    Lonning PE, Haynes BP, Straume AH, Dunbier A, Helle H, Knappskog S, Dowsett M (2011) Exploring breast cancer estrogen disposition: the basis for endocrine manipulation. Clin Cancer Res 17:4948–4958PubMedGoogle Scholar
  24. 24.
    Bardou VJ, Arpino G, Elledge RM, Osborne CK, Clark GM (2003) Progesterone receptor status significantly improves outcome prediction over estrogen receptor status alone for adjuvant endocrine therapy in two large breast cancer databases. J Clin Oncol 21:1973–1979PubMedGoogle Scholar
  25. 25.
    Leong AS, Zhuang Z (2011) The changing role of pathology in breast cancer diagnosis and treatment. Pathobiology 78:99–114PubMedGoogle Scholar
  26. 26.
    Thakkar JP, Mehta DG (2011) A review of an unfavorable subset of breast cancer: estrogen receptor positive progesterone receptor negative. Oncologist 16:276–285PubMedGoogle Scholar
  27. 27.
    Delozier T (2010) Hormonal treatment in breast cancer. J Gynecol Obstet Biol Reprod (Paris) 39(8 Suppl):F71–F78Google Scholar
  28. 28.
    Tamaki Y, Miyoshi Y, Noguchi S (2002) Adjuvant hormonal therapy. Breast Cancer 9:185–189PubMedGoogle Scholar
  29. 29.
    Clark GM, McGuire WL (1991) Follow-up study of HER-2/neu amplification in primary breast cancer. Cancer Res 51:944–948PubMedGoogle Scholar
  30. 30.
    Howe LR, Brown PH (2011) Targeting the HER/EGFR/ErbB family to prevent breast cancer. Cancer Prev Res (Phila) 4:1149–1157Google Scholar
  31. 31.
    Gutierrez C, Schiff R (2011) HER2: biology, detection, and clinical implications. Arch Pathol Lab Med 135:55–62PubMedGoogle Scholar
  32. 32.
    Guarneri V, Barbieri E, Dieci MV, Piacentini F, Conte P (2010) Anti-HER2 neoadjuvant and adjuvant therapies in HER2 positive breast cancer. Cancer Treat Rev 36(Suppl 3):S62–S66PubMedGoogle Scholar
  33. 33.
    Mukai H (2010) Treatment strategy for HER2-positive breast cancer. Int J Clin Oncol 15:335–340PubMedGoogle Scholar
  34. 34.
    Leyland-Jones B (2009) Human epidermal growth factor receptor 2-positive breast cancer and central nervous system metastases. J Clin Oncol 27:5278–5286PubMedGoogle Scholar
  35. 35.
    Ross JS, Slodkowska EA, Symmans WF, Pusztai L, Ravdin PM, Hortobagyi GN (2009) The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist 14:320–368PubMedGoogle Scholar
  36. 36.
    LoRusso PM, Weiss D, Guardino E, Girish S, Sliwkowski MX (2011) Trastuzumab emtansine: a unique antibody-drug conjugate in development for human epidermal growth factor receptor 2-positive cancer. Clin Cancer Res 17:6437–6447PubMedGoogle Scholar
  37. 37.
    Wong WM (1999) Drug update: trastuzumab: anti-HER2 antibody for treatment of metastatic breast cancer. Cancer Pract 7:48–50PubMedGoogle Scholar
  38. 38.
    Goldenberg MM (1999) Trastuzumab, a recombinant DNA-derived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer. Clin Ther 21:309–318PubMedGoogle Scholar
  39. 39.
    Colomer R, Shamon LA, Tsai MS, Lupu R (2001) Herceptin: from the bench to the clinic. Cancer Invest 19:49–56PubMedGoogle Scholar
  40. 40.
    Anders CK, Carey LA (2009) Biology, metastatic patterns, and treatment of patients with triple-negative breast cancer. Clin Breast Cancer 9(Suppl 2):S73–S81PubMedGoogle Scholar
  41. 41.
    Bosch A, Eroles P, Zaragoza R, Vina JR, Lluch A (2010) Triple-negative breast cancer: molecular features, pathogenesis, treatment and current lines of research. Cancer Treat Rev 36:206–215PubMedGoogle Scholar
  42. 42.
    Kang SP, Martel M, Harris LN (2008) Triple negative breast cancer: current understanding of biology and treatment options. Curr Opin Obstet Gynecol 20:40–46PubMedGoogle Scholar
  43. 43.
    Kobayashi S (2008) Basal-like subtype of breast cancer: a review of its unique characteristics and their clinical significance. Breast Cancer 15:153–158PubMedGoogle Scholar
  44. 44.
    Rakha EA, Ellis IO (2009) Triple-negative/basal-like breast cancer: review. Pathology 41:40–47PubMedGoogle Scholar
  45. 45.
    Reis-Filho JS, Tutt AN (2008) Triple negative tumours: a critical review. Histopathology 52:108–118PubMedGoogle Scholar
  46. 46.
    Anders C, Carey LA (2008) Understanding and treating triple-negative breast cancer. Oncology (Williston Park) 22:1233–1239, discussion 1239–1240, 1243Google Scholar
  47. 47.
    Haffty BG, Yang Q, Reiss M et al (2006) Locoregional relapse and distant metastasis in conservatively managed triple negative early-stage breast cancer. J Clin Oncol 24:5652–5657PubMedGoogle Scholar
  48. 48.
    Hines SL, Vallow LA, Tan WW, McNeil RB, Perez EA, Jain A (2008) Clinical outcomes after a diagnosis of brain metastases in patients with estrogen- and/or human epidermal growth factor receptor 2-positive versus triple-negative breast cancer. Ann Oncol 19:1561–1565PubMedGoogle Scholar
  49. 49.
    Carey LA, Dees EC, Sawyer L et al (2007) The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 13:2329–2334PubMedGoogle Scholar
  50. 50.
    Rodler E, Korde L, Gralow J (2010) Current treatment options in triple negative breast cancer. Breast Dis 32:99–122PubMedGoogle Scholar
  51. 51.
    Yagata H, Kajiura Y, Yamauchi H (2011) Current strategy for triple-negative breast cancer: appropriate combination of surgery, radiation, and chemotherapy. Breast Cancer 18:165–173PubMedGoogle Scholar
  52. 52.
    Lee LJ, Alexander B, Schnitt SJ, Comander A, Gallagher B, Garber JE, Tung N (2011) Clinical outcome of triple negative breast cancer in BRCA1 mutation carriers and noncarriers. Cancer 117:3093–3100PubMedGoogle Scholar
  53. 53.
    Gonzalez-Angulo AM, Timms KM, Liu S, Chen H, Litton JK, Potter J, Lanchbury JS, Stemke-Hale K, Hennessy BT, Arun BK, Hortobagyi GN, Do KA, Mills GB, Meric-Bernstam F (2011) Incidence and outcome of BRCA mutations in unselected patients with triple receptor-negative breast cancer. Clin Cancer Res 17:1082–1089PubMedGoogle Scholar
  54. 54.
    Antoniou AC, Wang X, Fredericksen ZS et al (2010) A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor-negative breast cancer in the general population. Nat Genet 42:885–892PubMedGoogle Scholar
  55. 55.
    Atchley DP, Albarracin CT, Lopez A, Valero V, Amos CI, Gonzalez-Angulo AM, Hortobagyi GN, Arun BK (2008) Clinical and pathologic characteristics of patients with BRCA-positive and BRCA-negative breast cancer. J Clin Oncol 26:4282–4288PubMedGoogle Scholar
  56. 56.
    Young SR, Pilarski RT, Donenberg T, Shapiro C, Hammond LS, Miller J, Brooks KA, Cohen S, Tenenholz B, Desai D, Zandvakili I, Royer R, Li S, Narod SA (2009) The prevalence of BRCA1 mutations among young women with triple-negative breast cancer. BMC Cancer 9:86PubMedGoogle Scholar
  57. 57.
    Roy R, Chun J, Powell SN (2011) BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer 12:68–78PubMedGoogle Scholar
  58. 58.
    Rakha EA, El-Sayed ME, Lee AH et al (2008) Prognostic significance of Nottingham histologic grade in invasive breast carcinoma. J Clin Oncol 26:3153–3158PubMedGoogle Scholar
  59. 59.
    Elston CW, Ellis IO (1991) Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19:403–410PubMedGoogle Scholar
  60. 60.
    Galea MH, Blamey RW (1993) Comment on ‘Predicting recurrence in axillary node negative breast cancer patients’, by Rosner and Lane. Breast Cancer Res Treat 28:299–300PubMedGoogle Scholar
  61. 61.
    Rosner D, Lane WW (1993) Predicting recurrence in axillary-node negative breast cancer patients. Breast Cancer Res Treat 25:127–139PubMedGoogle Scholar
  62. 62.
    Hutter RV (1984) Pathological parameters useful in predicting prognosis for patients with breast cancer. Monogr Pathol 25:175–185PubMedGoogle Scholar
  63. 63.
    Leong AS, Raymond WA (1989) Prognostic parameters in breast cancer. Pathology 21:169–175PubMedGoogle Scholar
  64. 64.
    Reiss M (1989) Prognostic factors in primary breast cancer. Conn Med 53:565–571PubMedGoogle Scholar
  65. 65.
    Le XF, Mao W, Lu C, Thornton A, Heymach JV, Sood AK, Bast RC Jr (2008) Specific blockade of VEGF and HER2 pathways results in greater growth inhibition of breast cancer xenografts that overexpress HER2. Cell Cycle 7:3747–3758PubMedGoogle Scholar
  66. 66.
    Pegram MD, Reese DM (2002) Combined biological therapy of breast cancer using monoclonal antibodies directed against HER2/neu protein and vascular endothelial growth factor. Semin Oncol 29(3 Suppl 11):29–37PubMedGoogle Scholar
  67. 67.
    Perez EA, Spano JP (2012) Current and emerging targeted therapies for metastatic breast cancer. Cancer 118:3014–3025PubMedGoogle Scholar
  68. 68.
    Tortora G, Ciardiello F, Gasparini G (2008) Combined targeting of EGFR-dependent and VEGF-dependent pathways: rationale, preclinical studies and clinical applications. Nat Clin Pract Oncol 5:521–530PubMedGoogle Scholar
  69. 69.
    Wong TW, Lee FY, Emanuel S, Fairchild C, Fargnoli J, Fink B, Gavai A, Hammell A, Henley B, Hilt C, Hunt JT, Krishnan B, Kukral D, Lewin A, Malone H, Norris D, Oppenheimer S, Vite G, Yu C (2011) Antitumor and antiangiogenic activities of BMS-690514, an inhibitor of human EGF and VEGF receptor kinase families. Clin Cancer Res 17:4031–4041PubMedGoogle Scholar
  70. 70.
    Ignatiadis M, Sotiriou C (2008) Understanding the molecular basis of histologic grade. Pathobiology 75:104–111PubMedGoogle Scholar
  71. 71.
    Tibshirani R, Hastie T, Narasimhan B, Chu G (2002) Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci USA 99:6567–6572PubMedGoogle Scholar
  72. 72.
    Prat A, Ellis MJ, Perou CM (2011) Practical implications of gene-expression-based assays for breast oncologists. Nat Rev Clin Oncol 9:48–57PubMedGoogle Scholar
  73. 73.
    Weigelt B, Pusztai L, Ashworth A, Reis-Filho JS (2011) Challenges translating breast cancer gene signatures into the clinic. Nat Rev Clin Oncol 9:58–64PubMedGoogle Scholar
  74. 74.
    Sotiriou C, Pusztai L (2009) Gene-expression signatures in breast cancer. N Engl J Med 360:790–800PubMedGoogle Scholar
  75. 75.
    Badve S, Nakshatri H (2009) Oestrogen-receptor-positive breast cancer: towards bridging histopathological and molecular classifications. J Clin Pathol 62:6–12PubMedGoogle Scholar
  76. 76.
    Hu Z, Fan C, Oh DS, Marron JS, He X, Qaqish BF, Livasy C, Carey LA, Reynolds E, Dressler L, Nobel A, Parker J, Ewend MG, Sawyer LR, Wu J, Liu Y, Nanda R, Tretiakova M, Ruiz Orrico A, Dreher D (2006) The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7:96PubMedGoogle Scholar
  77. 77.
    Weigelt B, Baehner FL, Reis-Filho JS (2010) The contribution of gene expression profiling to breast cancer classification, prognostication and prediction: a retrospective of the last decade. J Pathol 220:263–280PubMedGoogle Scholar
  78. 78.
    Dabney AR (2005) Classification of microarrays to nearest centroids. Bioinformatics 21:4148–4154PubMedGoogle Scholar
  79. 79.
    Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752PubMedGoogle Scholar
  80. 80.
    Reis-Filho JS, Weigelt B, Fumagalli D, Sotiriou C (2010) Molecular profiling: moving away from tumor philately. Sci Transl Med 2:47ps43PubMedGoogle Scholar
  81. 81.
    Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874PubMedGoogle Scholar
  82. 82.
    Sorlie T, Tibshirani R, Parker J et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100:8418–8423PubMedGoogle Scholar
  83. 83.
    van’t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536Google Scholar
  84. 84.
    Bogaerts J, Cardoso F, Buyse M et al (2006) Gene signature evaluation as a prognostic tool: challenges in the design of the MINDACT trial. Nat Clin Pract Oncol 3:540–551PubMedGoogle Scholar
  85. 85.
    Cardoso F, Piccart-Gebhart M, Van’t Veer L, Rutgers E (2007) The MINDACT trial: the first prospective clinical validation of a genomic tool. Mol Oncol 1:246–251PubMedGoogle Scholar
  86. 86.
    Cardoso F, Van’t Veer L, Rutgers E, Loi S, Mook S, Piccart-Gebhart MJ (2008) Clinical application of the 70-gene profile: the MINDACT trial. J Clin Oncol 26:729–735PubMedGoogle Scholar
  87. 87.
    Mook S, Van’t Veer LJ, Rutgers EJ, Piccart-Gebhart MJ, Cardoso F (2007) Individualization of therapy using Mammaprint: from development to the MINDACT Trial. Cancer Genomics Proteomics 4:147–155PubMedGoogle Scholar
  88. 88.
    Mook S, Bonnefoi H, Pruneri G et al (2009) Daily clinical practice of fresh tumour tissue freezing and gene expression profiling; logistics pilot study preceding the MINDACT trial. Eur J Cancer 45:1201–1208PubMedGoogle Scholar
  89. 89.
    Rutgers E, Piccart-Gebhart MJ, Bogaerts J, Delaloge S, Veer LV, Rubio IT, Viale G, Thompson AM, Passalacqua R, Nitz U, Vindevoghel A, Pierga JY, Ravdin PM, Werutsky G, Cardoso F (2011) The EORTC 10041/BIG 03–04 MINDACT trial is feasible: results of the pilot phase. Eur J Cancer 47:2742–2749PubMedGoogle Scholar
  90. 90.
    Buyse M, Loi S, van’t Veer L, Viale G, Delorenzi M, Glas AM, d’Assignies MS, Bergh J, Lidereau R, Ellis P, Harris A, Bogaerts J, Therasse P, Floore A, Amakrane M, Piette F, Rutgers E, Sotiriou C, Cardoso F, Piccart MJ, TRANSBIG Consortium (2006) Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 98:1183–1192PubMedGoogle Scholar
  91. 91.
    Mook S, Schmidt MK, Viale G et al (2009) The 70-gene prognosis-signature predicts disease outcome in breast cancer patients with 1–3 positive lymph nodes in an independent validation study. Breast Cancer Res Treat 116:295–302PubMedGoogle Scholar
  92. 92.
    Bueno-de-Mesquita JM, van Harten WH, Retel VP, van’t Veer LJ, van Dam FS, Karsenberg K, Douma KF, van Tinteren H, Peterse JL, Wesseling J, Wu TS, Atsma D, Rutgers EJ, Brink G, Floore AN, Glas AM, Roumen RM, Bellot FE, van Krimpen C, Rodenhuis S, van de Vijver MJ, Linn SC (2007) Use of 70-gene signature to predict prognosis of patients with node-negative breast cancer: a prospective community-based feasibility study (RASTER). Lancet Oncol 8:1079–1087PubMedGoogle Scholar
  93. 93.
    Bueno-de-Mesquita JM, Linn SC, Keijzer R, Wesseling J, Nuyten DS, van Krimpen C, Meijers C, de Graaf PW, Bos MM, Hart AA, Rutgers EJ, Peterse JL, Halfwerk H, de Groot R, Pronk A, Floore AN, Glas AM, Van’t Veer LJ, van de Vijver MJ (2009) Validation of 70-gene prognosis signature in node-negative breast cancer. Breast Cancer Res Treat 117:483–495PubMedGoogle Scholar
  94. 94.
    Bueno-de-Mesquita JM, Sonke GS, van de Vijver MJ, Linn SC (2011) Additional value and potential use of the 70-gene prognosis signature in node-negative breast cancer in daily clinical practice. Ann Oncol 22:2021–2030PubMedGoogle Scholar
  95. 95.
    Straver ME, Glas AM, Hannemann J, Wesseling J, van de Vijver MJ, Rutgers EJ, Vrancken Peeters MJ, van Tinteren H, Van’t Veer LJ, Rodenhuis S (2010) The 70-gene signature as a response predictor for neoadjuvant chemotherapy in breast cancer. Breast Cancer Res Treat 119:551–558PubMedGoogle Scholar
  96. 96.
    Wang Y, Klijn JG, Zhang Y et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365:671–679PubMedGoogle Scholar
  97. 97.
    Desmedt C, Piette F, Loi S, Wang Y, Lallemand F, Haibe-Kains B, Viale G, Delorenzi M, Zhang Y, d’Assignies MS, Bergh J, Lidereau R, Ellis P, Harris AL, Klijn JG, Foekens JA, Cardoso F, Piccart MJ, Buyse M, Sotiriou C, TRANSBIG Consortium (2007) Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin Cancer Res 13:3207–3214PubMedGoogle Scholar
  98. 98.
    Foekens JA, Atkins D, Zhang Y, Sweep FC, Harbeck N, Paradiso A, Cufer T, Sieuwerts AM, Talantov D, Span PN, Tjan-Heijnen VC, Zito AF, Specht K, Hoefler H, Golouh R, Schittulli F, Schmitt M, Beex LV, Klijn JG, Wang Y (2006) Multicenter validation of a gene expression-based prognostic signature in lymph node-negative primary breast cancer. J Clin Oncol 24:1665–1671PubMedGoogle Scholar
  99. 99.
    Kreike B, van Kouwenhove M, Horlings H, Weigelt B, Peterse H, Bartelink H, van de Vijver MJ (2007) Gene expression profiling and histopathological characterization of triple-negative/basal-like breast carcinomas. Breast Cancer Res 9:R65PubMedGoogle Scholar
  100. 100.
    Goetz MP, Suman VJ, Ingle JN, Nibbe AM, Visscher DW, Reynolds CA, Lingle WL, Erlander M, Ma XJ, Sgroi DC, Perez EA, Couch FJ (2006) A two-gene expression ratio of homeobox 13 and interleukin-17B receptor for prediction of recurrence and survival in women receiving adjuvant tamoxifen. Clin Cancer Res 12:2080–2087PubMedGoogle Scholar
  101. 101.
    Jerevall PL, Ma XJ, Li H, Salunga R, Kesty NC, Erlander MG, Sgroi DC, Holmlund B, Skoog L, Fornander T, Nordenskjöld B, Stål O (2011) Prognostic utility of HOXB13:IL17BR and molecular grade index in early-stage breast cancer patients from the Stockholm trial. Br J Cancer 104:1762–1769PubMedGoogle Scholar
  102. 102.
    Ma XJ, Hilsenbeck SG, Wang W et al (2006) The HOXB13:IL17BR expression index is a prognostic factor in early-stage breast cancer. J Clin Oncol 24:4611–4619PubMedGoogle Scholar
  103. 103.
    Ma XJ, Wang Z, Ryan PD et al (2004) A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 5:607–616PubMedGoogle Scholar
  104. 104.
    Reid JF, Lusa L, De Cecco L et al (2005) Limits of predictive models using microarray data for breast cancer clinical treatment outcome. J Natl Cancer Inst 7:927–930Google Scholar
  105. 105.
    Goldstein LJ, Gray R, Badve S et al (2008) Prognostic utility of the 21-gene assay in hormone receptor-positive operable breast cancer compared with classical clinicopathologic features. J Clin Oncol 26:4063–4071PubMedGoogle Scholar
  106. 106.
    Habel LA, Shak S, Jacobs MK et al (2006) A population-based study of tumor gene expression and risk of breast cancer death among lymph node-negative patients. Breast Cancer Res 8:R25PubMedGoogle Scholar
  107. 107.
    Mina L, Soule SE, Badve S et al (2007) Predicting response to primary chemotherapy: gene expression profiling of paraffin-embedded core biopsy tissue. Breast Cancer Res Treat 103:197–208PubMedGoogle Scholar
  108. 108.
    Paik S (2007) Development and clinical utility of a 21-gene recurrence score prognostic assay in patients with early breast cancer treated with tamoxifen. Oncologist 12:631–635PubMedGoogle Scholar
  109. 109.
    Paik S, Shak S, Tang G et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351:2817–2826PubMedGoogle Scholar
  110. 110.
    Paik S, Tang G, Shak S et al (2006) Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol 24:3726–3734PubMedGoogle Scholar
  111. 111.
    Calin GA, Dumitru CD, Shimizu M et al (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99:15524–15529PubMedGoogle Scholar
  112. 112.
    Michael MZ, O’Connor SM, van Holst Pellekaan NG, Young GP, James RJ (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1:882–891PubMedGoogle Scholar
  113. 113.
    Metzler M, Wilda M, Busch K, Viehmann S, Borkhardt A (2004) High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer 39:167–169PubMedGoogle Scholar
  114. 114.
    Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF, Lund E, Dahlberg JE (2005) Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA 102:3627–3632PubMedGoogle Scholar
  115. 115.
    Kluiver J, Poppema S, de Jong D, Blokzijl T, Harms G, Jacobs S, Kroesen BJ, van den Berg A (2005) BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol 207:243–249PubMedGoogle Scholar
  116. 116.
    Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756PubMedGoogle Scholar
  117. 117.
    Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635–647PubMedGoogle Scholar
  118. 118.
    Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–2261PubMedGoogle Scholar
  119. 119.
    Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Ménard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070PubMedGoogle Scholar
  120. 120.
    Iorio MV, Casalini P, Tagliabue E, Menard S, Croce CM (2008) MicroRNA profiling as a tool to understand prognosis, therapy response and resistance in breast cancer. Eur J Cancer 44:2753–2759PubMedGoogle Scholar
  121. 121.
    Di Leva G, Gasparini P, Piovan C, Ngankeu A, Garofalo M, Taccioli C, Iorio MV, Li M, Volinia S, Alder H, Nakamura T, Nuovo G, Liu Y, Nephew KP, Croce CM (2010) MicroRNA cluster 221–222 and estrogen receptor alpha interactions in breast cancer. J Natl Cancer Inst 102:706–721PubMedGoogle Scholar
  122. 122.
    Volinia S, Galasso M, Sana ME, Wise TF, Palatini J, Huebner K, Croce CM (2012) Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA. Proc Natl Acad Sci USA 109:3024–3029PubMedGoogle Scholar
  123. 123.
    Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szász AM, Wang ZC, Brock JE, Richardson AL, Weinberg RA (2009) A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137:1032–1046PubMedGoogle Scholar
  124. 124.
    Sempere LF, Christensen M, Silahtaroglu A, Bak M, Heath CV, Schwartz G, Wells W, Kauppinen S, Cole CN (2007) Altered MicroRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res 67:11612–11620PubMedGoogle Scholar
  125. 125.
    Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL, Zeng YX, Shao JY (2008) MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 14:2348–2360PubMedGoogle Scholar
  126. 126.
    Radojicic J, Zaravinos A, Vrekoussis T, Kafousi M, Spandidos DA, Stathopoulos EN (2011) MicroRNA expression analysis in triple-negative (ER, PR and Her2/neu) breast cancer. Cell Cycle 10:507–517PubMedGoogle Scholar
  127. 127.
    Sieuwerts AM, Mostert B, Bolt-de Vries J, Peeters D, de Jongh FE, Stouthard JM, Dirix LY, van Dam PA, Van Galen A, de Weerd V, Kraan J, van der Spoel P, Ramírez-Moreno R, van Deurzen CH, Smid M, Yu JX, Jiang J, Wang Y, Gratama JW, Sleijfer S, Foekens JA, Martens JW (2011) mRNA and microRNA expression profiles in circulating tumor cells and primary tumors of metastatic breast cancer patients. Clin Cancer Res 17:3600–3618PubMedGoogle Scholar
  128. 128.
    Blenkiron C, Goldstein LD, Thorne NP et al (2007) MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol 8:R214PubMedGoogle Scholar
  129. 129.
    Kong W, Yang H, He L, Zhao JJ, Coppola D, Dalton WS, Cheng JQ (2008) MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol 28:6773–6784PubMedGoogle Scholar
  130. 130.
    Kong W, He L, Coppola M, Guo J, Esposito NN, Coppola D, Cheng JQ (2010) MicroRNA-155 regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer. J Biol Chem 285:17869–17879PubMedGoogle Scholar
  131. 131.
    Chang S, Wang RH, Akagi K, Kim KA, Martin BK, Cavallone L, Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer (kConFab), Haines DC, Basik M, Mai P, Poggi E, Isaacs C, Looi LM, Mun KS, Greene MH, Byers SW, Teo SH, Deng CX, Sharan SK (2011) Tumor suppressor BRCA1 epigenetically controls oncogenic microRNA-155. Nat Med 17:1275–1282PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • William Kong
    • 1
  • Ted Richards
    • 2
  • Jin Q. Cheng
    • 2
  • Domenico Coppola
    • 2
    Email author
  1. 1.Stanford University School of MedicineStanfordUSA
  2. 2.Department of Anatomic Pathology and Oncological SciencesH. Lee Moffitt Cancer Center & Research Institute and University of South FloridaTampaUSA

Personalised recommendations