Molecular Pathology and Diagnostics of Thyroid and Parathyroid Malignancies

  • Rodney E. Shackelford
  • Jason SavellEmail author
Part of the Cancer Growth and Progression book series (CAGP, volume 16)


Malignancies of the thyroid and parathyroid glands are rare oncologic entities that range in clinical behavior from relatively indolent to extremely aggressive malignancies. Presently, establishing a diagnosis and prognosis for thyroid and parathyroid malignancies largely depends on histology supplemented with immunohistochemical analysis. Over the past 20 years, different histologic subtypes of thyroid cancer have been shown to carry specific genetic alterations, which are often preferentially associated with, or unique to, each subtype. In many cases, these genetic alterations have been analyzed via molecular-genetic testing techniques to help establish a diagnosis in cases where histology and immunohistochemistry alone cannot. In addition, such testing has occasionally been used to determine prognosis. Presently, clinical molecular diagnostic testing is not performed on parathyroid tumors. However, differences between parathyroid hyperplasia, adenomas, and carcinomas have been detected via molecular testing. With additional research, these differences may become more fully understood and applied to molecular diagnostics. Thus, although presently not extensively employed, molecular diagnostics of the thyroid and parathyroid are likely to become increasingly important in determining the diagnosis and prognosis of these malignancies, especially for histologically difficult cases. Furthermore, pharmacologic inhibitors of many of the oncogenes mutated in these malignancies are being developed. With time, molecular diagnostic testing for these mutations is likely to be implemented to aid in choosing optimal chemotherapeutic treatment regimens.


Thyroid Parathyroid Malignancies Tumor papillary Follicular Medullary BRAF RAS RET Molecular diagnostics NTRK1 PAX8-PPAR gamma 



Anaplastic carcinoma of the thyroid


Allele-specific amplification


Anaplastic thyroid cancer


Follicular adenomas


Follicular carcinoma


Follicular carcinoma of the thyroid


Familial medullary thyroid cancer


Fine needle aspirations


High-resolution melting


Hashimoto’s thyroiditis


Ionizing radiation


Multiple endocrine neoplasia


Medullary thyroid cancer


Parathyroid adenoma


Parathyroid carcinoma


Polymerase chair chain reaction


Papillary thyroid carcinoma


Single-strand conformational polymorphism


Shifted termination assay technology


Thyroid cancers


Thyroid-stimulating hormone



We would like to thank Miss Jennifer Burton for her help in manuscript preparation and proofreading.


  1. 1.
    Elsheikh TM, Asa SL, Chan JK, DeLellis RA, Heffess CS, LiVolsi VA, Wenig BM (2008) Interobserver and intraobserver variation among experts in the diagnosis of thyroid follicular lesions with borderline nuclear features of papillary carcinoma. Am J Clin Pathol 130:736–744PubMedCrossRefGoogle Scholar
  2. 2.
    Fernandez-Ranvier GG, Khanafshar E, Jensen K, Zarnegar R, Lee J, Kebebew E, Duh QY, Clark OH (2007) Parathyroid carcinoma, atypical parathyroid adenoma, or parathyromatosis? Cancer 110:255–264PubMedCrossRefGoogle Scholar
  3. 3.
    DeLellis RA (1993) Tumors of the parathyroid gland. In: Rosai J, Sobin LH (eds) Atlas of tumor pathology. 3rd series, fascicle 6. Armed Forces Institute of Pathology, Washington, DC, pp 3–63Google Scholar
  4. 4.
    Clayman GL, Gonzalez HE, El-Naggar A, Vassilopoulou-Sellin R (2004) Parathyroid carcinoma: evaluation and interdisciplinary management. Cancer 100:900–905PubMedCrossRefGoogle Scholar
  5. 5.
    Enewold L, Zhu K, Ron E, Marrogi AJ, Stojadinovic A, Peoples GE, Devesa SS (2009) Rising thyroid cancer incidence in the United States by demographic and tumor characteristics, 1980-2005. Cancer Epidemiol Biomarkers Prev 18:784–791PubMedCrossRefGoogle Scholar
  6. 6.
    Burgess JR, Tucker P (2006) Incidence trends for papillary thyroid carcinoma and their correlation with thyroid surgery and thyroid fine-needle aspirate cytology. Thyroid 16:47–53PubMedCrossRefGoogle Scholar
  7. 7.
    Colonna M, Guizard AV, Schvartz C et al (2007) A time trend analysis of papillary and follicular cancers as a function of tumour size: a study of data from six cancer registries in France (1983–2000). Eur J Cancer 43:891–900PubMedCrossRefGoogle Scholar
  8. 8.
    Leenhardt L, Grosclaude P, Cherie-Challine L (2004) Increased incidence of thyroid carcinoma in France: a true epidemic or thyroid nodule management effects? Report from the French Thyroid Cancer Committee. Thyroid 14:1056–1060PubMedCrossRefGoogle Scholar
  9. 9.
    Liu S, Semenciw R, Ugnat AM, Mao Y (2001) Increasing thyroid cancer incidence in Canada, 1970–1996: time trends and age-period-cohort effects. Br J Cancer 85:1335–1339PubMedCrossRefGoogle Scholar
  10. 10.
    Smailyte G, Miseikyte-Kaubriene E, Kurtinaitis J (2006) Increasing thyroid cancer incidence in Lithuania in 1978–2003. BMC Cancer 6:284PubMedCrossRefGoogle Scholar
  11. 11.
    Franceschi S, Boyle P, Maisonneuve P et al (1993) The epidemiology of thyroid carcinoma. Crit Rev Oncog 4:25–52PubMedGoogle Scholar
  12. 12.
    Nagataki S, Nyström E (2002) Epidemiology and primary prevention of thyroid cancer. Thyroid 12:889–896PubMedCrossRefGoogle Scholar
  13. 13.
    Mizuno T, Iwamoto KS, Kyoizumi S, Nagamura H, Shinohara T, Koyama K, Seyama T, Hamatani K (2000) Preferential induction of RET/PTC1 rearrangement by X-ray irradiation. Oncogene 19:438–443PubMedCrossRefGoogle Scholar
  14. 14.
    Ron E, Lubin JH, Shore RE, Mabuchi K, Modan B, Pottern LM, Schneider AB, Tucker MA, Boice JD Jr (1995) Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. Radiat Res 141:259–277PubMedCrossRefGoogle Scholar
  15. 15.
    Williams D (1994) Epidemiology. Chernobyl, eight years on. Nature 371:556PubMedCrossRefGoogle Scholar
  16. 16.
    Hancock SL, McDougall IR, Constine LS (1995) Thyroid abnormalities after therapeutic external radiation. Int J Radiat Oncol Biol Phys 31:1165–1170PubMedCrossRefGoogle Scholar
  17. 17.
    Mabuchi K, Soda M, Ron E, Tokunaga M, Ochikubo S, Sugimoto S, Ikeda T, Terasaki M, Preston DL, Thompson DE (1994) Cancer incidence in atomic bomb survivors. Part I: use of the tumor registries in Hiroshima and Nagasaki for incidence studies. Radiat Res 137:S1–S16PubMedCrossRefGoogle Scholar
  18. 18.
    Thompson DE, Mabuchi K, Ron E, Soda M, Tokunaga M, Ochikubo S, Sugimoto S, Ikeda T, Terasaki M, Izumi S et al (1994) Cancer incidence in atomic bomb survivors. Part II: solid tumors, 1958-1987. Radiat Res 137:S17–S67PubMedCrossRefGoogle Scholar
  19. 19.
    Nikiforov Y, Gnepp DR (1994) Pediatric thyroid cancer after the Chernobyl disaster. Pathomorphologic study of 84 cases (1991-1992) from the Republic of Belarus. Cancer 74:748–766PubMedCrossRefGoogle Scholar
  20. 20.
    Pui CH, Cheng C, Leung W, Rai SN, Rivera GK, Sandlund JT, Ribeiro RC, Relling MV, Kun LE, Evans WE, Hudson MM (2003) Extended follow-up of long-term survivors of childhood acute lymphoblastic leukemia. N Engl J Med 349:640–649PubMedCrossRefGoogle Scholar
  21. 21.
    Hancock SL, Cox RS, McDougall IR (1991) Thyroid diseases after treatment of Hodgkin’s disease. N Engl J Med 325:599–605PubMedCrossRefGoogle Scholar
  22. 22.
    Knobel M, Medeiros-Neto G (2007) Relevance of iodine intake as a reputed predisposing factor for thyroid cancer. Arq Bras Endocrinol Metabol 51:701–712PubMedCrossRefGoogle Scholar
  23. 23.
    Belfiore A, La Rosa GL, La Porta GA, Giuffrida D, Milazzo G, Lupo L, Regalbuto C, Vigneri R (1992) Cancer risk in patients with cold thyroid nodules: relevance of iodine intake, sex, age, and multinodularity. Am J Med 93:363–369PubMedCrossRefGoogle Scholar
  24. 24.
    Guan H, Ji M, Bao R, Yu H, Wang Y, Hou P, Zhang Y, Shan Z, Teng W, Xing M (2009) Association of high iodine intake with the T1799A BRAF mutation in papillary thyroid cancer. J Clin Endocrinol Metab 94:1612–1617PubMedCrossRefGoogle Scholar
  25. 25.
    Negri E, Dal Maso L, Ron E, La Vecchia C, Mark SD, Preston-Martin S, McTiernan A, Kolonel L, Yoshimoto Y, Jin F, Wingren G, Rosaria Galanti M, Hardell L, Glattre E, Lund E, Levi F, Linos D, Braga C, Franceschi S (1999) A pooled analysis of case-control studies of thyroid cancer. II. Menstrual and reproductive factors. Cancer Causes Control 10:143–155PubMedCrossRefGoogle Scholar
  26. 26.
    Chen GG, Vlantis AC, Zeng Q, van Hasselt CA (2008) Regulation of cell growth by estrogen signaling and potential targets in thyroid cancer. Curr Cancer Drug Targets 8:367–377PubMedCrossRefGoogle Scholar
  27. 27.
    Mack WJ, Preston-Martin S, Dal Maso L, Galanti R, Xiang M, Franceschi S, Hallquist A, Jin F, Kolonel L, La Vecchia C, Levi F, Linos A, Lund E, McTiernan A, Mabuchi K, Negri E, Wingren G, Ron E (2003) A pooled analysis of case-control studies of thyroid cancer: cigarette smoking and consumption of alcohol, coffee, and tea. Cancer Causes Control 14:773–785PubMedCrossRefGoogle Scholar
  28. 28.
    Bosetti C, Negri E, Kolonel L, Ron E, Franceschi S, Preston-Martin S, McTiernan A, Dal Maso L, Mark SD, Mabuchi K, Land C, Jin F, Wingren G, Galanti MR, Hallquist A, Glattre E, Lund E, Levi F, Linos D, La Vecchia C (2002) A pooled analysis of case-control studies of thyroid cancer. VII. Cruciferous and other vegetables (International). Cancer Causes Control 13:765–775PubMedCrossRefGoogle Scholar
  29. 29.
    Dal Maso L, La Vecchia C, Franceschi S, Preston-Martin S, Ron E, Levi F, Mack W, Mark SD, McTiernan A, Kolonel L, Mabuchi K, Jin F, Wingren G, Galanti MR, Hallquist A, Glattre E, Lund E, Linos D, Negri E (2000) A pooled analysis of thyroid cancer studies. V. Anthropometric factors. Cancer Causes Control 11:137–144PubMedCrossRefGoogle Scholar
  30. 30.
    Pacini F, Elisei R, Di Coscio GC, Anelli S, Macchia E, Concetti R, Miccoli P, Arganini M, Pinchera A (1988) Thyroid carcinoma in thyrotoxic patients treated by surgery. J Endocrinol Invest 11:107–112PubMedGoogle Scholar
  31. 31.
    Farbota LM, Calandra DB, Lawrence AM, Paloyan E (1985) Thyroid carcinoma in Graves’ disease. Surgery 98:1148–1153PubMedGoogle Scholar
  32. 32.
    Sridama V, Hara Y, Fauchet R, DeGroot LJ (1985) Association of differentiated thyroid carcinoma with HLA-DR7. Cancer 56:1086–1088PubMedCrossRefGoogle Scholar
  33. 33.
    Hundahl SA, Fleming ID, Fremgen AM, Menck HR (1998) A national cancer data base report on 53 856 cases of thyroid carcinoma treated in the US. Cancer 83:2638–2648PubMedCrossRefGoogle Scholar
  34. 34.
    Gilliland FD, Hunt WC, Morris DM, Key CR (1997) Prognostic factors for thyroid carcinoma. A population-based study of 15 698 cases from the surveillance, epidemiology and end results (SEER) Program 1973–1991. Cancer 79:564–573PubMedCrossRefGoogle Scholar
  35. 35.
    Kitamura Y, Shimizu K, Nagahama M, Sugino K, Ozaki O, Mimura T, Ito K, Ito K, Tanaka S (1999) Immediate causes of death in thyroid carcinoma: clinicopathological analysis of 161 fatal cases. J Clin Endocrinol Metabol 84:4043–4049CrossRefGoogle Scholar
  36. 36.
    Are C, Shaha AR (2006) Anaplastic thyroid carcinoma: biology, pathogenesis, prognostic factors and treatment approaches. Ann Surg Oncol 13:453–464PubMedCrossRefGoogle Scholar
  37. 37.
    Xing M, Westra WH, Tufano RP, Cohen Y, Rosenbaum E, Rhoden KJ, Carson KA, Vasko V, Larin A, Tallini G, Tolaney S, Holt EH, Hui P, Umbricht CB, Basaria S, Ewertz M, Tufaro AP, Califano JA, Ringel MD, Zeiger MA, Sidransky D, Ladenson PW (2005) BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J Clin Endocrinol Metab 90:6373–6379PubMedCrossRefGoogle Scholar
  38. 38.
    Ito Y, Hirokawa M, Jikuzono T, Higashiyama T, Takamura Y, Miya A, Kobayashi K, Matsuzuka F, Kuma K, Miyauchi A (2007) Extranodal tumor extension to adjacent organs predicts a worse cause-specific survival in patients with papillary thyroid carcinoma. World J Surg 31:1194–1201PubMedCrossRefGoogle Scholar
  39. 39.
    Ain KB (1995) Papillary thyroid carcinoma. Etiology, assessment, and therapy. Endocrinol Metab Clin North Am 24:711–760PubMedGoogle Scholar
  40. 40.
    Pelizzo MR, Merante Boschin I, Toniato A, Pagetta C, Casal Ide E, Mian C, Rubello D (2008) Diagnosis, treatment, prognostic factors and long-term outcome in papillary thyroid carcinoma. Minerva Endocrinol 33:359–379PubMedGoogle Scholar
  41. 41.
    Isarangkul W (1993) Dense fibrosis. Another diagnostic criterion for papillary thyroid carcinoma. Arch Pathol Lab Med 117:645–646PubMedGoogle Scholar
  42. 42.
    Adeniran AJ, Zhu Z, Gandhi M, Steward DL, Fidler JP, Giordano TJ, Biddinger PW, Nikiforov YE (2006) Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas. Am J Surg Pathol 30:216–222PubMedCrossRefGoogle Scholar
  43. 43.
    Kimura ET, Nikiforova MN, Zhu Z et al (2003) High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 63:1454–1457PubMedGoogle Scholar
  44. 44.
    Cohen Y, Xing M, Mambo E et al (2003) BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst 95:625–627PubMedCrossRefGoogle Scholar
  45. 45.
    Barault L, Veyrie N, Jooste V, Lecorre D, Chapusot C, Ferraz JM, Lièvre A, Cortet M, Bouvier AM, Rat P, Roignot P, Faivre J, Laurent-Puig P, Piard F (2008) Mutations in the RAS-MAPK, PI(3)K (phosphatidylinositol-3-OH kinase) signaling network correlate with poor survival in a population-based series of colon cancers. Int J Cancer 122:2255–2259PubMedCrossRefGoogle Scholar
  46. 46.
    Loupakis F, Ruzzo A, Cremolini C, Vincenzi B, Salvatore L, Santini D, Masi G, Stasi I, Canestrari E, Rulli E, Floriani I, Bencardino K, Galluccio N, Catalano V, Tonini G, Magnani M, Fontanini G, Basolo F, Falcone A, Graziano F (2009) KRAS codon 61, 146 and BRAF mutations predict resistance to cetuximab plus irinotecan in KRAS codon 12 and 13 wild-type metastatic colorectal cancer. Br J Cancer 101:715–721PubMedCrossRefGoogle Scholar
  47. 47.
    Benvenuti S, Sartore-Bianchi A, Di Nicolantonio F, Zanon C, Moroni M, Veronese S, Siena S, Bardelli A (2007) Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies. Cancer Res 67:2643–2648PubMedCrossRefGoogle Scholar
  48. 48.
    Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, Jones CM, Marshall CJ, Springer CJ, Barford D, Marais R (2004) Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAFBRAF. Cell 116:855–867PubMedCrossRefGoogle Scholar
  49. 49.
    Mitsutake N, Knauf JA, Mitsutake S, Mesa C Jr, Zhang L, Fagin JA (2005) Conditional BRAFV600E expression induces DNA synthesis, apoptosis, dedifferentiation, and chromosomal instability in thyroid PCCL3 cells. Cancer Res 65:2465–2473PubMedCrossRefGoogle Scholar
  50. 50.
    Knauf JA, Ma X, Smith EP, Zhang L, Mitsutake N, Liao XH, Refetoff S, Nikiforov YE, Fagin JA (2005) Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res 65:4238–4245PubMedCrossRefGoogle Scholar
  51. 51.
    Liu D, Liu Z, Condouris S, Xing M (2007) BRAF V600E maintains proliferation, transformation, and tumorigenicity of BRAF-mutant papillary thyroid cancer cells. J Clin Endocrinol Metab 92:2264–2271PubMedCrossRefGoogle Scholar
  52. 52.
    Ouyang B, Knauf JA, Smith EP, Zhang L, Ramsey T, Yusuff N, Batt D, Fagin JA (2006) Inhibitors of Raf kinase activity block growth of thyroid cancer cells with RET/PTC or BRAF mutations in vitro and in vivo. Clin Cancer Res 12:1785–1793PubMedCrossRefGoogle Scholar
  53. 53.
    Xing M (2007) BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev 28:742–762PubMedCrossRefGoogle Scholar
  54. 54.
    Huang MM, Arnheim N, Goodman MF (1992) Extension of base mispairs by Taq DNA polymerase: implications for single nucleotide discrimination in PCR. Nucleic Acids Res 20:4567–4573PubMedCrossRefGoogle Scholar
  55. 55.
    Kimura H, Kasahara K, Kawaishi M, Kunitoh H, Tamura T, Holloway B, Nishio K (2006) Detection of epidermal growth factor receptor mutations in serum as a predictor of the response to gefitinib in patients with non-small-cell lung cancer. Clin Cancer Res 12:3915–3921PubMedCrossRefGoogle Scholar
  56. 56.
    Franklin WA, Haney J, Sugita M, Bemis L, Jimeno A, Messersmith WA (2010) KRAS mutation: comparison of testing methods and tissue sampling techniques in colon cancer. J Mol Diagn 12:43–50PubMedCrossRefGoogle Scholar
  57. 57.
    Sapio MR, Posca D, Troncone G, Pettinato G, Palombini L, Rossi G, Fenzi G, Vitale M (2006) Detection of BRAF mutation in thyroid papillary carcinomas by mutant allele-specific PCR amplification (MASA). Eur J Endocrinol 154:341–348PubMedCrossRefGoogle Scholar
  58. 58.
    Shackelford W, Deng S, Murayama K, Wang J (2004) A new technology for mutation detection. Ann N Y Acad Sci 1022:257–262PubMedCrossRefGoogle Scholar
  59. 59.
    Cohen Y, Rosenbaum E, Clark DP, Zeiger MA, Umbricht CB, Tufano RP, Sidransky D, Westra WH (2004) Mutational analysis of BRAF in fine needle aspiration biopsies of the thyroid: a potential application for the preoperative assessment of thyroid nodules. Clin Cancer Res 10:2761–2765PubMedCrossRefGoogle Scholar
  60. 60.
    Fugazzola L, Puxeddu E, Avenia N, Romei C, Cirello V, Cavaliere A, Faviana P, Mannavola D, Moretti S, Rossi S, Sculli M, Bottici V, Beck-Peccoz P, Pacini F, Pinchera A, Santeusanio F, Elisei R (2006) Correlation between B-RAFV600E mutation and clinico-pathologic parameters in papillary thyroid carcinoma: data from a multicentric Italian study and review of the literature. Endocr Relat Cancer 13:455–464PubMedCrossRefGoogle Scholar
  61. 61.
    Gilbert MT, Haselkorn T, Bunce M, Sanchez JJ, Lucas SB, Jewell LD, Van Marck E, Worobey M (2007) The isolation of nucleic acids from fixed, paraffin-embedded tissues-which methods are useful when? PLoS One 2:e537PubMedCrossRefGoogle Scholar
  62. 62.
    Williams C, Pontén F, Moberg C, Söderkvist P, Uhlén M, Pontén J, Sitbon G, Lundeberg J (1999) A high frequency of sequence alterations is due to formalin fixation of archival specimens. Am J Pathol 155:1467–1471PubMedCrossRefGoogle Scholar
  63. 63.
    Rowe LR, Bentz BG, Bentz JS (2007) Detection of BRAF V600E activating mutation in papillary thyroid carcinoma using PCR with allele-specific fluorescent probe melting curve analysis. J Clin Pathol 60:1211–1215PubMedCrossRefGoogle Scholar
  64. 64.
    McGivern A, Wynter CV, Whitehall VL, Kambara T, Spring KJ, Walsh MD, Barker MA, Arnold S, Simms LA, Leggett BA, Young J, Jass JR (2004) Promoter hypermethylation frequency and BRAF mutations distinguish hereditary non-polyposis colon cancer from sporadic MSI-H colon cancer. Fam Cancer 3:101–107PubMedCrossRefGoogle Scholar
  65. 65.
    Eychene A, Barnier JV, Apiou F, Dutrillaux B, Calothy G (1992) Chromosomal assignment of two human B-raf (Rmil) proto-oncogene loci: B-raf-1 encoding the p94Braf/Rmil and B-raf-2, a processed pseudogene. Oncogene 7:1657–1660PubMedGoogle Scholar
  66. 66.
    Zou M, Baitei EY, Alzahrani AS, Al-Mohanna F, Farid NR, Meyer B, Shi Y (2009) Oncogenic activation of MAP kinase by BRAF pseudogene in thyroid tumors. Neoplasia 11:57–65PubMedGoogle Scholar
  67. 67.
    Wells SA Jr, Santoro M (2009) Targeting the RET pathway in thyroid cancer. Clin Cancer Res 15:7119–7123PubMedCrossRefGoogle Scholar
  68. 68.
    Santoro M, Dathan NA, Berlingieri MT, Bongarzone I, Paulin C, Grieco M, Pierotti MA, Vecchio G, Fusco A (1994) Molecular characterization of RET/PTC3; a novel rearranged version of the RET proto-oncogene in a human thyroid papillary carcinoma. Oncogene 9:509–516PubMedGoogle Scholar
  69. 69.
    Bongarzone I, Butti MG, Coronelli S, Borrello MG, Santoro M, Mondellini P, Pilotti S, Fusco A, Della Porta G, Pierotti MA (1994) Frequent activation of ret protooncogene by fusion with a new activating gene in papillary thyroid carcinomas. Cancer Res 54:2979–2998PubMedGoogle Scholar
  70. 70.
    Jhiang SM, Sagartz JE, Tong Q, Parker-Thornburg J, Capen CC, Cho JY, Xing S, Ledent C (1996) Targeted expression of the ret/PTC1 oncogene induces papillary thyroid carcinomas. Endocrinology 137:375–378PubMedCrossRefGoogle Scholar
  71. 71.
    Fischer AH, Bond JA, Taysavang P, Battles OE, Wynford-Thomas D (1998) Papillary thyroid carcinoma oncogene (RET/PTC) alters the nuclear envelope and chromatin structure. Am J Pathol 153:1443–1450PubMedCrossRefGoogle Scholar
  72. 72.
    Viglietto G, Chiappetta G, Martinez-Tello FJ, Fukunaga FH, Tallini G, Rigopoulou D, Visconti R, Mastro A, Santoro M, Fusco A (1995) RET/PTC oncogene activation is an early event in thyroid carcinogenesis. Oncogene 11:1207–1210PubMedGoogle Scholar
  73. 73.
    Zhu Z, Ciampi R, Nikiforova MN, Gandhi M, Nikiforov YE (2006) Prevalence of RET/PTC rearrangements in thyroid papillary carcinomas: effects of the detection methods and genetic heterogeneity. J Clin Endocrinol Metab 91:3603–3610PubMedCrossRefGoogle Scholar
  74. 74.
    Hamatani K, Eguchi H, Ito R, Mukai M, Takahashi K, Taga M, Imai K, Cologne J, Soda M, Arihiro K, Fujihara M, Abe K, Hayashi T, Nakashima M, Sekine I, Yasui W, Hayashi Y, Nakachi K (2008) RET/PTC rearrangements preferentially occurred in papillary thyroid cancer among atomic bomb survivors exposed to high radiation dose. Cancer Res 68:7176–7182PubMedCrossRefGoogle Scholar
  75. 75.
    Wennerberg K, Rossman KL, Der CJ (2005) The Ras superfamily at a glance. J Cell Sci 118:843–846PubMedCrossRefGoogle Scholar
  76. 76.
    Schubbert S, Shannon K, Bollag G (2006) Hyperactive Ras in disorders and cancer. Nat Rev Cancer 7:295–308CrossRefGoogle Scholar
  77. 77.
    Kislitsin D, Lerner A, Rennert G, Lev Z (2002) K-ras mutations in sporadic colorectal tumors in Israel: unusual high frequency of codon 13 mutations and evidence for nonhomogeneous representation of mutation subtypes. Dig Dis Sci 47:1073–1079PubMedCrossRefGoogle Scholar
  78. 78.
    Breivik J, Meling GI, Spurkland A, Rognum TO, Gaudernack G (1994) K-ras mutation in colorectal cancer: relations to patient age, sex and tumour location. Br J Cancer 69:367–371PubMedCrossRefGoogle Scholar
  79. 79.
    Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White R, Smits AM, Bos JL (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319:525–532PubMedCrossRefGoogle Scholar
  80. 80.
    Namba H, Rubin SA, Fagin JA (1990) Point mutations of ras oncogenes are an early event in thyroid tumorigenesis. Mol Endocrinol 4:1474–1479PubMedCrossRefGoogle Scholar
  81. 81.
    Vasko W, Gaudart J, Savchenko V et al (2004) Thyroid follicular adenomas may display features of carcinoma and follicular variant of papillary carcinoma. Eur J Endocrinol 151:779–786PubMedCrossRefGoogle Scholar
  82. 82.
    Ezzat S, Zheng L, Kolenda A et al (1996) Prevalence of activating ras mutations in morphologically characterized thyroid nodules. Thyroid 6:409–416PubMedCrossRefGoogle Scholar
  83. 83.
    Wajjwalku W, Nakamura S, Hasegawa Y, Miyazaki K, Satoh Y, Funahashi H, Matsuyama M, Takahashi M (1992) Low frequency of rearrangements of the ret and trk proto-oncogenes in Japanese thyroid papillary carcinomas. Jpn J Cancer Res 83:671–675PubMedCrossRefGoogle Scholar
  84. 84.
    Bongarzone I, Fugazzola L, Vigneri P, Mariani L, Mondellini P, Pacini F, Basolo F, Pinchera A, Pilotti S, Pierotti MA (1996) Age-related activation of the tyrosine kinase receptor protooncogenes RET and NTRK1 in papillary thyroid carcinoma. J Clin Endocrinol Metab 81:2006–2009PubMedCrossRefGoogle Scholar
  85. 85.
    Greco A, Pierotti MA, Bongarzone I, Pagliardini I, Lanzi C, Della-Porta G (1992) Trk-T1 is a novel oncogene formed by the fusion of tpr and trk genes in human papillary thyroid carcinomas. Oncogene 7:237–242PubMedGoogle Scholar
  86. 86.
    Delvincourt C, Patey M, Flament JB, Suarez HG, Larbre H, Jardillier JC, Delisle MJ (1996) Ret and trk proto-oncogene activation in thyroid papillary carcinomas in French patients from the Champagene-Ardenne region. Clin Biochem 29:267–271PubMedCrossRefGoogle Scholar
  87. 87.
    Lomen-Hoerth C, Shooter EM (1995) Widespread neurotrophin receptor expression in the immune system and other nonneuronal rat tissues. J Neurochem 64:1780–1789PubMedCrossRefGoogle Scholar
  88. 88.
    Koizumi H, Morita M, Mikami S, Shibayama E, Uchikoshi T (1998) Immunohistochemical analysis of TrkA neurotrophin receptor expression in human non-neuronal carcinomas. Pathol Int 48:93–101PubMedCrossRefGoogle Scholar
  89. 89.
    Sozzi G, Bongarzone I, Miozzo M et al (1992) Cytogenetic and molecular genetic characterization of papillary thyroid carcinomas. Genes Chromosomes Cancer 5:212–218PubMedCrossRefGoogle Scholar
  90. 90.
    Greco A, Mariani C, Miranda C et al (1995) The DNA rearrangement that generates the TRK-T3 oncogene involves a novel gene on chromosome 3 whose product has a potential coiled-coil domain. Mol Cell Biol 15:6118–6127PubMedGoogle Scholar
  91. 91.
    Greco A, Miranda C, Pierotti MA (2010) Rearrangements of NTRK1 gene in papillary thyroid carcinoma. Mol Cell Endocrinol 321:44–49PubMedCrossRefGoogle Scholar
  92. 92.
    Beimfohr C, Klugbauer S, Demidchik EP, Lengfelder E, Rabes HM (1999) NTRK1 re-arrangement in papillary thyroid carcinomas of children after the Chernobyl reactor accident. Int J Cancer 80:842–847PubMedCrossRefGoogle Scholar
  93. 93.
    Lin JC, Naujokas M, Zhu H, Nolet S, Park M (1998) Intron-exon structure of the MET gene and cloning of an alternatively-spliced Met isoform reveals frequent exon-skipping of a single large internal exon. Oncogene 16:833–842PubMedCrossRefGoogle Scholar
  94. 94.
    Scarpino S, Stoppacciaro A, Colarossi C et al (1999) Hepatocyte growth factor (HGF) stimulates tumour invasiveness in papillary carcinoma of the thyroid. J Pathol 189:570–575PubMedCrossRefGoogle Scholar
  95. 95.
    Di Renzo MF, Olivero M, Giacomini A et al (1995) Overexpression and amplification of the met/HGF receptor gene during the progression of colorectal cancer. Clin Cancer Res 1:147–154PubMedGoogle Scholar
  96. 96.
    Di Renzo MF, Olivero M, Katsaros D et al (1994) Overexpression of the Met/HGF receptor in ovarian cancer. Int J Cancer 58:658–662PubMedCrossRefGoogle Scholar
  97. 97.
    Di Renzo MF, Olivero M, Fero S et al (1992) Overexpression of the c-MET/HGF receptor gene in human thyroid carcinomas. Oncogene 7:2549–2553PubMedGoogle Scholar
  98. 98.
    Ichimura E, Maeshima A, Nakajima T, Nakamura T (1996) Expression of c-met/HGF receptor in human non-small cell lung carcinomas in vitro and in vivo and its prognostic significance. Jpn J Cancer Res 87:1063–1069PubMedCrossRefGoogle Scholar
  99. 99.
    Natali PG, Prat M, Nicotra MR et al (1996) Overexpression of the met/HGF receptor in renal cell carcinomas. Int J Cancer 69:212–217PubMedCrossRefGoogle Scholar
  100. 100.
    Di Renzo MF, Poulsom M, Olivero M, Comoglio PM, Lemoine NR (1995) Expression of the Met/hepatocyte growth factor receptor in human pancreatic cancer. Cancer Res 55:1129–1138PubMedGoogle Scholar
  101. 101.
    Weidner KM, Behrens J, Vandekerckhove J, Birchmeier W (1990) Scatter factor: molecular characteristics and effect on the invasiveness of epithelial cells. J Cell Biol 111:2097–2108PubMedCrossRefGoogle Scholar
  102. 102.
    Nardone HC, Ziober AF, LiVolsi VA, Mandel SJ, Baloch ZW, Weber RS, Mick R, Ziober BL (2003) c-Met expression in tall cell variant papillary carcinoma of the thyroid. Cancer 98:1386–1393PubMedCrossRefGoogle Scholar
  103. 103.
    Fluge Ø, Haugen DR, Lillehaug JR, Varhaug JE (2001) Difference in patterns of Met expression in papillary thyroid carcinomas and nonneoplastic thyroid tissue. World J Surg 25:623–631PubMedCrossRefGoogle Scholar
  104. 104.
    Ruco LP, Ranalli T, Marzullo A, Bianco P, Prat M, Comoglio PM, Baroni CD (1996) Expression of Met protein in thyroid tumours. J Pathol 180:266–270PubMedCrossRefGoogle Scholar
  105. 105.
    Chen BK, Furihata M, Takeuchi T, Iwata J, Liang SB, Sonobe H (1999) Overexpression of c-Met protein in human thyroid tumors correlated with lymph node metastasis and clinicopathologic stage. Pathol Res Pract 195:427–433PubMedCrossRefGoogle Scholar
  106. 106.
    Siraj AK, Bavi P, Abubaker J, Jehan Z, Sultana M, Al-Dayel F, Al-Nuaim A, Alzahrani A, Ahmed M, Al-Sanea O, Uddin S, Al-Kuraya KS (2007) Genome-wide expression analysis of Middle Eastern papillary thyroid cancer reveals c-MET as a novel target for cancer therapy. J Pathol 213(2):190–199PubMedCrossRefGoogle Scholar
  107. 107.
    Sculte KM, Antoch G, Ellrichmann M, Finken-Eigen M, Köhrer K, Simon D, Goretzki PE, Röher HD (1998) Regulation of the HGF-receptor c-met in the thyroid gland. Exp Clin Endocrinol Diabetes 106:310–318CrossRefGoogle Scholar
  108. 108.
    Chattopadhyay C, El-Naggar AK, Williams MD, Clayman GL (2008) Small molecule c-MET inhibitor PHA665752: effect on cell growth and motility in papillary thyroid carcinoma. Head Neck 30:991–1000PubMedCrossRefGoogle Scholar
  109. 109.
    Eder JP, Vande Woude GF, Boerner SA, LoRusso PM (2009) Novel therapeutic inhibitors of the c-Met signaling pathway in cancer. Clin Cancer Res 15:2207–2214PubMedCrossRefGoogle Scholar
  110. 110.
    Giusti F, Falchetti A, Franceschelli F, Marini F, Tanini A, Brandi ML (2010) Thyroid cancer: current molecular perspectives. J Oncol 351:679Google Scholar
  111. 111.
    Sadow PM, Heinrich MC, Corless CL et al (2010) Absence of BRAF, NRAS, KRAS, HRAS, mutations, and RET/PTC gene rearrangements distinguishes dominant nodules in Hashimoto thyroiditis from papillary thyroid carcinomas. Endocr Pathol 21:73–79PubMedCrossRefGoogle Scholar
  112. 112.
    Lam KY, Lo CY, Chan KW, Wan KY (2000) Insular and anaplastic carcinoma of the thyroid: a 45-year comparative study at a single institution and a review of the significance of p53 and p21. Ann Surg 231:329–338PubMedCrossRefGoogle Scholar
  113. 113.
    Venkatesh YS, Ordonez NG, Schultz PN, Hickey RC, Goepfert H, Samaan NA (1990) Anaplastic carcinoma of the thyroid. A clinicopathologic study of 121 cases. Cancer 66:321–330PubMedCrossRefGoogle Scholar
  114. 114.
    Nel CJ, van Heerden JA, Goellner JR, Gharib H, McConahey WM, Taylor WF, Grant CS (1985) Anaplastic carcinoma of the thyroid: a clinicopathologic study of 82 cases. Mayo Clin Proc 60:51–58PubMedCrossRefGoogle Scholar
  115. 115.
    Schaefer CJ (1988) Long-term survival in anaplastic thyroid cancer. Md Med J 37:873–874PubMedGoogle Scholar
  116. 116.
    Rosai J, Saxen EA, Woolner L (1985) Undifferentiated and poorly differentiated carcinoma. Semin Diagn Pathol 2:123–136PubMedGoogle Scholar
  117. 117.
    Nusynowitz ML (1991) Differentiating anaplastic thyroidcarcinomas. J Nucl Med 32:1363–1364PubMedGoogle Scholar
  118. 118.
    Smallridge RC, Copland JA (2010) Anaplastic thyroid carcinoma: pathogenesis and emerging therapies. Clin Oncol 22(6):486–497CrossRefGoogle Scholar
  119. 119.
    Lo CY, Chan WF, Lam KY, Wan KY (2005) Follicular thyroid carcinoma: the role of histology and staging systems in predicting survival. Ann Surg 242:708–715PubMedCrossRefGoogle Scholar
  120. 120.
    Parameswaran R, Brooks S, Sadler GP (2010) Molecular pathogenesis of follicular cell derived thyroid cancers. Int J Surg 8:186–193PubMedCrossRefGoogle Scholar
  121. 121.
    Nikiforova MN, Lynch RA, Biddinger PW, Alexander EK, Dorn GW 2nd, Tallini G, Kroll TG, Nikiforov YE (2003) RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab 88:2318–2326PubMedCrossRefGoogle Scholar
  122. 122.
    Cheung L, Messina M, Gill A, Clarkson A, Learoyd D, Delbridge L, Wentworth J, Philips J, Clifton-Bligh R, Robinson BG (2003) Detection of the PAX8-PPAR gamma fusion oncogene in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab 88:354–357PubMedCrossRefGoogle Scholar
  123. 123.
    Krol TG, Sarraf P, Pecciarini L, Chen CJ, Mueller E, Spiegelman BM, Fletcher JA (2000) PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma. Science 289:1357–1360CrossRefGoogle Scholar
  124. 124.
    Mansouri A, Chowdhury K, Gruss P (1998) Follicular cells of the thyroid gland require Pax8 gene function. Nat Genet 19:87–90PubMedCrossRefGoogle Scholar
  125. 125.
    Willson TM, Cobb JE, Cowan DJ, Wiethe RW, Correa ID, Prakash SR, Beck KD, Moore LB, Kliewer SA, Lehmann JM (1996) The structure-activity relationship between peroxisome proliferator-activated receptor-gamma agonism and the antihyperglycemic activity of thiazolidinediones. J Med Chem 39:665–668PubMedCrossRefGoogle Scholar
  126. 126.
    Hibi Y, Nagaya T, Kambe F, Imai T, Funahashi H, Nakao A, Seo H (2004) Is thyroid follicular cancer in Japanese caused by a specific t(2; 3)(q13; p25) translocation generating Pax8-PPAR gamma fusion mRNA? Endocr J 51:361–366PubMedCrossRefGoogle Scholar
  127. 127.
    Pollina L, Pacini F, Fontanini G, Vignati S, Bevilacqua G, Basolo F (1996) bcl-2, p53 and proliferating cell nuclear antigen expression is related to the degree of differentiation in thyroid carcinomas. Br J Cancer 73:139–143PubMedCrossRefGoogle Scholar
  128. 128.
    Donghi R, Longoni A, Pilotti S, Michieli P, Della Porta G, Pierotti MA (1993) Gene p53 mutations are restricted to poorly differentiated and undifferentiated carcinomas of the thyroid gland. J Clin Invest 91:1753–1760PubMedCrossRefGoogle Scholar
  129. 129.
    Xing M (2010) Genetic alterations in the phosphatidylinositol-3 kinase/Akt pathway in thyroid cancer. Thyroid 20:697–706PubMedCrossRefGoogle Scholar
  130. 130.
    Hou P, Liu D, Shan Y, Hu S, Studeman K, Condouris S, Wang Y, Trink A, El-Naggar AK, Tallini G, Vasko V, Xing M (2007) Genetic alterations and their relationship in the in the phospatidylinositol 3-kinase pathway in thyroid cancer. Clin Cancer Res 13:1161–1170PubMedCrossRefGoogle Scholar
  131. 131.
    Wang Y, Hou P, Yu H, Wang W, Ji M, Zhao S, Yan S, Sun X, Liu D, Shi B, Zhu G, Condouris S, Xing M (2007) High prevalence and mutual exclusivity of genetic alterations in the phosphatidylinositol-3-kinase pathway in thyroid tumors. J Clin Endocrinol Metab 92:2387–2390PubMedCrossRefGoogle Scholar
  132. 132.
    Garcia-Rostan G, Camp RL, Herrero A, Carcangiu ML, Rimm DL, Tallini G (2001) Beta-catenin dysregulation in thyroid neoplasms: down-regulation, aberrant nuclear expression, and CTNNB1 exon 3 mutations are markers for aggressive tumor phenotypes and poor prognosis. Am J Pathol 158:987–996PubMedCrossRefGoogle Scholar
  133. 133.
    Barnabei A, Ferretti E, Baldelli R, Procaccini A, Spriano G, Appetecchia M (2009) Hurthle cell tumours of the thyroid. Personal experience and review of the literature. Acta Otorhinolaryngol Ital 29:305–311PubMedGoogle Scholar
  134. 134.
    MaÅLximo V, Sobrinho-Simoes M (2000) Hurthle cell tumours of the thyroid. A review with emphasis on mitochondrial abnormalities with clinical relevance. Virchows Arch 437:107–115CrossRefGoogle Scholar
  135. 135.
    Ljungberg O (1972) On medullary carcinoma of the thyroid. APMIS Suppl A 80:1–57Google Scholar
  136. 136.
    Papotti M, Sambataro D, Pecchioni C, Bussolati G (1996) The pathology of medullary carcinoma of the thyroid: review of the literature and personal experience on 62 cases. Endocr Pathol 7:1–20PubMedCrossRefGoogle Scholar
  137. 137.
    Komminoth P, Roth J, Saremaslani P et al (1994) Polysialic acid of the neural cell adhesion molecule in the human thyroid: a marker for medullary thyroid carcinoma and primary C-cell hyperplasia. Am J Surg Pathol 18:399–411PubMedCrossRefGoogle Scholar
  138. 138.
    Correia-Deur JE, Toledo RA, Imazawa AT, Lourenco DM Jr, Ezabella MC, Tavares MR, Toledo SP (2009) Sporadic medullary thyroid carcinoma: clinical data from a university hospital. Clinics (Soa Paulo) 64:379–386Google Scholar
  139. 139.
    Jijiwa M, Fukuda T, Kawai K, Nakamura A, Kurokawa K, Murakumo Y, Ichihara M, Takahashi M (2004) A targeting mutation of tyrosine 1062 in Ret causes a marked decrease of enteric neurons and renal hypoplasia. Mol Cell Biol 24:8026–8036PubMedCrossRefGoogle Scholar
  140. 140.
    Segouffin-Cariou C, Billaud M (2000) Transforming ability of MEN2A-RET requires activation of the phosphatidylinositol 3-kinase signaling pathway. J Biol Chem 275:3568–3576PubMedCrossRefGoogle Scholar
  141. 141.
    Scott RP, Eketjäll S, Aineskog H, Ibáñez CF (2005) Distinct turnover of alternatively spliced isoforms of the RET kinase receptor mediated by differential recruitment of the Cbl ubiquitin ligase. J Biol Chem 280:13442–13449PubMedCrossRefGoogle Scholar
  142. 142.
    Acton DS, Velthuyzen D, Lips CJ, Höppener JW (2000) Multiple endocrine neoplasia type 2B mutation in human RET oncogene induces medullary thyroid carcinoma in transgenic mice. Oncogene 19:3121–3125PubMedCrossRefGoogle Scholar
  143. 143.
    Donis-Keller H, Dou S, Chi D, Carlson KM, Toshima K, Lairmore TC, Howe JR, Moley JF, Goodfellow P, Wells SA Jr (1993) Mutations in the RET proto-oncogene are associated with MEN 2A and FMTC. Hum Mol Genet 2:851–856PubMedCrossRefGoogle Scholar
  144. 144.
    Erdogan MF, Gürsoy A, Ozgen G, Cakir M, Bayram F, Ersoy R, Algün E, Cetinars B, Cömlekçi A, Kadioglu P, Balci MK, Yetkin I, Kabalak T, Erdogan G (2005) Ret proto-oncogene mutations in apparently sporadic Turkish medullary thyroid carcinoma patients: Turkmen study. J Endocrinol Invest 28:806–809PubMedGoogle Scholar
  145. 145.
    Elisei R, Romei C, Cosci B, Agate L, Bottcic V, Molinaro E, Sculli M, Miccoli P, Basolo F, Grasso L, Pacini F, Pinchera A (2007) RET genetic screening in patients with medullary thyroid cancer and their relatives: experience with 807 individuals at one center. J Clin Endocrinol Metab 92:4725–4729PubMedCrossRefGoogle Scholar
  146. 146.
    Hedayati M, Nabipour I, Rezaei-Ghaleh N, Azizi F (2006) Germline RET mutations in exons 10 and 11: an Iranian survey of 57 medullary thyroid carcinoma cases. Med J Malaysia 61:564–569PubMedGoogle Scholar
  147. 147.
    Bugalho MJ, Domingues R, Santos JR, Catarino AL, Sobrinho L (2007) Mutation analysis of the RET proto-oncogene and early thyroidectomy: results of a Portuguese cancer centre. Surgery 141:90–95PubMedCrossRefGoogle Scholar
  148. 148.
    Ceccherini I, Hofstra RM, Luo Y, Stulp RP, Barone V, Stelwagen T, Bocciardi R, Nijveen H, Bolino A, Seri M et al (1994) DNA polymorphisms and conditions for SSCP analysis of the 20 exons of the ret protooncogene. Oncogene 9:3025–3029PubMedGoogle Scholar
  149. 149.
    Kruckeberg KE, Thibodeau SN (2004) Pyrosequencing technology as a method for the diagnosis of multiple endocrine neoplasia type 2. Clin Chem 50:522–529PubMedCrossRefGoogle Scholar
  150. 150.
    Kim IJ, Kang HC, Park JH, Ku JL, Lee JS, Kwon HJ, Yoon KA, Heo SC, Yang HY, Cho BY, Kim SY, Oh SK, Youn YK, Park DJ, Lee MS, Lee KW, Park JG (2002) RET oligonucleotide microarray for the detection of RET mutations in multiple endocrine neoplasia type 2 syndromes. Clin Cancer Res 8:457–463PubMedGoogle Scholar
  151. 151.
    Blank RD, Sklar CA, Martin ML (1996) Denaturing gradient gel electrophoresis to diagnose multiple endocrine neoplasia type 2. Clin Chem 42:598–603PubMedGoogle Scholar
  152. 152.
    Ahmed SA, Snow-Bailey K, Highsmith WE, Sun W, Fenwick RG, Mao R (2005) Nine novel gremlin gene variants in the RET proto-oncogene identified in twelve unrelated cases. J Mol Diagn 7:283–288PubMedCrossRefGoogle Scholar
  153. 153.
    Margraf RL, Mao R, Witter CT (2008) Rapid diagnosis of MEN2B using unlabeled probe melting analysis and the LightCycler 480 instrument. J Mol Diagn 10:123–128PubMedCrossRefGoogle Scholar
  154. 154.
    Takano T, Miyauchi A, Matsuzuka F, Liu G, Higashiyama T, Yokozawa T, Kuma K, Amino N (1999) Preoperative diagnosis of medullary thyroid carcinoma by RT-PCR using RNA extracted from leftover cells within a needle used for fine needle aspiration biopsy. J Clin Endocrinol Metab 84:951–955PubMedCrossRefGoogle Scholar
  155. 155.
    Santoro M, Rosati R, Grieco M et al (1990) The RET proto-oncogene is consistently expressed in human pheochromocytomas and thyroid medullary carcinomas. Oncogene 5:1595–1598PubMedGoogle Scholar
  156. 156.
    Lloyd RV, Sisson JC, Marangos PJ (1983) Calcitonin, carcinoembryonic antigen, and neuron-specific enolase in medullary thyroid carcinoma. Cancer 51:2234–2239PubMedCrossRefGoogle Scholar
  157. 157.
    Zajac JD, Penschow J, Mason T, Tregear G, Coghlan J, Martin TJ (1986) Identification of calcitonin and calcitonin gene-related peptide messenger ribonucleic acid in medullary thyroid carcinomas by hybridization histochemistry. J Clin Endocrinol Metab 62:1037–1043PubMedCrossRefGoogle Scholar
  158. 158.
    Lakhani VT, You YN, Wells SA (2007) The multiple endocrine neoplasia syndromes. Annu Rev Med 58:253–265PubMedCrossRefGoogle Scholar
  159. 159.
    Eng C, Clayton D, Schuffenecker I et al (1996) The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2: International RET mutation consortium analysis. JAMA 276:1575–1579PubMedCrossRefGoogle Scholar
  160. 160.
    He H, Jazdzewski K, Li W, Liyanachchi S, Nagy R, Volinia S, Calin GA, Liu CG, Franssila K, Suster S, Kloos RT, Crcoe CM, de la Chapelle A (2005) The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA 102:19075–19080PubMedCrossRefGoogle Scholar
  161. 161.
    Weber F, Teresi RE, Broelsch CE, Frilling A, Eng C (2006) A limited set of human microRNA is deregulated in follicular thyroid carcinoma. J Clin Endocrinol Metab 91:3584–3591PubMedCrossRefGoogle Scholar
  162. 162.
    Visone R, Pallante P, Vecchione A, Cirombella R, Ferracin M, Ferraro A, Volinia S, Coluzzi S, Leone V, Borbone E, Liu CG, Petrocca F, Troncone G, Calin GA, Scarpa A, Colato C, Tallini G, Santoro M, Croce CM, Fusco A (2007) Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene 26:7590–7595PubMedCrossRefGoogle Scholar
  163. 163.
    Nikiforova MN, Tseng MN, Steward D, Diorio D, Nikiforov YE (2008) MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J Clin Endocrinol Metab 93:1600–1608PubMedCrossRefGoogle Scholar
  164. 164.
    Carney JA, Volante M, Papotti M, Asa S (2004) Hyalinizing trabecular tumour. In: DeLellis RA, Lloyd RV, Heitz P, Eng C (eds) World Health Organization classification of tumours. Pathology & genetics. Tumours of endocrine organs. IARC Press, Lyon, pp 104–105Google Scholar
  165. 165.
    Katoh R, Jasani B, Williams ED (1989) Hyalinizing trabecular adenoma of the thyroid. A report of three cases with immunohistochemical and ultrastructural studies. Histopathology 15:211–224PubMedCrossRefGoogle Scholar
  166. 166.
    Cheung CC, Boerner SL, MacMillan CM, Ramyar L, Asa SL (2000) Hyalinizing trabecular tumor of the thyroid: a variant of papillary carcinoma proved by molecular genetics. Am J Surg Pathol 24:1622–1626PubMedCrossRefGoogle Scholar
  167. 167.
    Sheu SY, Vogel E, Worm K, Grabellus F, Schwertheim S, Schmid KW (2010) Hyalinizing trabecular tumour of the thyroid-differential expression of distinct miRNAs compared with papillary thyroid carcinoma. Histopathology 56:632–640PubMedCrossRefGoogle Scholar
  168. 168.
    Levin KE, Galante M, Clark OH (1987) Parathyroid carcinoma versus parathyroid adenoma in patients with profound hypercalcaemia. Surgery 101:649–660PubMedGoogle Scholar
  169. 169.
    Shortell CK, Andrus CH, Phillips CE Jr, Schwartz SI (1991) Carcinoma of the parathyroid gland: a 30-year experience. Surgery 110:704–708PubMedGoogle Scholar
  170. 170.
    Hunt JL (2008) Molecular diagnosis in head and neck: what a surgical pathologist must know. Head Neck Pathol 2:99–102PubMedCrossRefGoogle Scholar
  171. 171.
    Hundahl SA, Fleming ID, Fremgen AM, Menck HR (1999) Two hundred eighty-six cases of parathyroid carcinoma treated in the U.S. between 1985–1995: a National Cancer Data Base Report. The American College of Surgeons Commission on Cancer and the American Cancer Society. Cancer (Phila) 86:538–544CrossRefGoogle Scholar
  172. 172.
    Sandelin K, Tullgren O, Farnebo LO (1994) Clinical course of metastatic parathyroid cancer. World J Surg 18:594–598PubMedCrossRefGoogle Scholar
  173. 173.
    Carpten JD, Robbins CM, Villablanca A et al (2002) HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome. Nat Genet 32:676–680PubMedCrossRefGoogle Scholar
  174. 174.
    Howell VM, Haven CJ, Kahnoski K, Khoo SK, Petillo D, Chen J, Fluren GJ, Robinson BG, Delbridge LW, Philips J, Nelson AE, Krause U, Hammje K, Dralle H, Hoang-Vu C, Gimm O, March DJ, Morreau H, The BT (2003) HRPT2 mutations are associated with malignancy in sporadic parathyroid tumours. J Med Genet 40:657–663PubMedCrossRefGoogle Scholar
  175. 175.
    Szabo J, Heath B, Hill VM, Jackson CE, Zarbo RJ, Mallette LE, Chew SL, Besser GM, Thakker RV, Huff V et al (1995) Hereditary hyperparathyroidism-jaw tumour syndrome: the endocrine tumour gene HRPT2 maps to chromosome 1q21-q31. Am J Hum Genet 56:944–950PubMedGoogle Scholar
  176. 176.
    Teh BT, Farnebo F, Kristoffersson U, Sundelin B, Cardinal J, Axelson R, Yap A, Epstein M, Heath H, Cameron D 3rd, Larsson C (1996) Autosomal dominant primary hyperparathyroidism and jaw tumour syndrome associated with renal hamartomas and cystic kidney disease: linkage to 1q21-q32 and loss of the wild type allele in renal hamartomas. J Clin Endocrinol Metab 81:4204–4211PubMedCrossRefGoogle Scholar
  177. 177.
    Juhlin CC, Villablanca A, Sandelin K, Haglund F, Norderström J, Forsberg L, Bränström R, Obara T, Arnold A, Larsson C, Höög A (2007) Parafibromin immunoreactivity: its use as an additional diagnostic marker for parathyroid tumor classification. Endocr Relat Cancer 14:501–512PubMedCrossRefGoogle Scholar
  178. 178.
    Tan MH, Morrison C, Wang P, Yang X, Haven CJ, Zhang C, Zhao P, Tertiaova MS, Korpi-Hyovalti E, Burgess JR, Soo KC, Cheah WK, Cao B, Resau J, Morreau H, Teh BT (2004) Loss of parafibromin immunoreactivity is a distinguishing feature of parathyroid carcinoma. Clin Cancer Res 10:6629–6637PubMedCrossRefGoogle Scholar
  179. 179.
    Shackelford RE, Kaufman WK, Paules RS (1999) Cell cycle control, checkpoint mechanisms, and genotoxic stress. Environ Health Perspect 107(Suppl 1):5–24PubMedCrossRefGoogle Scholar
  180. 180.
    Westin G, Björklund P, Akersröm G (2009) Molecular genetics of parathyroid disease. World J Surg 33:2224–2233PubMedCrossRefGoogle Scholar
  181. 181.
    Shane E, Bilezkina JP (1982) Parathyroid carcinoma: a review of 62 patients. Endocr Rev 3:218–226PubMedCrossRefGoogle Scholar
  182. 182.
    Corbette S, Eller-Vainicher C, Vicentini L, Lania A, Mantovani G, Beck-Peccoz P, Spada A (2007) Modulation of cyclin D1 expression in human tumoral parathyroid cells: effects of growth factors and calcium sensing receptor activation. Cancer Lett 255:34–41CrossRefGoogle Scholar
  183. 183.
    Kameyama K, Takami H, Umemura S, Osamura YR, Wada N, Sugino K, Mimura T, Ito K (2000) PCNA and Ki-67 as prognostic markers in human parathyroid carcinomas. Ann Surg Oncol 7:301–304PubMedCrossRefGoogle Scholar
  184. 184.
    Thomopoulou GE, Tseleni-Balafouta S, Lazaris AC, Koutselini H, Kavantzas N, Davaris PS (2003) Immunohistochemical detection of cell cycle regulators, Fhit protein and apoptotic cells in parathyroid lesions. Eur J Endocrinol 148:81–87PubMedCrossRefGoogle Scholar
  185. 185.
    Kulkarni PS, Parkh PM (2004) The carcinoma of parathyroid gland. Indian J Cancer 41:51–59PubMedGoogle Scholar
  186. 186.
    Palanisamy N, Imanishi Y, Rao PH, Tahara H, Chaganti RSK, Arnold A (1998) Novel chromosomal abnormalities identified by comparative genomic hybridization in parathyroid adenomas. J Clin Endocrinol Metabol 83:1766–1770. doi: 10.1210/jc.83.5.1766 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Pathology and Laboratory MedicineTulane University School of MedicineNew OrleansUSA
  2. 2.H. Lee Moffitt Cancer Center and Research Institute and University of South FloridaTampaUSA

Personalised recommendations