Skip to main content

Molecular Pathology and Diagnostics of Thyroid and Parathyroid Malignancies

  • Chapter
  • First Online:
Molecular Pathology and Diagnostics of Cancer

Part of the book series: Cancer Growth and Progression ((CAGP,volume 16))

Abstract

Malignancies of the thyroid and parathyroid glands are rare oncologic entities that range in clinical behavior from relatively indolent to extremely aggressive malignancies. Presently, establishing a diagnosis and prognosis for thyroid and parathyroid malignancies largely depends on histology supplemented with immunohistochemical analysis. Over the past 20 years, different histologic subtypes of thyroid cancer have been shown to carry specific genetic alterations, which are often preferentially associated with, or unique to, each subtype. In many cases, these genetic alterations have been analyzed via molecular-genetic testing techniques to help establish a diagnosis in cases where histology and immunohistochemistry alone cannot. In addition, such testing has occasionally been used to determine prognosis. Presently, clinical molecular diagnostic testing is not performed on parathyroid tumors. However, differences between parathyroid hyperplasia, adenomas, and carcinomas have been detected via molecular testing. With additional research, these differences may become more fully understood and applied to molecular diagnostics. Thus, although presently not extensively employed, molecular diagnostics of the thyroid and parathyroid are likely to become increasingly important in determining the diagnosis and prognosis of these malignancies, especially for histologically difficult cases. Furthermore, pharmacologic inhibitors of many of the oncogenes mutated in these malignancies are being developed. With time, molecular diagnostic testing for these mutations is likely to be implemented to aid in choosing optimal chemotherapeutic treatment regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACT:

Anaplastic carcinoma of the thyroid

ASA:

Allele-specific amplification

ATC:

Anaplastic thyroid cancer

FA:

Follicular adenomas

FC:

Follicular carcinoma

FCT:

Follicular carcinoma of the thyroid

FMTC:

Familial medullary thyroid cancer

FNA:

Fine needle aspirations

HRM:

High-resolution melting

HT:

Hashimoto’s thyroiditis

IR:

Ionizing radiation

MEN:

Multiple endocrine neoplasia

MTC:

Medullary thyroid cancer

PA:

Parathyroid adenoma

PC:

Parathyroid carcinoma

PCR:

Polymerase chair chain reaction

PTC:

Papillary thyroid carcinoma

SSCP:

Single-strand conformational polymorphism

STAT:

Shifted termination assay technology

TC:

Thyroid cancers

TSH:

Thyroid-stimulating hormone

References

  1. Elsheikh TM, Asa SL, Chan JK, DeLellis RA, Heffess CS, LiVolsi VA, Wenig BM (2008) Interobserver and intraobserver variation among experts in the diagnosis of thyroid follicular lesions with borderline nuclear features of papillary carcinoma. Am J Clin Pathol 130:736–744

    Article  PubMed  Google Scholar 

  2. Fernandez-Ranvier GG, Khanafshar E, Jensen K, Zarnegar R, Lee J, Kebebew E, Duh QY, Clark OH (2007) Parathyroid carcinoma, atypical parathyroid adenoma, or parathyromatosis? Cancer 110:255–264

    Article  PubMed  Google Scholar 

  3. DeLellis RA (1993) Tumors of the parathyroid gland. In: Rosai J, Sobin LH (eds) Atlas of tumor pathology. 3rd series, fascicle 6. Armed Forces Institute of Pathology, Washington, DC, pp 3–63

    Google Scholar 

  4. Clayman GL, Gonzalez HE, El-Naggar A, Vassilopoulou-Sellin R (2004) Parathyroid carcinoma: evaluation and interdisciplinary management. Cancer 100:900–905

    Article  PubMed  Google Scholar 

  5. Enewold L, Zhu K, Ron E, Marrogi AJ, Stojadinovic A, Peoples GE, Devesa SS (2009) Rising thyroid cancer incidence in the United States by demographic and tumor characteristics, 1980-2005. Cancer Epidemiol Biomarkers Prev 18:784–791

    Article  PubMed  Google Scholar 

  6. Burgess JR, Tucker P (2006) Incidence trends for papillary thyroid carcinoma and their correlation with thyroid surgery and thyroid fine-needle aspirate cytology. Thyroid 16:47–53

    Article  PubMed  Google Scholar 

  7. Colonna M, Guizard AV, Schvartz C et al (2007) A time trend analysis of papillary and follicular cancers as a function of tumour size: a study of data from six cancer registries in France (1983–2000). Eur J Cancer 43:891–900

    Article  PubMed  CAS  Google Scholar 

  8. Leenhardt L, Grosclaude P, Cherie-Challine L (2004) Increased incidence of thyroid carcinoma in France: a true epidemic or thyroid nodule management effects? Report from the French Thyroid Cancer Committee. Thyroid 14:1056–1060

    Article  PubMed  Google Scholar 

  9. Liu S, Semenciw R, Ugnat AM, Mao Y (2001) Increasing thyroid cancer incidence in Canada, 1970–1996: time trends and age-period-cohort effects. Br J Cancer 85:1335–1339

    Article  PubMed  CAS  Google Scholar 

  10. Smailyte G, Miseikyte-Kaubriene E, Kurtinaitis J (2006) Increasing thyroid cancer incidence in Lithuania in 1978–2003. BMC Cancer 6:284

    Article  PubMed  Google Scholar 

  11. Franceschi S, Boyle P, Maisonneuve P et al (1993) The epidemiology of thyroid carcinoma. Crit Rev Oncog 4:25–52

    PubMed  CAS  Google Scholar 

  12. Nagataki S, Nyström E (2002) Epidemiology and primary prevention of thyroid cancer. Thyroid 12:889–896

    Article  PubMed  Google Scholar 

  13. Mizuno T, Iwamoto KS, Kyoizumi S, Nagamura H, Shinohara T, Koyama K, Seyama T, Hamatani K (2000) Preferential induction of RET/PTC1 rearrangement by X-ray irradiation. Oncogene 19:438–443

    Article  PubMed  CAS  Google Scholar 

  14. Ron E, Lubin JH, Shore RE, Mabuchi K, Modan B, Pottern LM, Schneider AB, Tucker MA, Boice JD Jr (1995) Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. Radiat Res 141:259–277

    Article  PubMed  CAS  Google Scholar 

  15. Williams D (1994) Epidemiology. Chernobyl, eight years on. Nature 371:556

    Article  PubMed  CAS  Google Scholar 

  16. Hancock SL, McDougall IR, Constine LS (1995) Thyroid abnormalities after therapeutic external radiation. Int J Radiat Oncol Biol Phys 31:1165–1170

    Article  PubMed  CAS  Google Scholar 

  17. Mabuchi K, Soda M, Ron E, Tokunaga M, Ochikubo S, Sugimoto S, Ikeda T, Terasaki M, Preston DL, Thompson DE (1994) Cancer incidence in atomic bomb survivors. Part I: use of the tumor registries in Hiroshima and Nagasaki for incidence studies. Radiat Res 137:S1–S16

    Article  PubMed  CAS  Google Scholar 

  18. Thompson DE, Mabuchi K, Ron E, Soda M, Tokunaga M, Ochikubo S, Sugimoto S, Ikeda T, Terasaki M, Izumi S et al (1994) Cancer incidence in atomic bomb survivors. Part II: solid tumors, 1958-1987. Radiat Res 137:S17–S67

    Article  PubMed  CAS  Google Scholar 

  19. Nikiforov Y, Gnepp DR (1994) Pediatric thyroid cancer after the Chernobyl disaster. Pathomorphologic study of 84 cases (1991-1992) from the Republic of Belarus. Cancer 74:748–766

    Article  PubMed  CAS  Google Scholar 

  20. Pui CH, Cheng C, Leung W, Rai SN, Rivera GK, Sandlund JT, Ribeiro RC, Relling MV, Kun LE, Evans WE, Hudson MM (2003) Extended follow-up of long-term survivors of childhood acute lymphoblastic leukemia. N Engl J Med 349:640–649

    Article  PubMed  Google Scholar 

  21. Hancock SL, Cox RS, McDougall IR (1991) Thyroid diseases after treatment of Hodgkin’s disease. N Engl J Med 325:599–605

    Article  PubMed  CAS  Google Scholar 

  22. Knobel M, Medeiros-Neto G (2007) Relevance of iodine intake as a reputed predisposing factor for thyroid cancer. Arq Bras Endocrinol Metabol 51:701–712

    Article  PubMed  Google Scholar 

  23. Belfiore A, La Rosa GL, La Porta GA, Giuffrida D, Milazzo G, Lupo L, Regalbuto C, Vigneri R (1992) Cancer risk in patients with cold thyroid nodules: relevance of iodine intake, sex, age, and multinodularity. Am J Med 93:363–369

    Article  PubMed  CAS  Google Scholar 

  24. Guan H, Ji M, Bao R, Yu H, Wang Y, Hou P, Zhang Y, Shan Z, Teng W, Xing M (2009) Association of high iodine intake with the T1799A BRAF mutation in papillary thyroid cancer. J Clin Endocrinol Metab 94:1612–1617

    Article  PubMed  CAS  Google Scholar 

  25. Negri E, Dal Maso L, Ron E, La Vecchia C, Mark SD, Preston-Martin S, McTiernan A, Kolonel L, Yoshimoto Y, Jin F, Wingren G, Rosaria Galanti M, Hardell L, Glattre E, Lund E, Levi F, Linos D, Braga C, Franceschi S (1999) A pooled analysis of case-control studies of thyroid cancer. II. Menstrual and reproductive factors. Cancer Causes Control 10:143–155

    Article  PubMed  CAS  Google Scholar 

  26. Chen GG, Vlantis AC, Zeng Q, van Hasselt CA (2008) Regulation of cell growth by estrogen signaling and potential targets in thyroid cancer. Curr Cancer Drug Targets 8:367–377

    Article  PubMed  CAS  Google Scholar 

  27. Mack WJ, Preston-Martin S, Dal Maso L, Galanti R, Xiang M, Franceschi S, Hallquist A, Jin F, Kolonel L, La Vecchia C, Levi F, Linos A, Lund E, McTiernan A, Mabuchi K, Negri E, Wingren G, Ron E (2003) A pooled analysis of case-control studies of thyroid cancer: cigarette smoking and consumption of alcohol, coffee, and tea. Cancer Causes Control 14:773–785

    Article  PubMed  Google Scholar 

  28. Bosetti C, Negri E, Kolonel L, Ron E, Franceschi S, Preston-Martin S, McTiernan A, Dal Maso L, Mark SD, Mabuchi K, Land C, Jin F, Wingren G, Galanti MR, Hallquist A, Glattre E, Lund E, Levi F, Linos D, La Vecchia C (2002) A pooled analysis of case-control studies of thyroid cancer. VII. Cruciferous and other vegetables (International). Cancer Causes Control 13:765–775

    Article  PubMed  Google Scholar 

  29. Dal Maso L, La Vecchia C, Franceschi S, Preston-Martin S, Ron E, Levi F, Mack W, Mark SD, McTiernan A, Kolonel L, Mabuchi K, Jin F, Wingren G, Galanti MR, Hallquist A, Glattre E, Lund E, Linos D, Negri E (2000) A pooled analysis of thyroid cancer studies. V. Anthropometric factors. Cancer Causes Control 11:137–144

    Article  PubMed  CAS  Google Scholar 

  30. Pacini F, Elisei R, Di Coscio GC, Anelli S, Macchia E, Concetti R, Miccoli P, Arganini M, Pinchera A (1988) Thyroid carcinoma in thyrotoxic patients treated by surgery. J Endocrinol Invest 11:107–112

    PubMed  CAS  Google Scholar 

  31. Farbota LM, Calandra DB, Lawrence AM, Paloyan E (1985) Thyroid carcinoma in Graves’ disease. Surgery 98:1148–1153

    PubMed  CAS  Google Scholar 

  32. Sridama V, Hara Y, Fauchet R, DeGroot LJ (1985) Association of differentiated thyroid carcinoma with HLA-DR7. Cancer 56:1086–1088

    Article  PubMed  CAS  Google Scholar 

  33. Hundahl SA, Fleming ID, Fremgen AM, Menck HR (1998) A national cancer data base report on 53 856 cases of thyroid carcinoma treated in the US. Cancer 83:2638–2648

    Article  PubMed  CAS  Google Scholar 

  34. Gilliland FD, Hunt WC, Morris DM, Key CR (1997) Prognostic factors for thyroid carcinoma. A population-based study of 15 698 cases from the surveillance, epidemiology and end results (SEER) Program 1973–1991. Cancer 79:564–573

    Article  PubMed  CAS  Google Scholar 

  35. Kitamura Y, Shimizu K, Nagahama M, Sugino K, Ozaki O, Mimura T, Ito K, Ito K, Tanaka S (1999) Immediate causes of death in thyroid carcinoma: clinicopathological analysis of 161 fatal cases. J Clin Endocrinol Metabol 84:4043–4049

    Article  CAS  Google Scholar 

  36. Are C, Shaha AR (2006) Anaplastic thyroid carcinoma: biology, pathogenesis, prognostic factors and treatment approaches. Ann Surg Oncol 13:453–464

    Article  PubMed  Google Scholar 

  37. Xing M, Westra WH, Tufano RP, Cohen Y, Rosenbaum E, Rhoden KJ, Carson KA, Vasko V, Larin A, Tallini G, Tolaney S, Holt EH, Hui P, Umbricht CB, Basaria S, Ewertz M, Tufaro AP, Califano JA, Ringel MD, Zeiger MA, Sidransky D, Ladenson PW (2005) BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J Clin Endocrinol Metab 90:6373–6379

    Article  PubMed  CAS  Google Scholar 

  38. Ito Y, Hirokawa M, Jikuzono T, Higashiyama T, Takamura Y, Miya A, Kobayashi K, Matsuzuka F, Kuma K, Miyauchi A (2007) Extranodal tumor extension to adjacent organs predicts a worse cause-specific survival in patients with papillary thyroid carcinoma. World J Surg 31:1194–1201

    Article  PubMed  Google Scholar 

  39. Ain KB (1995) Papillary thyroid carcinoma. Etiology, assessment, and therapy. Endocrinol Metab Clin North Am 24:711–760

    PubMed  CAS  Google Scholar 

  40. Pelizzo MR, Merante Boschin I, Toniato A, Pagetta C, Casal Ide E, Mian C, Rubello D (2008) Diagnosis, treatment, prognostic factors and long-term outcome in papillary thyroid carcinoma. Minerva Endocrinol 33:359–379

    PubMed  CAS  Google Scholar 

  41. Isarangkul W (1993) Dense fibrosis. Another diagnostic criterion for papillary thyroid carcinoma. Arch Pathol Lab Med 117:645–646

    PubMed  CAS  Google Scholar 

  42. Adeniran AJ, Zhu Z, Gandhi M, Steward DL, Fidler JP, Giordano TJ, Biddinger PW, Nikiforov YE (2006) Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas. Am J Surg Pathol 30:216–222

    Article  PubMed  Google Scholar 

  43. Kimura ET, Nikiforova MN, Zhu Z et al (2003) High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 63:1454–1457

    PubMed  CAS  Google Scholar 

  44. Cohen Y, Xing M, Mambo E et al (2003) BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst 95:625–627

    Article  PubMed  CAS  Google Scholar 

  45. Barault L, Veyrie N, Jooste V, Lecorre D, Chapusot C, Ferraz JM, Lièvre A, Cortet M, Bouvier AM, Rat P, Roignot P, Faivre J, Laurent-Puig P, Piard F (2008) Mutations in the RAS-MAPK, PI(3)K (phosphatidylinositol-3-OH kinase) signaling network correlate with poor survival in a population-based series of colon cancers. Int J Cancer 122:2255–2259

    Article  PubMed  CAS  Google Scholar 

  46. Loupakis F, Ruzzo A, Cremolini C, Vincenzi B, Salvatore L, Santini D, Masi G, Stasi I, Canestrari E, Rulli E, Floriani I, Bencardino K, Galluccio N, Catalano V, Tonini G, Magnani M, Fontanini G, Basolo F, Falcone A, Graziano F (2009) KRAS codon 61, 146 and BRAF mutations predict resistance to cetuximab plus irinotecan in KRAS codon 12 and 13 wild-type metastatic colorectal cancer. Br J Cancer 101:715–721

    Article  PubMed  CAS  Google Scholar 

  47. Benvenuti S, Sartore-Bianchi A, Di Nicolantonio F, Zanon C, Moroni M, Veronese S, Siena S, Bardelli A (2007) Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies. Cancer Res 67:2643–2648

    Article  PubMed  CAS  Google Scholar 

  48. Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, Jones CM, Marshall CJ, Springer CJ, Barford D, Marais R (2004) Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAFBRAF. Cell 116:855–867

    Article  PubMed  CAS  Google Scholar 

  49. Mitsutake N, Knauf JA, Mitsutake S, Mesa C Jr, Zhang L, Fagin JA (2005) Conditional BRAFV600E expression induces DNA synthesis, apoptosis, dedifferentiation, and chromosomal instability in thyroid PCCL3 cells. Cancer Res 65:2465–2473

    Article  PubMed  CAS  Google Scholar 

  50. Knauf JA, Ma X, Smith EP, Zhang L, Mitsutake N, Liao XH, Refetoff S, Nikiforov YE, Fagin JA (2005) Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res 65:4238–4245

    Article  PubMed  CAS  Google Scholar 

  51. Liu D, Liu Z, Condouris S, Xing M (2007) BRAF V600E maintains proliferation, transformation, and tumorigenicity of BRAF-mutant papillary thyroid cancer cells. J Clin Endocrinol Metab 92:2264–2271

    Article  PubMed  CAS  Google Scholar 

  52. Ouyang B, Knauf JA, Smith EP, Zhang L, Ramsey T, Yusuff N, Batt D, Fagin JA (2006) Inhibitors of Raf kinase activity block growth of thyroid cancer cells with RET/PTC or BRAF mutations in vitro and in vivo. Clin Cancer Res 12:1785–1793

    Article  PubMed  CAS  Google Scholar 

  53. Xing M (2007) BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev 28:742–762

    Article  PubMed  CAS  Google Scholar 

  54. Huang MM, Arnheim N, Goodman MF (1992) Extension of base mispairs by Taq DNA polymerase: implications for single nucleotide discrimination in PCR. Nucleic Acids Res 20:4567–4573

    Article  PubMed  CAS  Google Scholar 

  55. Kimura H, Kasahara K, Kawaishi M, Kunitoh H, Tamura T, Holloway B, Nishio K (2006) Detection of epidermal growth factor receptor mutations in serum as a predictor of the response to gefitinib in patients with non-small-cell lung cancer. Clin Cancer Res 12:3915–3921

    Article  PubMed  CAS  Google Scholar 

  56. Franklin WA, Haney J, Sugita M, Bemis L, Jimeno A, Messersmith WA (2010) KRAS mutation: comparison of testing methods and tissue sampling techniques in colon cancer. J Mol Diagn 12:43–50

    Article  PubMed  CAS  Google Scholar 

  57. Sapio MR, Posca D, Troncone G, Pettinato G, Palombini L, Rossi G, Fenzi G, Vitale M (2006) Detection of BRAF mutation in thyroid papillary carcinomas by mutant allele-specific PCR amplification (MASA). Eur J Endocrinol 154:341–348

    Article  PubMed  CAS  Google Scholar 

  58. Shackelford W, Deng S, Murayama K, Wang J (2004) A new technology for mutation detection. Ann N Y Acad Sci 1022:257–262

    Article  PubMed  CAS  Google Scholar 

  59. Cohen Y, Rosenbaum E, Clark DP, Zeiger MA, Umbricht CB, Tufano RP, Sidransky D, Westra WH (2004) Mutational analysis of BRAF in fine needle aspiration biopsies of the thyroid: a potential application for the preoperative assessment of thyroid nodules. Clin Cancer Res 10:2761–2765

    Article  PubMed  CAS  Google Scholar 

  60. Fugazzola L, Puxeddu E, Avenia N, Romei C, Cirello V, Cavaliere A, Faviana P, Mannavola D, Moretti S, Rossi S, Sculli M, Bottici V, Beck-Peccoz P, Pacini F, Pinchera A, Santeusanio F, Elisei R (2006) Correlation between B-RAFV600E mutation and clinico-pathologic parameters in papillary thyroid carcinoma: data from a multicentric Italian study and review of the literature. Endocr Relat Cancer 13:455–464

    Article  PubMed  CAS  Google Scholar 

  61. Gilbert MT, Haselkorn T, Bunce M, Sanchez JJ, Lucas SB, Jewell LD, Van Marck E, Worobey M (2007) The isolation of nucleic acids from fixed, paraffin-embedded tissues-which methods are useful when? PLoS One 2:e537

    Article  PubMed  CAS  Google Scholar 

  62. Williams C, Pontén F, Moberg C, Söderkvist P, Uhlén M, Pontén J, Sitbon G, Lundeberg J (1999) A high frequency of sequence alterations is due to formalin fixation of archival specimens. Am J Pathol 155:1467–1471

    Article  PubMed  CAS  Google Scholar 

  63. Rowe LR, Bentz BG, Bentz JS (2007) Detection of BRAF V600E activating mutation in papillary thyroid carcinoma using PCR with allele-specific fluorescent probe melting curve analysis. J Clin Pathol 60:1211–1215

    Article  PubMed  CAS  Google Scholar 

  64. McGivern A, Wynter CV, Whitehall VL, Kambara T, Spring KJ, Walsh MD, Barker MA, Arnold S, Simms LA, Leggett BA, Young J, Jass JR (2004) Promoter hypermethylation frequency and BRAF mutations distinguish hereditary non-polyposis colon cancer from sporadic MSI-H colon cancer. Fam Cancer 3:101–107

    Article  PubMed  CAS  Google Scholar 

  65. Eychene A, Barnier JV, Apiou F, Dutrillaux B, Calothy G (1992) Chromosomal assignment of two human B-raf (Rmil) proto-oncogene loci: B-raf-1 encoding the p94Braf/Rmil and B-raf-2, a processed pseudogene. Oncogene 7:1657–1660

    PubMed  CAS  Google Scholar 

  66. Zou M, Baitei EY, Alzahrani AS, Al-Mohanna F, Farid NR, Meyer B, Shi Y (2009) Oncogenic activation of MAP kinase by BRAF pseudogene in thyroid tumors. Neoplasia 11:57–65

    PubMed  CAS  Google Scholar 

  67. Wells SA Jr, Santoro M (2009) Targeting the RET pathway in thyroid cancer. Clin Cancer Res 15:7119–7123

    Article  PubMed  CAS  Google Scholar 

  68. Santoro M, Dathan NA, Berlingieri MT, Bongarzone I, Paulin C, Grieco M, Pierotti MA, Vecchio G, Fusco A (1994) Molecular characterization of RET/PTC3; a novel rearranged version of the RET proto-oncogene in a human thyroid papillary carcinoma. Oncogene 9:509–516

    PubMed  CAS  Google Scholar 

  69. Bongarzone I, Butti MG, Coronelli S, Borrello MG, Santoro M, Mondellini P, Pilotti S, Fusco A, Della Porta G, Pierotti MA (1994) Frequent activation of ret protooncogene by fusion with a new activating gene in papillary thyroid carcinomas. Cancer Res 54:2979–2998

    PubMed  CAS  Google Scholar 

  70. Jhiang SM, Sagartz JE, Tong Q, Parker-Thornburg J, Capen CC, Cho JY, Xing S, Ledent C (1996) Targeted expression of the ret/PTC1 oncogene induces papillary thyroid carcinomas. Endocrinology 137:375–378

    Article  PubMed  CAS  Google Scholar 

  71. Fischer AH, Bond JA, Taysavang P, Battles OE, Wynford-Thomas D (1998) Papillary thyroid carcinoma oncogene (RET/PTC) alters the nuclear envelope and chromatin structure. Am J Pathol 153:1443–1450

    Article  PubMed  CAS  Google Scholar 

  72. Viglietto G, Chiappetta G, Martinez-Tello FJ, Fukunaga FH, Tallini G, Rigopoulou D, Visconti R, Mastro A, Santoro M, Fusco A (1995) RET/PTC oncogene activation is an early event in thyroid carcinogenesis. Oncogene 11:1207–1210

    PubMed  CAS  Google Scholar 

  73. Zhu Z, Ciampi R, Nikiforova MN, Gandhi M, Nikiforov YE (2006) Prevalence of RET/PTC rearrangements in thyroid papillary carcinomas: effects of the detection methods and genetic heterogeneity. J Clin Endocrinol Metab 91:3603–3610

    Article  PubMed  CAS  Google Scholar 

  74. Hamatani K, Eguchi H, Ito R, Mukai M, Takahashi K, Taga M, Imai K, Cologne J, Soda M, Arihiro K, Fujihara M, Abe K, Hayashi T, Nakashima M, Sekine I, Yasui W, Hayashi Y, Nakachi K (2008) RET/PTC rearrangements preferentially occurred in papillary thyroid cancer among atomic bomb survivors exposed to high radiation dose. Cancer Res 68:7176–7182

    Article  PubMed  CAS  Google Scholar 

  75. Wennerberg K, Rossman KL, Der CJ (2005) The Ras superfamily at a glance. J Cell Sci 118:843–846

    Article  PubMed  CAS  Google Scholar 

  76. Schubbert S, Shannon K, Bollag G (2006) Hyperactive Ras in disorders and cancer. Nat Rev Cancer 7:295–308

    Article  CAS  Google Scholar 

  77. Kislitsin D, Lerner A, Rennert G, Lev Z (2002) K-ras mutations in sporadic colorectal tumors in Israel: unusual high frequency of codon 13 mutations and evidence for nonhomogeneous representation of mutation subtypes. Dig Dis Sci 47:1073–1079

    Article  PubMed  CAS  Google Scholar 

  78. Breivik J, Meling GI, Spurkland A, Rognum TO, Gaudernack G (1994) K-ras mutation in colorectal cancer: relations to patient age, sex and tumour location. Br J Cancer 69:367–371

    Article  PubMed  CAS  Google Scholar 

  79. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White R, Smits AM, Bos JL (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319:525–532

    Article  PubMed  CAS  Google Scholar 

  80. Namba H, Rubin SA, Fagin JA (1990) Point mutations of ras oncogenes are an early event in thyroid tumorigenesis. Mol Endocrinol 4:1474–1479

    Article  PubMed  CAS  Google Scholar 

  81. Vasko W, Gaudart J, Savchenko V et al (2004) Thyroid follicular adenomas may display features of carcinoma and follicular variant of papillary carcinoma. Eur J Endocrinol 151:779–786

    Article  PubMed  CAS  Google Scholar 

  82. Ezzat S, Zheng L, Kolenda A et al (1996) Prevalence of activating ras mutations in morphologically characterized thyroid nodules. Thyroid 6:409–416

    Article  PubMed  CAS  Google Scholar 

  83. Wajjwalku W, Nakamura S, Hasegawa Y, Miyazaki K, Satoh Y, Funahashi H, Matsuyama M, Takahashi M (1992) Low frequency of rearrangements of the ret and trk proto-oncogenes in Japanese thyroid papillary carcinomas. Jpn J Cancer Res 83:671–675

    Article  PubMed  CAS  Google Scholar 

  84. Bongarzone I, Fugazzola L, Vigneri P, Mariani L, Mondellini P, Pacini F, Basolo F, Pinchera A, Pilotti S, Pierotti MA (1996) Age-related activation of the tyrosine kinase receptor protooncogenes RET and NTRK1 in papillary thyroid carcinoma. J Clin Endocrinol Metab 81:2006–2009

    Article  PubMed  CAS  Google Scholar 

  85. Greco A, Pierotti MA, Bongarzone I, Pagliardini I, Lanzi C, Della-Porta G (1992) Trk-T1 is a novel oncogene formed by the fusion of tpr and trk genes in human papillary thyroid carcinomas. Oncogene 7:237–242

    PubMed  CAS  Google Scholar 

  86. Delvincourt C, Patey M, Flament JB, Suarez HG, Larbre H, Jardillier JC, Delisle MJ (1996) Ret and trk proto-oncogene activation in thyroid papillary carcinomas in French patients from the Champagene-Ardenne region. Clin Biochem 29:267–271

    Article  PubMed  CAS  Google Scholar 

  87. Lomen-Hoerth C, Shooter EM (1995) Widespread neurotrophin receptor expression in the immune system and other nonneuronal rat tissues. J Neurochem 64:1780–1789

    Article  PubMed  CAS  Google Scholar 

  88. Koizumi H, Morita M, Mikami S, Shibayama E, Uchikoshi T (1998) Immunohistochemical analysis of TrkA neurotrophin receptor expression in human non-neuronal carcinomas. Pathol Int 48:93–101

    Article  PubMed  CAS  Google Scholar 

  89. Sozzi G, Bongarzone I, Miozzo M et al (1992) Cytogenetic and molecular genetic characterization of papillary thyroid carcinomas. Genes Chromosomes Cancer 5:212–218

    Article  PubMed  CAS  Google Scholar 

  90. Greco A, Mariani C, Miranda C et al (1995) The DNA rearrangement that generates the TRK-T3 oncogene involves a novel gene on chromosome 3 whose product has a potential coiled-coil domain. Mol Cell Biol 15:6118–6127

    PubMed  CAS  Google Scholar 

  91. Greco A, Miranda C, Pierotti MA (2010) Rearrangements of NTRK1 gene in papillary thyroid carcinoma. Mol Cell Endocrinol 321:44–49

    Article  PubMed  CAS  Google Scholar 

  92. Beimfohr C, Klugbauer S, Demidchik EP, Lengfelder E, Rabes HM (1999) NTRK1 re-arrangement in papillary thyroid carcinomas of children after the Chernobyl reactor accident. Int J Cancer 80:842–847

    Article  PubMed  CAS  Google Scholar 

  93. Lin JC, Naujokas M, Zhu H, Nolet S, Park M (1998) Intron-exon structure of the MET gene and cloning of an alternatively-spliced Met isoform reveals frequent exon-skipping of a single large internal exon. Oncogene 16:833–842

    Article  PubMed  CAS  Google Scholar 

  94. Scarpino S, Stoppacciaro A, Colarossi C et al (1999) Hepatocyte growth factor (HGF) stimulates tumour invasiveness in papillary carcinoma of the thyroid. J Pathol 189:570–575

    Article  PubMed  CAS  Google Scholar 

  95. Di Renzo MF, Olivero M, Giacomini A et al (1995) Overexpression and amplification of the met/HGF receptor gene during the progression of colorectal cancer. Clin Cancer Res 1:147–154

    PubMed  Google Scholar 

  96. Di Renzo MF, Olivero M, Katsaros D et al (1994) Overexpression of the Met/HGF receptor in ovarian cancer. Int J Cancer 58:658–662

    Article  PubMed  Google Scholar 

  97. Di Renzo MF, Olivero M, Fero S et al (1992) Overexpression of the c-MET/HGF receptor gene in human thyroid carcinomas. Oncogene 7:2549–2553

    PubMed  Google Scholar 

  98. Ichimura E, Maeshima A, Nakajima T, Nakamura T (1996) Expression of c-met/HGF receptor in human non-small cell lung carcinomas in vitro and in vivo and its prognostic significance. Jpn J Cancer Res 87:1063–1069

    Article  PubMed  CAS  Google Scholar 

  99. Natali PG, Prat M, Nicotra MR et al (1996) Overexpression of the met/HGF receptor in renal cell carcinomas. Int J Cancer 69:212–217

    Article  PubMed  CAS  Google Scholar 

  100. Di Renzo MF, Poulsom M, Olivero M, Comoglio PM, Lemoine NR (1995) Expression of the Met/hepatocyte growth factor receptor in human pancreatic cancer. Cancer Res 55:1129–1138

    PubMed  Google Scholar 

  101. Weidner KM, Behrens J, Vandekerckhove J, Birchmeier W (1990) Scatter factor: molecular characteristics and effect on the invasiveness of epithelial cells. J Cell Biol 111:2097–2108

    Article  PubMed  CAS  Google Scholar 

  102. Nardone HC, Ziober AF, LiVolsi VA, Mandel SJ, Baloch ZW, Weber RS, Mick R, Ziober BL (2003) c-Met expression in tall cell variant papillary carcinoma of the thyroid. Cancer 98:1386–1393

    Article  PubMed  CAS  Google Scholar 

  103. Fluge Ø, Haugen DR, Lillehaug JR, Varhaug JE (2001) Difference in patterns of Met expression in papillary thyroid carcinomas and nonneoplastic thyroid tissue. World J Surg 25:623–631

    Article  PubMed  CAS  Google Scholar 

  104. Ruco LP, Ranalli T, Marzullo A, Bianco P, Prat M, Comoglio PM, Baroni CD (1996) Expression of Met protein in thyroid tumours. J Pathol 180:266–270

    Article  PubMed  CAS  Google Scholar 

  105. Chen BK, Furihata M, Takeuchi T, Iwata J, Liang SB, Sonobe H (1999) Overexpression of c-Met protein in human thyroid tumors correlated with lymph node metastasis and clinicopathologic stage. Pathol Res Pract 195:427–433

    Article  PubMed  CAS  Google Scholar 

  106. Siraj AK, Bavi P, Abubaker J, Jehan Z, Sultana M, Al-Dayel F, Al-Nuaim A, Alzahrani A, Ahmed M, Al-Sanea O, Uddin S, Al-Kuraya KS (2007) Genome-wide expression analysis of Middle Eastern papillary thyroid cancer reveals c-MET as a novel target for cancer therapy. J Pathol 213(2):190–199

    Article  PubMed  CAS  Google Scholar 

  107. Sculte KM, Antoch G, Ellrichmann M, Finken-Eigen M, Köhrer K, Simon D, Goretzki PE, Röher HD (1998) Regulation of the HGF-receptor c-met in the thyroid gland. Exp Clin Endocrinol Diabetes 106:310–318

    Article  Google Scholar 

  108. Chattopadhyay C, El-Naggar AK, Williams MD, Clayman GL (2008) Small molecule c-MET inhibitor PHA665752: effect on cell growth and motility in papillary thyroid carcinoma. Head Neck 30:991–1000

    Article  PubMed  Google Scholar 

  109. Eder JP, Vande Woude GF, Boerner SA, LoRusso PM (2009) Novel therapeutic inhibitors of the c-Met signaling pathway in cancer. Clin Cancer Res 15:2207–2214

    Article  PubMed  CAS  Google Scholar 

  110. Giusti F, Falchetti A, Franceschelli F, Marini F, Tanini A, Brandi ML (2010) Thyroid cancer: current molecular perspectives. J Oncol 351:679

    Google Scholar 

  111. Sadow PM, Heinrich MC, Corless CL et al (2010) Absence of BRAF, NRAS, KRAS, HRAS, mutations, and RET/PTC gene rearrangements distinguishes dominant nodules in Hashimoto thyroiditis from papillary thyroid carcinomas. Endocr Pathol 21:73–79

    Article  PubMed  CAS  Google Scholar 

  112. Lam KY, Lo CY, Chan KW, Wan KY (2000) Insular and anaplastic carcinoma of the thyroid: a 45-year comparative study at a single institution and a review of the significance of p53 and p21. Ann Surg 231:329–338

    Article  PubMed  CAS  Google Scholar 

  113. Venkatesh YS, Ordonez NG, Schultz PN, Hickey RC, Goepfert H, Samaan NA (1990) Anaplastic carcinoma of the thyroid. A clinicopathologic study of 121 cases. Cancer 66:321–330

    Article  PubMed  CAS  Google Scholar 

  114. Nel CJ, van Heerden JA, Goellner JR, Gharib H, McConahey WM, Taylor WF, Grant CS (1985) Anaplastic carcinoma of the thyroid: a clinicopathologic study of 82 cases. Mayo Clin Proc 60:51–58

    Article  PubMed  CAS  Google Scholar 

  115. Schaefer CJ (1988) Long-term survival in anaplastic thyroid cancer. Md Med J 37:873–874

    PubMed  CAS  Google Scholar 

  116. Rosai J, Saxen EA, Woolner L (1985) Undifferentiated and poorly differentiated carcinoma. Semin Diagn Pathol 2:123–136

    PubMed  CAS  Google Scholar 

  117. Nusynowitz ML (1991) Differentiating anaplastic thyroidcarcinomas. J Nucl Med 32:1363–1364

    PubMed  CAS  Google Scholar 

  118. Smallridge RC, Copland JA (2010) Anaplastic thyroid carcinoma: pathogenesis and emerging therapies. Clin Oncol 22(6):486–497

    Article  CAS  Google Scholar 

  119. Lo CY, Chan WF, Lam KY, Wan KY (2005) Follicular thyroid carcinoma: the role of histology and staging systems in predicting survival. Ann Surg 242:708–715

    Article  PubMed  Google Scholar 

  120. Parameswaran R, Brooks S, Sadler GP (2010) Molecular pathogenesis of follicular cell derived thyroid cancers. Int J Surg 8:186–193

    Article  PubMed  Google Scholar 

  121. Nikiforova MN, Lynch RA, Biddinger PW, Alexander EK, Dorn GW 2nd, Tallini G, Kroll TG, Nikiforov YE (2003) RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab 88:2318–2326

    Article  PubMed  CAS  Google Scholar 

  122. Cheung L, Messina M, Gill A, Clarkson A, Learoyd D, Delbridge L, Wentworth J, Philips J, Clifton-Bligh R, Robinson BG (2003) Detection of the PAX8-PPAR gamma fusion oncogene in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab 88:354–357

    Article  PubMed  CAS  Google Scholar 

  123. Krol TG, Sarraf P, Pecciarini L, Chen CJ, Mueller E, Spiegelman BM, Fletcher JA (2000) PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma. Science 289:1357–1360

    Article  Google Scholar 

  124. Mansouri A, Chowdhury K, Gruss P (1998) Follicular cells of the thyroid gland require Pax8 gene function. Nat Genet 19:87–90

    Article  PubMed  CAS  Google Scholar 

  125. Willson TM, Cobb JE, Cowan DJ, Wiethe RW, Correa ID, Prakash SR, Beck KD, Moore LB, Kliewer SA, Lehmann JM (1996) The structure-activity relationship between peroxisome proliferator-activated receptor-gamma agonism and the antihyperglycemic activity of thiazolidinediones. J Med Chem 39:665–668

    Article  PubMed  CAS  Google Scholar 

  126. Hibi Y, Nagaya T, Kambe F, Imai T, Funahashi H, Nakao A, Seo H (2004) Is thyroid follicular cancer in Japanese caused by a specific t(2; 3)(q13; p25) translocation generating Pax8-PPAR gamma fusion mRNA? Endocr J 51:361–366

    Article  PubMed  CAS  Google Scholar 

  127. Pollina L, Pacini F, Fontanini G, Vignati S, Bevilacqua G, Basolo F (1996) bcl-2, p53 and proliferating cell nuclear antigen expression is related to the degree of differentiation in thyroid carcinomas. Br J Cancer 73:139–143

    Article  PubMed  CAS  Google Scholar 

  128. Donghi R, Longoni A, Pilotti S, Michieli P, Della Porta G, Pierotti MA (1993) Gene p53 mutations are restricted to poorly differentiated and undifferentiated carcinomas of the thyroid gland. J Clin Invest 91:1753–1760

    Article  PubMed  CAS  Google Scholar 

  129. Xing M (2010) Genetic alterations in the phosphatidylinositol-3 kinase/Akt pathway in thyroid cancer. Thyroid 20:697–706

    Article  PubMed  CAS  Google Scholar 

  130. Hou P, Liu D, Shan Y, Hu S, Studeman K, Condouris S, Wang Y, Trink A, El-Naggar AK, Tallini G, Vasko V, Xing M (2007) Genetic alterations and their relationship in the in the phospatidylinositol 3-kinase pathway in thyroid cancer. Clin Cancer Res 13:1161–1170

    Article  PubMed  CAS  Google Scholar 

  131. Wang Y, Hou P, Yu H, Wang W, Ji M, Zhao S, Yan S, Sun X, Liu D, Shi B, Zhu G, Condouris S, Xing M (2007) High prevalence and mutual exclusivity of genetic alterations in the phosphatidylinositol-3-kinase pathway in thyroid tumors. J Clin Endocrinol Metab 92:2387–2390

    Article  PubMed  CAS  Google Scholar 

  132. Garcia-Rostan G, Camp RL, Herrero A, Carcangiu ML, Rimm DL, Tallini G (2001) Beta-catenin dysregulation in thyroid neoplasms: down-regulation, aberrant nuclear expression, and CTNNB1 exon 3 mutations are markers for aggressive tumor phenotypes and poor prognosis. Am J Pathol 158:987–996

    Article  PubMed  CAS  Google Scholar 

  133. Barnabei A, Ferretti E, Baldelli R, Procaccini A, Spriano G, Appetecchia M (2009) Hurthle cell tumours of the thyroid. Personal experience and review of the literature. Acta Otorhinolaryngol Ital 29:305–311

    PubMed  CAS  Google Scholar 

  134. MaÅLximo V, Sobrinho-Simoes M (2000) Hurthle cell tumours of the thyroid. A review with emphasis on mitochondrial abnormalities with clinical relevance. Virchows Arch 437:107–115

    Article  Google Scholar 

  135. Ljungberg O (1972) On medullary carcinoma of the thyroid. APMIS Suppl A 80:1–57

    Google Scholar 

  136. Papotti M, Sambataro D, Pecchioni C, Bussolati G (1996) The pathology of medullary carcinoma of the thyroid: review of the literature and personal experience on 62 cases. Endocr Pathol 7:1–20

    Article  PubMed  Google Scholar 

  137. Komminoth P, Roth J, Saremaslani P et al (1994) Polysialic acid of the neural cell adhesion molecule in the human thyroid: a marker for medullary thyroid carcinoma and primary C-cell hyperplasia. Am J Surg Pathol 18:399–411

    Article  PubMed  CAS  Google Scholar 

  138. Correia-Deur JE, Toledo RA, Imazawa AT, Lourenco DM Jr, Ezabella MC, Tavares MR, Toledo SP (2009) Sporadic medullary thyroid carcinoma: clinical data from a university hospital. Clinics (Soa Paulo) 64:379–386

    Google Scholar 

  139. Jijiwa M, Fukuda T, Kawai K, Nakamura A, Kurokawa K, Murakumo Y, Ichihara M, Takahashi M (2004) A targeting mutation of tyrosine 1062 in Ret causes a marked decrease of enteric neurons and renal hypoplasia. Mol Cell Biol 24:8026–8036

    Article  PubMed  CAS  Google Scholar 

  140. Segouffin-Cariou C, Billaud M (2000) Transforming ability of MEN2A-RET requires activation of the phosphatidylinositol 3-kinase signaling pathway. J Biol Chem 275:3568–3576

    Article  PubMed  CAS  Google Scholar 

  141. Scott RP, Eketjäll S, Aineskog H, Ibáñez CF (2005) Distinct turnover of alternatively spliced isoforms of the RET kinase receptor mediated by differential recruitment of the Cbl ubiquitin ligase. J Biol Chem 280:13442–13449

    Article  PubMed  CAS  Google Scholar 

  142. Acton DS, Velthuyzen D, Lips CJ, Höppener JW (2000) Multiple endocrine neoplasia type 2B mutation in human RET oncogene induces medullary thyroid carcinoma in transgenic mice. Oncogene 19:3121–3125

    Article  PubMed  CAS  Google Scholar 

  143. Donis-Keller H, Dou S, Chi D, Carlson KM, Toshima K, Lairmore TC, Howe JR, Moley JF, Goodfellow P, Wells SA Jr (1993) Mutations in the RET proto-oncogene are associated with MEN 2A and FMTC. Hum Mol Genet 2:851–856

    Article  PubMed  CAS  Google Scholar 

  144. Erdogan MF, Gürsoy A, Ozgen G, Cakir M, Bayram F, Ersoy R, Algün E, Cetinars B, Cömlekçi A, Kadioglu P, Balci MK, Yetkin I, Kabalak T, Erdogan G (2005) Ret proto-oncogene mutations in apparently sporadic Turkish medullary thyroid carcinoma patients: Turkmen study. J Endocrinol Invest 28:806–809

    PubMed  CAS  Google Scholar 

  145. Elisei R, Romei C, Cosci B, Agate L, Bottcic V, Molinaro E, Sculli M, Miccoli P, Basolo F, Grasso L, Pacini F, Pinchera A (2007) RET genetic screening in patients with medullary thyroid cancer and their relatives: experience with 807 individuals at one center. J Clin Endocrinol Metab 92:4725–4729

    Article  PubMed  CAS  Google Scholar 

  146. Hedayati M, Nabipour I, Rezaei-Ghaleh N, Azizi F (2006) Germline RET mutations in exons 10 and 11: an Iranian survey of 57 medullary thyroid carcinoma cases. Med J Malaysia 61:564–569

    PubMed  CAS  Google Scholar 

  147. Bugalho MJ, Domingues R, Santos JR, Catarino AL, Sobrinho L (2007) Mutation analysis of the RET proto-oncogene and early thyroidectomy: results of a Portuguese cancer centre. Surgery 141:90–95

    Article  PubMed  Google Scholar 

  148. Ceccherini I, Hofstra RM, Luo Y, Stulp RP, Barone V, Stelwagen T, Bocciardi R, Nijveen H, Bolino A, Seri M et al (1994) DNA polymorphisms and conditions for SSCP analysis of the 20 exons of the ret protooncogene. Oncogene 9:3025–3029

    PubMed  CAS  Google Scholar 

  149. Kruckeberg KE, Thibodeau SN (2004) Pyrosequencing technology as a method for the diagnosis of multiple endocrine neoplasia type 2. Clin Chem 50:522–529

    Article  PubMed  CAS  Google Scholar 

  150. Kim IJ, Kang HC, Park JH, Ku JL, Lee JS, Kwon HJ, Yoon KA, Heo SC, Yang HY, Cho BY, Kim SY, Oh SK, Youn YK, Park DJ, Lee MS, Lee KW, Park JG (2002) RET oligonucleotide microarray for the detection of RET mutations in multiple endocrine neoplasia type 2 syndromes. Clin Cancer Res 8:457–463

    PubMed  CAS  Google Scholar 

  151. Blank RD, Sklar CA, Martin ML (1996) Denaturing gradient gel electrophoresis to diagnose multiple endocrine neoplasia type 2. Clin Chem 42:598–603

    PubMed  CAS  Google Scholar 

  152. Ahmed SA, Snow-Bailey K, Highsmith WE, Sun W, Fenwick RG, Mao R (2005) Nine novel gremlin gene variants in the RET proto-oncogene identified in twelve unrelated cases. J Mol Diagn 7:283–288

    Article  PubMed  CAS  Google Scholar 

  153. Margraf RL, Mao R, Witter CT (2008) Rapid diagnosis of MEN2B using unlabeled probe melting analysis and the LightCycler 480 instrument. J Mol Diagn 10:123–128

    Article  PubMed  CAS  Google Scholar 

  154. Takano T, Miyauchi A, Matsuzuka F, Liu G, Higashiyama T, Yokozawa T, Kuma K, Amino N (1999) Preoperative diagnosis of medullary thyroid carcinoma by RT-PCR using RNA extracted from leftover cells within a needle used for fine needle aspiration biopsy. J Clin Endocrinol Metab 84:951–955

    Article  PubMed  CAS  Google Scholar 

  155. Santoro M, Rosati R, Grieco M et al (1990) The RET proto-oncogene is consistently expressed in human pheochromocytomas and thyroid medullary carcinomas. Oncogene 5:1595–1598

    PubMed  CAS  Google Scholar 

  156. Lloyd RV, Sisson JC, Marangos PJ (1983) Calcitonin, carcinoembryonic antigen, and neuron-specific enolase in medullary thyroid carcinoma. Cancer 51:2234–2239

    Article  PubMed  CAS  Google Scholar 

  157. Zajac JD, Penschow J, Mason T, Tregear G, Coghlan J, Martin TJ (1986) Identification of calcitonin and calcitonin gene-related peptide messenger ribonucleic acid in medullary thyroid carcinomas by hybridization histochemistry. J Clin Endocrinol Metab 62:1037–1043

    Article  PubMed  CAS  Google Scholar 

  158. Lakhani VT, You YN, Wells SA (2007) The multiple endocrine neoplasia syndromes. Annu Rev Med 58:253–265

    Article  PubMed  CAS  Google Scholar 

  159. Eng C, Clayton D, Schuffenecker I et al (1996) The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2: International RET mutation consortium analysis. JAMA 276:1575–1579

    Article  PubMed  CAS  Google Scholar 

  160. He H, Jazdzewski K, Li W, Liyanachchi S, Nagy R, Volinia S, Calin GA, Liu CG, Franssila K, Suster S, Kloos RT, Crcoe CM, de la Chapelle A (2005) The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA 102:19075–19080

    Article  PubMed  CAS  Google Scholar 

  161. Weber F, Teresi RE, Broelsch CE, Frilling A, Eng C (2006) A limited set of human microRNA is deregulated in follicular thyroid carcinoma. J Clin Endocrinol Metab 91:3584–3591

    Article  PubMed  CAS  Google Scholar 

  162. Visone R, Pallante P, Vecchione A, Cirombella R, Ferracin M, Ferraro A, Volinia S, Coluzzi S, Leone V, Borbone E, Liu CG, Petrocca F, Troncone G, Calin GA, Scarpa A, Colato C, Tallini G, Santoro M, Croce CM, Fusco A (2007) Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene 26:7590–7595

    Article  PubMed  CAS  Google Scholar 

  163. Nikiforova MN, Tseng MN, Steward D, Diorio D, Nikiforov YE (2008) MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J Clin Endocrinol Metab 93:1600–1608

    Article  PubMed  CAS  Google Scholar 

  164. Carney JA, Volante M, Papotti M, Asa S (2004) Hyalinizing trabecular tumour. In: DeLellis RA, Lloyd RV, Heitz P, Eng C (eds) World Health Organization classification of tumours. Pathology & genetics. Tumours of endocrine organs. IARC Press, Lyon, pp 104–105

    Google Scholar 

  165. Katoh R, Jasani B, Williams ED (1989) Hyalinizing trabecular adenoma of the thyroid. A report of three cases with immunohistochemical and ultrastructural studies. Histopathology 15:211–224

    Article  PubMed  CAS  Google Scholar 

  166. Cheung CC, Boerner SL, MacMillan CM, Ramyar L, Asa SL (2000) Hyalinizing trabecular tumor of the thyroid: a variant of papillary carcinoma proved by molecular genetics. Am J Surg Pathol 24:1622–1626

    Article  PubMed  CAS  Google Scholar 

  167. Sheu SY, Vogel E, Worm K, Grabellus F, Schwertheim S, Schmid KW (2010) Hyalinizing trabecular tumour of the thyroid-differential expression of distinct miRNAs compared with papillary thyroid carcinoma. Histopathology 56:632–640

    Article  PubMed  Google Scholar 

  168. Levin KE, Galante M, Clark OH (1987) Parathyroid carcinoma versus parathyroid adenoma in patients with profound hypercalcaemia. Surgery 101:649–660

    PubMed  CAS  Google Scholar 

  169. Shortell CK, Andrus CH, Phillips CE Jr, Schwartz SI (1991) Carcinoma of the parathyroid gland: a 30-year experience. Surgery 110:704–708

    PubMed  CAS  Google Scholar 

  170. Hunt JL (2008) Molecular diagnosis in head and neck: what a surgical pathologist must know. Head Neck Pathol 2:99–102

    Article  PubMed  Google Scholar 

  171. Hundahl SA, Fleming ID, Fremgen AM, Menck HR (1999) Two hundred eighty-six cases of parathyroid carcinoma treated in the U.S. between 1985–1995: a National Cancer Data Base Report. The American College of Surgeons Commission on Cancer and the American Cancer Society. Cancer (Phila) 86:538–544

    Article  CAS  Google Scholar 

  172. Sandelin K, Tullgren O, Farnebo LO (1994) Clinical course of metastatic parathyroid cancer. World J Surg 18:594–598

    Article  PubMed  CAS  Google Scholar 

  173. Carpten JD, Robbins CM, Villablanca A et al (2002) HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome. Nat Genet 32:676–680

    Article  PubMed  CAS  Google Scholar 

  174. Howell VM, Haven CJ, Kahnoski K, Khoo SK, Petillo D, Chen J, Fluren GJ, Robinson BG, Delbridge LW, Philips J, Nelson AE, Krause U, Hammje K, Dralle H, Hoang-Vu C, Gimm O, March DJ, Morreau H, The BT (2003) HRPT2 mutations are associated with malignancy in sporadic parathyroid tumours. J Med Genet 40:657–663

    Article  PubMed  CAS  Google Scholar 

  175. Szabo J, Heath B, Hill VM, Jackson CE, Zarbo RJ, Mallette LE, Chew SL, Besser GM, Thakker RV, Huff V et al (1995) Hereditary hyperparathyroidism-jaw tumour syndrome: the endocrine tumour gene HRPT2 maps to chromosome 1q21-q31. Am J Hum Genet 56:944–950

    PubMed  CAS  Google Scholar 

  176. Teh BT, Farnebo F, Kristoffersson U, Sundelin B, Cardinal J, Axelson R, Yap A, Epstein M, Heath H, Cameron D 3rd, Larsson C (1996) Autosomal dominant primary hyperparathyroidism and jaw tumour syndrome associated with renal hamartomas and cystic kidney disease: linkage to 1q21-q32 and loss of the wild type allele in renal hamartomas. J Clin Endocrinol Metab 81:4204–4211

    Article  PubMed  CAS  Google Scholar 

  177. Juhlin CC, Villablanca A, Sandelin K, Haglund F, Norderström J, Forsberg L, Bränström R, Obara T, Arnold A, Larsson C, Höög A (2007) Parafibromin immunoreactivity: its use as an additional diagnostic marker for parathyroid tumor classification. Endocr Relat Cancer 14:501–512

    Article  PubMed  CAS  Google Scholar 

  178. Tan MH, Morrison C, Wang P, Yang X, Haven CJ, Zhang C, Zhao P, Tertiaova MS, Korpi-Hyovalti E, Burgess JR, Soo KC, Cheah WK, Cao B, Resau J, Morreau H, Teh BT (2004) Loss of parafibromin immunoreactivity is a distinguishing feature of parathyroid carcinoma. Clin Cancer Res 10:6629–6637

    Article  PubMed  CAS  Google Scholar 

  179. Shackelford RE, Kaufman WK, Paules RS (1999) Cell cycle control, checkpoint mechanisms, and genotoxic stress. Environ Health Perspect 107(Suppl 1):5–24

    Article  PubMed  CAS  Google Scholar 

  180. Westin G, Björklund P, Akersröm G (2009) Molecular genetics of parathyroid disease. World J Surg 33:2224–2233

    Article  PubMed  Google Scholar 

  181. Shane E, Bilezkina JP (1982) Parathyroid carcinoma: a review of 62 patients. Endocr Rev 3:218–226

    Article  PubMed  CAS  Google Scholar 

  182. Corbette S, Eller-Vainicher C, Vicentini L, Lania A, Mantovani G, Beck-Peccoz P, Spada A (2007) Modulation of cyclin D1 expression in human tumoral parathyroid cells: effects of growth factors and calcium sensing receptor activation. Cancer Lett 255:34–41

    Article  CAS  Google Scholar 

  183. Kameyama K, Takami H, Umemura S, Osamura YR, Wada N, Sugino K, Mimura T, Ito K (2000) PCNA and Ki-67 as prognostic markers in human parathyroid carcinomas. Ann Surg Oncol 7:301–304

    Article  PubMed  CAS  Google Scholar 

  184. Thomopoulou GE, Tseleni-Balafouta S, Lazaris AC, Koutselini H, Kavantzas N, Davaris PS (2003) Immunohistochemical detection of cell cycle regulators, Fhit protein and apoptotic cells in parathyroid lesions. Eur J Endocrinol 148:81–87

    Article  PubMed  CAS  Google Scholar 

  185. Kulkarni PS, Parkh PM (2004) The carcinoma of parathyroid gland. Indian J Cancer 41:51–59

    PubMed  CAS  Google Scholar 

  186. Palanisamy N, Imanishi Y, Rao PH, Tahara H, Chaganti RSK, Arnold A (1998) Novel chromosomal abnormalities identified by comparative genomic hybridization in parathyroid adenomas. J Clin Endocrinol Metabol 83:1766–1770. doi:10.1210/jc.83.5.1766

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We would like to thank Miss Jennifer Burton for her help in manuscript preparation and proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Savell M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shackelford, R.E., Savell, J. (2014). Molecular Pathology and Diagnostics of Thyroid and Parathyroid Malignancies. In: Coppola, D. (eds) Molecular Pathology and Diagnostics of Cancer. Cancer Growth and Progression, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7192-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7192-5_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7191-8

  • Online ISBN: 978-94-007-7192-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics