Advertisement

Molecular Diagnostics of Myeloid Neoplasms

  • Xiaohui Zhang
  • Ling ZhangEmail author
Chapter
  • 2.5k Downloads
Part of the Cancer Growth and Progression book series (CAGP, volume 16)

Abstract

According to 2008 World Health Organization (WHO) Classification of Tumors of Hematopoietic and Lymphoid Tissue, myeloid neoplasms include (1) myeloproliferative neoplasms (MPN), (2) myeloid and lymphoid neoplasms with eosinophilia and abnormalities of PDGFRA, PFGFRB, or FGFR1, (3) myelodysplastic/myeloproliferative neoplasms (MDS/MPN), (4) myelodysplastic syndromes (MDS), and (5) acute myeloid leukemia (AML) and related precursor neoplasms. The diagnosis and subclassification of myeloid neoplasms is critical and approaches are multifaceted. In an era of advanced molecular biology, the diagnosis of myeloid neoplasms requires an integration of morphology, clinical presentation, laboratory results and immunophenotying with cytogenetics and molecular studies. Emerging novel molecular genetic technologies e.g. DNA microarray, single nucleotide polymorphism (SNP) array, whole genomic sequencing will aid further subclassification and characterization of disease entities of myeloid neoplasm. The common or fundamental molecular markers and associated cytogenetic aberrations, together with the diagnostic approaches are emphasized and reviewed in this chapter.

Keywords

Myeloid neoplasm Myeloproliferative neoplasm Myelodysplastic syndrome Acute myeloid leukemia Molecular diagnosis 

Abbreviations

aCML

Atypical chronic myeloid leukemia

ALL

Acute lymphoblastic leukemia

AML

Acute myeloid leukemia

APL

Acute promyelocytic leukemia

B-ALL

B lymphoblastic leukemia

CARs

Commonly affected regions

CBBF

Core binding factor translocations

CBF

Core-binding factor

CDR

Common deletion region

CEL

Chronic eosinophilic leukemia

CML

Chronic myelogenous leukemia

CMML

Chronic myelomonocytic leukemia

CyR

Cytogenetic response

DIC

Disseminated intravascular coagulation

EMH

Extramedullary hematopoiesis

ET

Essential thrombocythemia

FAB

French-American-British

FGFR1

Febroblast growth factor receptor 1

FISH

Fluorescence in-situ hybridization

GEP

Gene expression profiling

GIST

Gastrointestinal stromal tumors

HR

Hematological response

JMML

Juvenile myelomonocytic leukemia

MDS

Myelodysplastic syndromes

MPN

Myeloproliferative neoplasms

MR

Molecular response

MPN-U

Myeloproliferative neoplasms, unclassifiable

MR

Molecular response

MS

Mastocytosis

NOS

Not otherwise specified

PDGFR

Platelet derived growth factor receptor

PMF

Primary myelofibrosis

PML

Promyelocytic leukemia

PV

Polycythemia vera

RAEB

Refractory anemia with excess blasts

RARA

Retinoic acid receptor gene, alpha

RARS

Refractory anemia with ring sideroblasts

RCMD

Refractory cytopenia with multilineage dysplasia

RCUD

Refractory cytopenia with unilineage dysplasia

RFLP

Restricted fragment length polymorphism

SM-AHNMD

Systemic mastocytosis with associated clonal hematopoetic non-mast cell lineage disease

SPOC

Spen paralog and ortholog C-terminal

T-ALL

T-lymphoblastic leukemia

WHO

World Health Organization

References

  1. 1.
    Swerdlow S, Campo E, Harris N, Jaffe E, Pileri S, Stein H, Thiele J, Vardiman J (2008) WHO classification of tumours of haematopoietic and lymphoid tissues, 4th edn. International Agency for Research on Cancer press, LyonGoogle Scholar
  2. 2.
    Mrozek K, Heerema NA, Bloomfield CD (2004) Cytogenetics in acute leukemia. Blood Rev 18(2):115–136PubMedGoogle Scholar
  3. 3.
    Betz BL, Hess JL (2010) Acute myeloid leukemia diagnosis in the 21st century. Arch Pathol Lab Med 134(10):1427–1433PubMedGoogle Scholar
  4. 4.
    Wadleigh M, Tefferi A (2010) Classification and diagnosis of myeloproliferative neoplasms according to the 2008 World Health Organization criteria. Int J Hematol 91(2):174–179PubMedGoogle Scholar
  5. 5.
    Tefferi A, Vardiman JW (2008) Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia 22(1):14–22PubMedGoogle Scholar
  6. 6.
    Randolph TR (2005) Chronic myelocytic leukemia–Part I: history, clinical presentation, and molecular biology. Clin Lab Sci 18(1):38–48PubMedGoogle Scholar
  7. 7.
    Rowley JD (1973) Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243(5405):290–293PubMedGoogle Scholar
  8. 8.
    Bartram CR, de Klein A, Hagemeijer A, van Agthoven T, Geurts van Kessel A, Bootsma D, Grosveld G, Ferguson-Smith MA, Davies T, Stone M et al (1983) Translocation of c-ab1 oncogene correlates with the presence of a Philadelphia chromosome in chronic myelocytic leukaemia. Nature 306(5940):277–280PubMedGoogle Scholar
  9. 9.
    Zhang L, Bennett JM, Zhang X, Moscinski L, Ibarz-Pinilla J, List AF, Komrokji R (2010) Uncommon of the uncommon: low-grade myelodysplastic syndrome evolving into chronic myelogenous leukemia. J Clin Oncol 29:434–436Google Scholar
  10. 10.
    Fine BM, Stanulla M, Schrappe M, Ho M, Viehmann S, Harbott J, Boxer LM (2004) Gene expression patterns associated with recurrent chromosomal translocations in acute lymphoblastic leukemia. Blood 103(3):1043–1049PubMedGoogle Scholar
  11. 11.
    Bacher U, Haferlach T, Alpermann T, Zenger M, Hochhaus A, Beelen DW, Uppenkamp M, Rummel M, Kern W, Schnittger S, Haferlach C (2011) Subclones with the t(9;22)/BCR-ABL1 rearrangement occur in AML and seem to cooperate with distinct genetic alterations. Br J Haematol 152(6):713–720PubMedGoogle Scholar
  12. 12.
    Villegas A, Anguita E, Gonzalez FA, Ferro MT, San Roman C (1998) Occurrence of BCR-ABL rearrangement in a Philadelphia chromosome-negative patient with 5q and 13q deletions and myeloproliferative syndrome. Cancer Genet Cytogenet 100(1):1–4PubMedGoogle Scholar
  13. 13.
    Kurzrock R, Kantarjian HM, Druker BJ, Talpaz M (2003) Philadelphia chromosome-positive leukemias: from basic mechanisms to molecular therapeutics. Ann Intern Med 138(10):819–830PubMedGoogle Scholar
  14. 14.
    McWhirter JR, Wang JY (1993) An actin-binding function contributes to transformation by the Bcr-Abl oncoprotein of Philadelphia chromosome-positive human leukemias. EMBO J 12(4):1533–1546PubMedGoogle Scholar
  15. 15.
    Deininger MW, Goldman JM, Melo JV (2000) The molecular biology of chronic myeloid leukemia. Blood 96(10):3343–3356PubMedGoogle Scholar
  16. 16.
    Pane F, Frigeri F, Sindona M, Luciano L, Ferrara F, Cimino R, Meloni G, Saglio G, Salvatore F, Rotoli B (1996) Neutrophilic-chronic myeloid leukemia: a distinct disease with a specific molecular marker (BCR/ABL with C3/A2 junction). Blood 88(7):2410–2414PubMedGoogle Scholar
  17. 17.
    Verma D, Kantarjian HM, Jones D, Luthra R, Borthakur G, Verstovsek S, Rios MB, Cortes J (2009) Chronic myeloid leukemia (CML) with P190 BCR-ABL: analysis of characteristics, outcomes, and prognostic significance. Blood 114(11):2232–2235PubMedGoogle Scholar
  18. 18.
    Wan TS, Ma SK, Au WY, Chan LC (2003) Derivative chromosome 9 deletions in chronic myeloid leukaemia: interpretation of atypical D-FISH pattern. J Clin Pathol 56(6):471–474PubMedGoogle Scholar
  19. 19.
    Thorn I, Botling J, Hermansson M, Lonnerholm G, Sundstrom C, Rosenquist R, Barbany G (2009) Monitoring minimal residual disease with flow cytometry, antigen-receptor gene rearrangements and fusion transcript quantification in Philadelphia-positive childhood acute lymphoblastic leukemia. Leuk Res 33(8):1047–1054PubMedGoogle Scholar
  20. 20.
    Emig M, Saussele S, Wittor H, Weisser A, Reiter A, Willer A, Berger U, Hehlmann R, Cross NC, Hochhaus A (1999) Accurate and rapid analysis of residual disease in patients with CML using specific fluorescent hybridization probes for real time quantitative RT-PCR. Leukemia 13(11):1825–1832PubMedGoogle Scholar
  21. 21.
    Kantarjian H, Sawyers C, Hochhaus A, Guilhot F, Schiffer C, Gambacorti-Passerini C, Niederwieser D, Resta D, Capdeville R, Zoellner U, Talpaz M, Druker B, Goldman J, O’Brien SG, Russell N, Fischer T, Ottmann O, Cony-Makhoul P, Facon T, Stone R, Miller C, Tallman M, Brown R, Schuster M, Loughran T, Gratwohl A, Mandelli F, Saglio G, Lazzarino M, Russo D, Baccarani M, Morra E (2002) Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med 346(9):645–652PubMedGoogle Scholar
  22. 22.
    Aguayo A, Couban S (2009) State-of-the-art in the management of chronic myelogenous leukemia in the era of the tyrosine kinase inhibitors: evolutionary trends in diagnosis, monitoring and treatment. Leuk Lymphoma 50(Suppl 2):1–8PubMedGoogle Scholar
  23. 23.
    Hughes T, Deininger M, Hochhaus A, Branford S, Radich J, Kaeda J, Baccarani M, Cortes J, Cross NC, Druker BJ, Gabert J, Grimwade D, Hehlmann R, Kamel-Reid S, Lipton JH, Longtine J, Martinelli G, Saglio G, Soverini S, Stock W, Goldman JM (2006) Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood 108(1):28–37PubMedGoogle Scholar
  24. 24.
    Donato NJ, Wu JY, Stapley J, Gallick G, Lin H, Arlinghaus R, Talpaz M (2003) BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood 101(2):690–698PubMedGoogle Scholar
  25. 25.
    Donato NJ, Wu JY, Stapley J, Lin H, Arlinghaus R, Aggarwal BB, Shishodia S, Albitar M, Hayes K, Kantarjian H, Talpaz M (2004) Imatinib mesylate resistance through BCR-ABL independence in chronic myelogenous leukemia. Cancer Res 64(2):672–677PubMedGoogle Scholar
  26. 26.
    Quentmeier H, Eberth S, Romani J, Zaborski M, Drexler HG (2011) BCR-ABL1-independent PI3Kinase activation causing imatinib-resistance. J Hematol Oncol 4(1):6PubMedGoogle Scholar
  27. 27.
    James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C, Garcon L, Raslova H, Berger R, Bennaceur-Griscelli A, Villeval JL, Constantinescu SN, Casadevall N, Vainchenker W (2005) A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434(7037):1144–1148PubMedGoogle Scholar
  28. 28.
    Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, Vassiliou GS, Bench AJ, Boyd EM, Curtin N, Scott MA, Erber WN, Green AR (2005) Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365(9464):1054–1061PubMedGoogle Scholar
  29. 29.
    Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, Boggon TJ, Wlodarska I, Clark JJ, Moore S, Adelsperger J, Koo S, Lee JC, Gabriel S, Mercher T, D’Andrea A, Frohling S, Dohner K, Marynen P, Vandenberghe P, Mesa RA, Tefferi A, Griffin JD, Eck MJ, Sellers WR, Meyerson M, Golub TR, Lee SJ, Gilliland DG (2005) Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7(4):387–397PubMedGoogle Scholar
  30. 30.
    Kralovics R, Teo SS, Buser AS, Brutsche M, Tiedt R, Tichelli A, Passamonti F, Pietra D, Cazzola M, Skoda RC (2005) Altered gene expression in myeloproliferative disorders correlates with activation of signaling by the V617F mutation of Jak2. Blood 106:3374–3376PubMedGoogle Scholar
  31. 31.
    Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR, Futreal PA, Erber WN, McMullin MF, Harrison CN, Warren AJ, Gilliland DG, Lodish HF, Green AR (2007) JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 356(5):459–468PubMedGoogle Scholar
  32. 32.
    Delhommeau F, Jeziorowska D, Marzac C, Casadevall N (2010) Molecular aspects of myeloproliferative neoplasms. Int J Hematol 91(2):165–173PubMedGoogle Scholar
  33. 33.
    Kota J, Caceres N, Constantinescu SN (2008) Aberrant signal transduction pathways in myeloproliferative neoplasms. Leukemia 22(10):1828–1840PubMedGoogle Scholar
  34. 34.
    Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, Tichelli A, Cazzola M, Skoda RC (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352(17):1779–1790PubMedGoogle Scholar
  35. 35.
    Bellucci S, Michiels JJ (2006) The role of JAK2 V617F mutation, spontaneous erythropoiesis and megakaryocytopoiesis, hypersensitive platelets, activated leukocytes, and endothelial cells in the etiology of thrombotic manifestations in polycythemia vera and essential thrombocythemia. Semin Thromb Hemost 32(4 Pt 2):381–398PubMedGoogle Scholar
  36. 36.
    Pardanani AD, Levine RL, Lasho T, Pikman Y, Mesa RA, Wadleigh M, Steensma DP, Elliott MA, Wolanskyj AP, Hogan WJ, McClure RF, Litzow MR, Gilliland DG, Tefferi A (2006) MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 108(10):3472–3476PubMedGoogle Scholar
  37. 37.
    Jekarl DW, Han SB, Kim M, Lim J, Oh EJ, Kim Y, Kim HJ, Min WS, Han K (2010) JAK2 V617F mutation in myelodysplastic syndrome, myelodysplastic syndrome/myeloproliferative neoplasm, unclassifiable, refractory anemia with ring sideroblasts with thrombocytosis, and acute myeloid leukemia. Korean J Hematol 45(1):46–50PubMedGoogle Scholar
  38. 38.
    Schmitt-Graeff AH, Teo SS, Olschewski M, Schaub F, Haxelmans S, Kirn A, Reinecke P, Germing U, Skoda RC (2008) JAK2V617F mutation status identifies subtypes of refractory anemia with ringed sideroblasts associated with marked thrombocytosis. Haematologica 93(1):34–40PubMedGoogle Scholar
  39. 39.
    Ho K, Valdez F, Garcia R, Tirado CA (2010) JAK2 translocations in hematological malignancies: review of the literature. J Assoc Genet Technol 36(3):107–109PubMedGoogle Scholar
  40. 40.
    Mossuz P, Girodon F, Donnard M, Latger-Cannard V, Dobo I, Boiret N, Lecron JC, Binquet C, Barro C, Hermouet S, Praloran V (2004) Diagnostic value of serum erythropoietin level in patients with absolute erythrocytosis. Haematologica 89(10):1194–1198PubMedGoogle Scholar
  41. 41.
    Andrieux JL, Demory JL (2005) Karyotype and molecular cytogenetic studies in polycythemia vera. Curr Hematol Rep 4(3):224–229PubMedGoogle Scholar
  42. 42.
    De Stefano V, Za T, Rossi E, Vannucchi AM, Ruggeri M, Elli E, Mico C, Tieghi A, Cacciola RR, Santoro C, Vianelli N, Guglielmelli P, Pieri L, Scognamiglio F, Cacciola E, Rodeghiero F, Pogliani EM, Finazzi G, Gugliotta L, Leone G, Barbui T (2010) Increased risk of recurrent thrombosis in patients with essential thrombocythemia carrying the homozygous JAK2 V617F mutation. Ann Hematol 89(2):141–146PubMedGoogle Scholar
  43. 43.
    Hirose Y, Masaki Y, Sugai S (2002) Leukemic transformation with trisomy 8 in essential thrombocythemia: a report of four cases. Eur J Haematol 68(2):112–116PubMedGoogle Scholar
  44. 44.
    Reilly JT, Snowden JA, Spearing RL, Fitzgerald PM, Jones N, Watmore A, Potter A (1997) Cytogenetic abnormalities and their prognostic significance in idiopathic myelofibrosis: a study of 106 cases. Br J Haematol 98(1):96–102PubMedGoogle Scholar
  45. 45.
    Reilly JT (2005) Cytogenetic and molecular genetic abnormalities in agnogenic myeloid metaplasia. Semin Oncol 32(4):359–364PubMedGoogle Scholar
  46. 46.
    Strasser-Weippl K, Steurer M, Kees M, Augustin F, Tzankov A, Dirnhofer S, Fiegl M, Simonitsch-Klupp I, Gisslinger H, Zojer N, Ludwig H (2006) Prognostic relevance of cytogenetics determined by fluorescent in situ hybridization in patients having myelofibrosis with myeloid metaplasia. Cancer 107(12):2801–2806PubMedGoogle Scholar
  47. 47.
    Dingli D, Grand FH, Mahaffey V, Spurbeck J, Ross FM, Watmore AE, Reilly JT, Cross NC, Dewald GW, Tefferi A (2005) Der(6)t(1;6)(q21-23;p21.3): a specific cytogenetic abnormality in myelofibrosis with myeloid metaplasia. Br J Haematol 130(2):229–232PubMedGoogle Scholar
  48. 48.
    Lim KH, Pardanani A, Tefferi A (2008) KIT and mastocytosis. Acta Haematol 119(4):194–198PubMedGoogle Scholar
  49. 49.
    Hungness SI, Akin C (2007) Mastocytosis: advances in diagnosis and treatment. Curr Allergy Asthma Rep 7(4):248–254PubMedGoogle Scholar
  50. 50.
    Yanagihori H, Oyama N, Nakamura K, Kaneko F (2005) c-kit Mutations in patients with childhood-onset mastocytosis and genotype-phenotype correlation. J Mol Diagn 7(2):252–257PubMedGoogle Scholar
  51. 51.
    Zhao W, Bueso-Ramos CE, Verstovsek S, Barkoh BA, Khitamy AA, Jones D (2007) Quantitative profiling of codon 816 KIT mutations can aid in the classification of systemic mast cell disease. Leukemia 21(7):1574–1576PubMedGoogle Scholar
  52. 52.
    Corless CL, Harrell P, Lacouture M, Bainbridge T, Le C, Gatter K, White C Jr, Granter S, Heinrich MC (2006) Allele-specific polymerase chain reaction for the imatinib-resistant KIT D816V and D816F mutations in mastocytosis and acute myelogenous leukemia. J Mol Diagn 8(5):604–612PubMedGoogle Scholar
  53. 53.
    Beghini A, Ripamonti CB, Cairoli R, Cazzaniga G, Colapietro P, Elice F, Nadali G, Grillo G, Haas OA, Biondi A, Morra E, Larizza L (2004) KIT activating mutations: incidence in adult and pediatric acute myeloid leukemia, and identification of an internal tandem duplication. Haematologica 89(8):920–925PubMedGoogle Scholar
  54. 54.
    Goemans BF, Zwaan CM, Miller M, Zimmermann M, Harlow A, Meshinchi S, Loonen AH, Hahlen K, Reinhardt D, Creutzig U, Kaspers GJ, Heinrich MC (2005) Mutations in KIT and RAS are frequent events in pediatric core-binding factor acute myeloid leukemia. Leukemia 19(9):1536–1542PubMedGoogle Scholar
  55. 55.
    Hellmann A (2008) Myeloproliferative syndromes: diagnosis and therapeutic options. Pol Arch Med Wewn 118(12):756–760PubMedGoogle Scholar
  56. 56.
    Cross NC, Reiter A (2008) Fibroblast growth factor receptor and platelet-derived growth factor receptor abnormalities in eosinophilic myeloproliferative disorders. Acta Haematol 119(4):199–206PubMedGoogle Scholar
  57. 57.
    Golub TR, Barker GF, Lovett M, Gilliland DG (1994) Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 77(2):307–316PubMedGoogle Scholar
  58. 58.
    Bain BJ, Fletcher SH (2007) Chronic eosinophilic leukemias and the myeloproliferative variant of the hypereosinophilic syndrome. Immunol Allergy Clin North Am 27(3):377–388PubMedGoogle Scholar
  59. 59.
    Steer EJ, Cross NC (2002) Myeloproliferative disorders with translocations of chromosome 5q31-35: role of the platelet-derived growth factor receptor beta. Acta Haematol 107(2):113–122PubMedGoogle Scholar
  60. 60.
    Vizmanos JL, Hernandez R, Vidal MJ, Larrayoz MJ, Odero MD, Marin J, Ardanaz MT, Calasanz MJ, Cross NC (2004) Clinical variability of patients with the t(6;8)(q27;p12) and FGFR1OP-FGFR1 fusion: two further cases. Hematol J 5(6):534–537PubMedGoogle Scholar
  61. 61.
    Erben P, Gosenca D, Muller MC, Reinhard J, Score J, Del Valle F, Walz C, Mix J, Metzgeroth G, Ernst T, Haferlach C, Cross NC, Hochhaus A, Reiter A (2010) Screening for diverse PDGFRA or PDGFRB fusion genes is facilitated by generic quantitative reverse transcriptase polymerase chain reaction analysis. Haematologica 95(5):738–744PubMedGoogle Scholar
  62. 62.
    Hirsch-Ginsberg C, LeMaistre AC, Kantarjian H, Talpaz M, Cork A, Freireich EJ, Trujillo JM, Lee MS, Stass SA (1990) RAS mutations are rare events in Philadelphia chromosome-negative/bcr gene rearrangement-negative chronic myelogenous leukemia, but are prevalent in chronic myelomonocytic leukemia. Blood 76(6):1214–1219PubMedGoogle Scholar
  63. 63.
    Tefferi A, Gilliland DG (2007) Oncogenes in myeloproliferative disorders. Cell Cycle 6(5):550–566PubMedGoogle Scholar
  64. 64.
    Orazi A, Germing U (2008) The myelodysplastic/myeloproliferative neoplasms: myeloproliferative diseases with dysplastic features. Leukemia 22(7):1308–1319PubMedGoogle Scholar
  65. 65.
    Vannucchi AM, Guglielmelli P, Tefferi A (2009) Advances in understanding and management of myeloproliferative neoplasms. CA Cancer J Clin 59(3):171–191PubMedGoogle Scholar
  66. 66.
    Vardiman JW (2004) Myelodysplastic/myeloproliferative diseases. Cancer Treat Res 121:13–43PubMedGoogle Scholar
  67. 67.
    Loh ML, Vattikuti S, Schubbert S, Reynolds MG, Carlson E, Lieuw KH, Cheng JW, Lee CM, Stokoe D, Bonifas JM, Curtiss NP, Gotlib J, Meshinchi S, Le Beau MM, Emanuel PD, Shannon KM (2004) Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood 103(6):2325–2331PubMedGoogle Scholar
  68. 68.
    Tartaglia M, Niemeyer CM, Fragale A, Song X, Buechner J, Jung A, Hahlen K, Hasle H, Licht JD, Gelb BD (2003) Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet 34(2):148–150PubMedGoogle Scholar
  69. 69.
    List A, Dewald G, Bennett J, Giagounidis A, Raza A, Feldman E, Powell B, Greenberg P, Thomas D, Stone R, Reeder C, Wride K, Patin J, Schmidt M, Zeldis J, Knight R (2006) Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Engl J Med 355(14):1456–1465PubMedGoogle Scholar
  70. 70.
    Giagounidis AA, Germing U, Aul C (2006) Biological and prognostic significance of chromosome 5q deletions in myeloid malignancies. Clin Cancer Res 12(1):5–10PubMedGoogle Scholar
  71. 71.
    Lai JL, Preudhomme C, Zandecki M, Flactif M, Vanrumbeke M, Lepelley P, Wattel E, Fenaux P (1995) Myelodysplastic syndromes and acute myeloid leukemia with 17p deletion. An entity characterized by specific dysgranulopoiesis and a high incidence of P53 mutations. Leukemia 9(3):370–381PubMedGoogle Scholar
  72. 72.
    Jotterand Bellomo M, Parlier V, Muhlematter D, Grob JP, Beris P (1992) Three new cases of chromosome 3 rearrangement in bands q21 and q26 with abnormal thrombopoiesis bring further evidence to the existence of a 3q21q26 syndrome. Cancer Genet Cytogenet 59(2):138–160PubMedGoogle Scholar
  73. 73.
    Haase D, Germing U, Schanz J, Pfeilstocker M, Nosslinger T, Hildebrandt B, Kundgen A, Lubbert M, Kunzmann R, Giagounidis AA, Aul C, Trumper L, Krieger O, Stauder R, Muller TH, Wimazal F, Valent P, Fonatsch C, Steidl C (2007) New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients. Blood 110(13):4385–4395PubMedGoogle Scholar
  74. 74.
    Valent P, Wieser R (2009) Update on genetic and molecular markers associated with myelodysplastic syndromes. Leuk Lymphoma 50(3):341–348PubMedGoogle Scholar
  75. 75.
    Ebert BL, Pretz J, Bosco J, Chang CY, Tamayo P, Galili N, Raza A, Root DE, Attar ESR, Golub TR (2008) Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 451(7176):335–339PubMedGoogle Scholar
  76. 76.
    Pellagatti A, Jadersten M, Forsblom AM, Cattan H, Christensson B, Emanuelsson EK, Merup M, Nilsson L, Samuelsson J, Sander B, Wainscoat JS, Boultwood J, Hellstrom-Lindberg E (2007) Lenalidomide inhibits the malignant clone and up-regulates the SPARC gene mapping to the commonly deleted region in 5q- syndrome patients. Proc Natl Acad Sci USA 104(27):11406–11411PubMedGoogle Scholar
  77. 77.
    Morishita K, Parganas E, William CL, Whittaker MH, Drabkin H, Oval J, Taetle R, Valentine MB, Ihle JN (1992) Activation of EVI1 gene expression in human acute myelogenous leukemias by translocations spanning 300-400 kilobases on chromosome band 3q26. Proc Natl Acad Sci USA 89(9):3937–3941PubMedGoogle Scholar
  78. 78.
    Suzukawa K, Parganas E, Gajjar A, Abe T, Takahashi S, Tani K, Asano S, Asou H, Kamada N, Yokota J et al (1994) Identification of a breakpoint cluster region 3’ of the ribophorin I gene at 3q21 associated with the transcriptional activation of the EVI1 gene in acute myelogenous leukemias with inv(3)(q21q26). Blood 84(8):2681–2688PubMedGoogle Scholar
  79. 79.
    Vinatzer U, Mannhalter C, Mitterbauer M, Gruener H, Greinix H, Schmidt HH, Fonatsch C, Wieser R (2003) Quantitative comparison of the expression of EVI1 and its presumptive antagonist, MDS1/EVI1, in patients with myeloid leukemia. Genes Chromosomes Cancer 36(1):80–89PubMedGoogle Scholar
  80. 80.
    Steensma DP, Dewald GW, Lasho TL, Powell HL, McClure RF, Levine RL, Gilliland DG, Tefferi A (2005) The JAK2 V617F activating tyrosine kinase mutation is an infrequent event in both “atypical” myeloproliferative disorders and myelodysplastic syndromes. Blood 106(4):1207–1209PubMedGoogle Scholar
  81. 81.
    Gattermann N, Billiet J, Kronenwett R, Zipperer E, Germing U, Nollet F, Criel A, Selleslag D (2007) High frequency of the JAK2 V617F mutation in patients with thrombocytosis (platelet count > 600 × 109/L) and ringed sideroblasts more than 15% considered as MDS/MPD, unclassifiable. Blood 109(3):1334–1335PubMedGoogle Scholar
  82. 82.
    Della Porta MG, Malcovati L, Boveri E, Travaglino E, Pietra D, Pascutto C, Passamonti F, Invernizzi R, Castello A, Magrini U, Lazzarino M, Cazzola M (2009) Clinical relevance of bone marrow fibrosis and CD34-positive cell clusters in primary myelodysplastic syndromes. J Clin Oncol 27(5):754–762PubMedGoogle Scholar
  83. 83.
    Ingram W, Lea NC, Cervera J, Germing U, Fenaux P, Cassinat B, Kiladjian JJ, Varkonyi J, Antunovic P, Westwood NB, Arno MJ, Mohamedali A, Gaken J, Kontou T, Czepulkowski BH, Twine NA, Tamaska J, Csomer J, Benedek S, Gattermann N, Zipperer E, Giagounidis A, Garcia-Casado Z, Sanz G, Mufti GJ (2006) The JAK2 V617F mutation identifies a subgroup of MDS patients with isolated deletion 5q and a proliferative bone marrow. Leukemia 20(7):1319–1321PubMedGoogle Scholar
  84. 84.
    Heerema-McKenney A, Arber DA (2009) Acute myeloid leukemia. Hematol Oncol Clin North Am 23(4):633–654PubMedGoogle Scholar
  85. 85.
    Paschka P (2008) Core binding factor acute myeloid leukemia. Semin Oncol 35(4):410–417PubMedGoogle Scholar
  86. 86.
    Kundu M, Liu PP (2001) Function of the inv(16) fusion gene CBFB-MYH11. Curr Opin Hematol 8(4):201–205PubMedGoogle Scholar
  87. 87.
    Lo Coco F, Diverio D, Falini B, Biondi A, Nervi C, Pelicci PG (1999) Genetic diagnosis and molecular monitoring in the management of acute promyelocytic leukemia. Blood 94(1):12–22PubMedGoogle Scholar
  88. 88.
    Degos L (2003) The history of acute promyelocytic leukaemia. Br J Haematol 122(4):539–553PubMedGoogle Scholar
  89. 89.
    Meyer C, Hofmann J, Burmeister T, Gröger D, Park TS, Emerenciano M, Pombo de Oliveira M, Renneville A, Villarese P, Macintyre E, Cavé H, Clappier E, Mass-Malo K, Zuna J, Trka J (2013) The MLL recombinome of acute leukemias in 2013. Leukemia doi:  10.1038/leu.2013.135 [Epub ahead of print]
  90. 90.
    Repp R, Borkhardt A, Haupt E, Kreuder J, Brettreich S, Hammermann J, Nishida K, Harbott J, Lampert F (1995) Detection of four different 11q23 chromosomal abnormalities by multiplex-PCR and fluorescence-based automatic DNA-fragment analysis. Leukemia 9(1):210–215PubMedGoogle Scholar
  91. 91.
    Alsabeh R, Brynes RK, Slovak ML, Arber DA (1997) Acute myeloid leukemia with t(6;9) (p23;q34): association with myelodysplasia, basophilia, and initial CD34 negative immunophenotype. Am J Clin Pathol 107(4):430–437PubMedGoogle Scholar
  92. 92.
    Lugthart S, van Drunen E, van Norden Y, van Hoven A, Erpelinck CA, Valk PJ, Beverloo HB, Lowenberg B, Delwel R (2008) High EVI1 levels predict adverse outcome in acute myeloid leukemia: prevalence of EVI1 overexpression and chromosome 3q26 abnormalities underestimated. Blood 111(8):4329–4337PubMedGoogle Scholar
  93. 93.
    Rosnet O, Buhring HJ, Marchetto S, Rappold I, Lavagna C, Sainty D, Arnoulet C, Chabannon C, Kanz L, Hannum C, Birnbaum D (1996) Human FLT3/FLK2 receptor tyrosine kinase is expressed at the surface of normal and malignant hematopoietic cells. Leukemia 10(2):238–248PubMedGoogle Scholar
  94. 94.
    Ray RJ, Paige CJ, Furlonger C, Lyman SD, Rottapel R (1996) Flt3 ligand supports the differentiation of early B cell progenitors in the presence of interleukin-11 and interleukin-7. Eur J Immunol 26(7):1504–1510PubMedGoogle Scholar
  95. 95.
    Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K, Sonoda Y, Fujimoto T, Misawa S (1996) Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 10(12):1911–1918PubMedGoogle Scholar
  96. 96.
    Kiyoi H, Naoe T (2002) FLT3 in human hematologic malignancies. Leuk Lymphoma 43(8):1541–1547PubMedGoogle Scholar
  97. 97.
    Motyckova G, Stone RM (2010) The role of molecular tests in acute myelogenous leukemia treatment decisions. Curr Hematol Malig Rep 5(2):109–117PubMedGoogle Scholar
  98. 98.
    Kiyoi H, Ohno R, Ueda R, Saito H, Naoe T (2002) Mechanism of constitutive activation of FLT3 with internal tandem duplication in the juxtamembrane domain. Oncogene 21(16):2555–2563PubMedGoogle Scholar
  99. 99.
    Mizuki M, Fenski R, Halfter H, Matsumura I, Schmidt R, Muller C, Gruning W, Kratz-Albers K, Serve S, Steur C, Buchner T, Kienast J, Kanakura Y, Berdel WE, Serve H (2000) Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways. Blood 96(12):3907–3914PubMedGoogle Scholar
  100. 100.
    Meshinchi S, Appelbaum FR (2009) Structural and functional alterations of FLT3 in acute myeloid leukemia. Clin Cancer Res 15(13):4263–4269PubMedGoogle Scholar
  101. 101.
    Kottaridis PD, Gale RE, Linch DC (2003) Flt3 mutations and leukaemia. Br J Haematol 122(4):523–538PubMedGoogle Scholar
  102. 102.
    Wagner K, Damm F, Thol F, Gohring G, Gorlich K, Heuser M, Schafer I, Schlegelberger B, Heil G, Ganser A, Krauter J (2011) FLT3-internal tandem duplication and age are the major prognostic factors in relapsed acute myeloid leukemia with normal karyotype. Haematologica 96(5):681–686PubMedGoogle Scholar
  103. 103.
    Rau R, Brown P (2009) Nucleophosmin (NPM1) mutations in adult and childhood acute myeloid leukaemia: towards definition of a new leukaemia entity. Hematol Oncol 27(4):171–181PubMedGoogle Scholar
  104. 104.
    Falini B, Nicoletti I, Martelli MF, Mecucci C (2007) Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc + AML): biologic and clinical features. Blood 109(3):874–885PubMedGoogle Scholar
  105. 105.
    Falini B, Martelli MP, Bolli N, Sportoletti P, Liso A, Tiacci E, Haferlach T (2011) Acute myeloid leukemia with mutated nucleophosmin (NPM1): is it a distinct entity? Blood 117(4):1109–1120PubMedGoogle Scholar
  106. 106.
    Schlenk RF, Dohner K, Krauter J, Frohling S, Corbacioglu A, Bullinger L, Habdank M, Spath D, Morgan M, Benner A, Schlegelberger B, Heil G, Ganser A, Dohner H (2008) Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med 358(18):1909–1918PubMedGoogle Scholar
  107. 107.
    Falini B, Sportoletti P, Martelli MP (2009) Acute myeloid leukemia with mutated NPM1: diagnosis, prognosis and therapeutic perspectives. Curr Opin Oncol 21(6):573–581PubMedGoogle Scholar
  108. 108.
    Gale RE, Green C, Allen C, Mead AJ, Burnett AK, Hills RK, Linch DC (2008) The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood 111(5):2776–2784PubMedGoogle Scholar
  109. 109.
    Falini B, Lenze D, Hasserjian R, Coupland S, Jaehne D, Soupir C, Liso A, Martelli MP, Bolli N, Bacci F, Pettirossi V, Santucci A, Martelli MF, Pileri S, Stein H (2007) Cytoplasmic mutated nucleophosmin (NPM) defines the molecular status of a significant fraction of myeloid sarcomas. Leukemia 21(7):1566–1570PubMedGoogle Scholar
  110. 110.
    Marcucci G, Maharry K, Radmacher MD, Mrozek K, Vukosavljevic T, Paschka P, Whitman SP, Langer C, Baldus CD, Liu CG, Ruppert AS, Powell BL, Carroll AJ, Caligiuri MA, Kolitz JE, Larson RA, Bloomfield CD (2008) Prognostic significance of, and gene and microRNA expression signatures associated with, CEBPA mutations in cytogenetically normal acute myeloid leukemia with high-risk molecular features: a Cancer and Leukemia Group B Study. J Clin Oncol 26(31):5078–5087PubMedGoogle Scholar
  111. 111.
    Cairoli R, Beghini A, Grillo G, Nadali G, Elice F, Ripamonti CB, Colapietro P, Nichelatti M, Pezzetti L, Lunghi M, Cuneo A, Viola A, Ferrara F, Lazzarino M, Rodeghiero F, Pizzolo G, Larizza L, Morra E (2006) Prognostic impact of c-KIT mutations in core binding factor leukemias: an Italian retrospective study. Blood 107(9):3463–3468PubMedGoogle Scholar
  112. 112.
    Paschka P, Marcucci G, Ruppert AS, Whitman SP, Mrozek K, Maharry K, Langer C, Baldus CD, Zhao W, Powell BL, Baer MR, Carroll AJ, Caligiuri MA, Kolitz JE, Larson RA, Bloomfield CD (2008) Wilms’ tumor 1 gene mutations independently predict poor outcome in adults with cytogenetically normal acute myeloid leukemia: a cancer and leukemia group B study. J Clin Oncol 26(28):4595–4602PubMedGoogle Scholar
  113. 113.
    Meyer C, Kowarz E, Hofmann J, Renneville A, Zuna J, Trka J, Ben Abdelali R, Macintyre E, De Braekeleer E, De Braekeleer M, Delabesse E, de Oliveira MP, Cave H, Clappier E, van Dongen JJ, Balgobind BV, van den Heuvel-Eibrink MM, Beverloo HB, Panzer-Grumayer R, Teigler-Schlegel A, Harbott J, Kjeldsen E, Schnittger S, Koehl U, Gruhn B, Heidenreich O, Chan LC, Yip SF, Krzywinski M, Eckert C, Moricke A, Schrappe M, Alonso CN, Schafer BW, Krauter J, Lee DA, Zur Stadt U, Te Kronnie G, Sutton R, Izraeli S, Trakhtenbrot L, Lo Nigro L, Tsaur G, Fechina L, Szczepanski T, Strehl S, Ilencikova D, Molkentin M, Burmeister T, Dingermann T, Klingebiel T, Marschalek R (2009) New insights to the MLL recombinome of acute leukemias. Leukemia 23(8):1490–1499PubMedGoogle Scholar
  114. 114.
    Whitman SP, Liu S, Vukosavljevic T, Rush LJ, Yu L, Liu C, Klisovic MI, Maharry K, Guimond M, Strout MP, Becknell B, Dorrance A, Klisovic RB, Plass C, Bloomfield CD, Marcucci G, Caligiuri MA (2005) The MLL partial tandem duplication: evidence for recessive gain-of-function in acute myeloid leukemia identifies a novel patient subgroup for molecular-targeted therapy. Blood 106(1):345–352PubMedGoogle Scholar
  115. 115.
    Naghashpour M, Lancet J, Moscinski L, Zhang L (2011) Mixed phenotype acute leukemia with t(11;19)(q23;p13.3)/MLL-MLLT1(ENL), B/T-lymphoid type: a first case report. Am J Hematol 85(6):451–454Google Scholar
  116. 116.
    Neubauer A, Maharry K, Mrozek K, Thiede C, Marcucci G, Paschka P, Mayer RJ, Larson RA, Liu ET, Bloomfield CD (2008) Patients with acute myeloid leukemia and RAS mutations benefit most from postremission high-dose cytarabine: a Cancer and Leukemia Group B study. J Clin Oncol 26(28):4603–4609PubMedGoogle Scholar
  117. 117.
    Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, van Waalwijk B, van Doorn-Khosrovani S, Boer JM, Beverloo HB, Moorhouse MJ, van der Spek PJ, Lowenberg B, Delwel R (2004) Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 350(16):1617–1628PubMedGoogle Scholar
  118. 118.
    Bacher U, Kohlmann A, Haferlach T (2009) Current status of gene expression profiling in the diagnosis and management of acute leukaemia. Br J Haematol 145(5):555–568PubMedGoogle Scholar
  119. 119.
    Marcucci G, Radmacher MD, Maharry K, Mrozek K, Ruppert AS, Paschka P, Vukosavljevic T, Whitman SP, Baldus CD, Langer C, Liu CG, Carroll AJ, Powell BL, Garzon R, Croce CM, Kolitz JE, Caligiuri MA, Larson RA, Bloomfield CD (2008) MicroRNA expression in cytogenetically normal acute myeloid leukemia. N Engl J Med 358(18):1919–1928PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Hematopathology and Laboratory MedicineH. Lee Moffitt Cancer Center & Research InstituteTampaUSA
  2. 2.Department of Pathology and Cell Biology, College of MedicineUniversity of South FloridaTampaUSA

Personalised recommendations