Skip to main content

Molecular Pathology and Diagnostics of Cutaneous Malignancy

  • Chapter
  • First Online:
Molecular Pathology and Diagnostics of Cancer

Part of the book series: Cancer Growth and Progression ((CAGP,volume 16))

  • 2704 Accesses

Abstract

Advances and discoveries in molecular genetics over the past decade have literally changed the face of diagnosis and treatment decisions for patients with melanoma and non-melanoma skin cancer. These include genetic analysis of skin biopsies as a diagnostic aid, genotyping of tumors from patients with malignant melanoma for personalized treatment of metastatic disease, and discovery of a new virus thought to play a role in the pathogenesis of Merkel cell carcinoma. Initiated by the discovery of a familial cancer gene in patients with familial melanoma and atypical nevi over three decades ago, molecular pathology techniques now play a central role in genetic testing for melanoma risk, in evaluation of melanocytic proliferations with uncertain biologic potential, and in stratifying patients with metastatic melanoma for treatment with targeted therapeutic agents, driving the search for better markers of prognosis and response to therapy. Targeted therapy is now available for treatment of unresectable or metastatic basal cell carcinoma. It is likely that continual improvements in techniques for analyzing blood and fresh and archival tumor tissue will uncover the pathogenesis of skin tumors related and unrelated to sun exposure, spawn the development of vaccinations or chemopreventive agents for these tumors, and enable physicians to customize treatment based on unique patient and tumor characteristics. This chapter will highlight relevant information concerning the molecular pathogenesis of melanoma, basal and squamous cell carcinoma, and Merkel cell carcinoma. Sections on molecular techniques available for diagnosis, prognosis, and treatment selection, emphasizing melanoma where this is most highly developed, are included

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AE:

Aloe-emodin

ASIP:

Agouti signaling protein

BCC:

Basal cell carcinoma

CGH:

Comparative genomic hybridization

EGFR:

Epidermal growth factor receptor

ERK:

Extracellular signal-regulated kinase

FISH:

Fluorescent in situ hybridization

GST:

Glutathione S-transferase

GWASs:

Genome-wide association studies

Hh:

Hedgehog

MAPK:

Mitogen-activated protein kinase

MC1R:

Melanocortin 1 receptor

McPyV:

Merkel cell polyomavirus

MEK:

MAPK extracellular signal-regulated kinase

PCR:

Polymerase chain reaction

SCC:

Squamous cell carcinoma

SNP:

Single nucleotide polymorphism

UV:

Ultraviolet

References

  1. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–12

    PubMed  Google Scholar 

  2. National Cancer Institute Skin Cancer. http://www.cancer.gov/cancertopics/types/skin. Accessed 25 July 2013

  3. Gerami P, Jewell SS, Morrison LE, Blondin B, Schulz J, Ruffalo T, Matushek P 4th, Legator M, Jacobson K, Dalton SR, Charzan S, Kolaitis NA, Guitart J, Lertsbarapa T, Boone S, LeBoit PE, Bastian BC (2009) Fluorescence in situ hybridization (FISH) as an ancillary diagnostic tool in the diagnosis of melanoma. Am J Surg Pathol 33:1146–1156

    PubMed  Google Scholar 

  4. Troxel DB (2006) Medicolegal aspects of error in pathology. Arch Pathol Lab Med 130:617–619

    PubMed  Google Scholar 

  5. Brochez L, Verhaeghe E, Grosshans E, Haneke E, Piérard G, Ruiter D, Naeyaert JM (2002) Inter-observer variation in the histopathological diagnosis of clinically suspicious pigmented skin lesions. J Pathol 196:459–466

    PubMed  Google Scholar 

  6. Heenan PJ, Matz LR, Blackwell JB, Kelsall GR, Singh A, ten Seldam RE, Holman CD (1984) Inter-observer variation between pathologists in the classification of cutaneous malignant melanoma in Western Australia. Histopathology 8:717–729

    PubMed  CAS  Google Scholar 

  7. Shoo BA, Sagebiel RW, Kashani-Sabet M (2010) Discordance in the histopathologic diagnosis of melanoma at a melanoma referral center. J Am Acad Dermatol 62:751–756

    PubMed  Google Scholar 

  8. van Dijk MC, Aben KK, van Hees F, Klaasen A, Blokx WA, Kiemeney LA, Ruiter DJ (2008) Expert review remains important in the histopathological diagnosis of cutaneous melanocytic lesions. Histopathology 52:139–146

    PubMed  Google Scholar 

  9. Veenhuizen KC, De Wit PE, Mooi WJ, Scheffer E, Verbeek AL, Ruiter DJ (1997) Quality assessment by expert opinion in melanoma pathology: experience of the pathology panel of the Dutch Melanoma Working Party. J Pathol 182:266–272

    PubMed  CAS  Google Scholar 

  10. Barnhill RL, Argenyi ZB, From L, Glass LF, Maize JC, Mihm MC Jr, Rabkin MS, Ronan SG, White WL, Piepkorn M (1999) Atypical Spitz nevi/tumors: lack of consensus for diagnosis, discrimination from melanoma, and prediction of outcome. Hum Pathol 30:513–520

    PubMed  CAS  Google Scholar 

  11. Corona R, Mele A, Amini M, De Rosa G, Coppola G, Piccardi P, Fucci M, Pasquini P, Faraggiana T (1996) Interobserver variability on the histopathologic diagnosis of cutaneous melanoma and other pigmented skin lesions. J Clin Oncol 14:1218–1223

    PubMed  CAS  Google Scholar 

  12. Farmer ER, Gonin R, Hanna MP (1996) Discordance in the histopathologic diagnosis of melanoma and melanocytic nevi between expert pathologists. Hum Pathol 27:528–531

    PubMed  CAS  Google Scholar 

  13. Kempf W, Haeffner AC, Mueller B, Panizzon RG, Burg G (1998) Experts and gold standards in dermatopathology: qualitative and quantitative analysis of the self-assessment slide seminar at the 17th colloquium of the International Society of Dermatopathology. Am J Dermatopathol 20:478–482

    PubMed  CAS  Google Scholar 

  14. Lodha S, Saggar S, Celebi JT, Silvers DN (1994) Discordance in the histopathologic diagnosis of difficult melanocytic neoplasms in the clinical setting. J Cutan Pathol 35:349–352

    Google Scholar 

  15. Piepkorn MW, Barnhill RL, Cannon-Albright LA et al (1994) A multiobserver, population-based analysis of histologic dysplasia in melanocytic nevi. J Am Acad Dermatol 30(5 Pt 1):707–714

    PubMed  CAS  Google Scholar 

  16. Wechsler J, Bastuji-Garin S, Spatz A, Bailly C, Cribier B, Andrac-Meyer L, Vergier B, Fraitag S, Verola O, Wolkenstein P, French Cutaneous Cancerology Group (2002) Reliability of the histopathologic diagnosis of malignant melanoma in childhood. Arch Dermatol 138:625–628

    PubMed  Google Scholar 

  17. Yeh I, Bastian BC (2009) Genome-wide associations studies for melanoma and nevi. Pigment Cell Melanoma Res 22:527–528

    PubMed  Google Scholar 

  18. Calder KB, Morgan MB (2010) Carcinogenic pathway of malignant melanoma. In: Coppola D (ed) Mechanisms of oncogenesis, vol 12. Springer, Dordrecht, pp 149–157

    Google Scholar 

  19. Ibrahim N, Haluska FG (2009) Molecular pathogenesis of cutaneous melanocytic neoplasms. Annu Rev Pathol 4:551–579

    PubMed  CAS  Google Scholar 

  20. Meyle KD, Guldberg P (2009) Genetic risk factors for melanoma. Hum Genet 126:499–510

    PubMed  CAS  Google Scholar 

  21. Nelson AA, Tsao H (2009) Melanoma and genetics. Clin Dermatol 27:46–52

    PubMed  Google Scholar 

  22. Palmieri G, Capone M, Ascierto ML, Gentilcore G, Stroncek DF, Casula M, Sini MC, Palla M, Mozzillo N, Ascierto PA (2009) Main roads to melanoma. J Transl Med 7(86)

    Google Scholar 

  23. Sekulic A, Jr Haluska P, Miller AJ, Genebriera De Lamo J, Ejadi S, Pulido JS, Salomao DR, Thorland EC, Vile RG, Swanson DL, Pockaj BA, Laman SD, Pittelkow MR, Markovic SN, Melanoma Study Group of Mayo Clinic Cancer Center (2008) Malignant melanoma in the 21st century: the emerging molecular landscape. Mayo Clin Proc 83:825–846

    PubMed  CAS  Google Scholar 

  24. Bishop DT, Demenais F, Iles MM et al (2009) Genome-wide association study identifies three loci associated with melanoma risk. Nat Genet 41(8):920–925

    PubMed  CAS  Google Scholar 

  25. Han J, Kraft P, Nan H, Guo Q, Chen C, Qureshi A, Hankinson SE, Hu FB, Duffy DL, Zhao ZZ, Martin NG, Montgomery GW, Hayward NK, Thomas G, Hoover RN, Chanock S, Hunter DJ (2008) A genome-wide association study identifies novel alleles associated with hair color and skin pigmentation. PLoS Genet 4(5):e1000074

    PubMed  Google Scholar 

  26. Gudbjartsson DF, Sulem P, Stacey SN et al (2008) ASIP and TYR pigmentation variants associate with cutaneous melanoma and basal cell carcinoma. Nat Genet 40:886–891

    PubMed  CAS  Google Scholar 

  27. Falchi M, Bataille V, Hayward NK, Duffy DL, Bishop JA, Pastinen T, Cervino A, Zhao ZZ, Deloukas P, Soranzo N, Elder DE, Barrett JH, Martin NG, Bishop DT, Montgomery GW, Spector TD (2009) Genome-wide association study identifies variants at 9p21 and 22q13 associated with development of cutaneous nevi. Nat Genet 41(8):915–919

    PubMed  CAS  Google Scholar 

  28. Bataille V, Bishop JA, Sasieni P, Swerdlow AJ, Pinney E, Griffiths K, Cuzick J (1996) Risk of cutaneous melanoma in relation to the numbers, types and sites of naevi: a case-control study. Br J Cancer 73:1605–1611

    PubMed  CAS  Google Scholar 

  29. Chang YM, Newton-Bishop JA, Bishop DT, Armstrong BK, Bataille V, Bergman W, Berwick M, Bracci PM, Elwood JM, Ernstoff MS, Green AC, Gruis NA, Holly EA, Ingvar C, Kanetsky PA, Karagas MR, Le Marchand L, Mackie RM, Olsson H, Østerlind A, Rebbeck TR, Reich K, Sasieni P, Siskind V, Swerdlow AJ, Titus-Ernstoff L, Zens MS, Ziegler A, Barrett JH (2009) A pooled analysis of melanocytic nevus phenotype and the risk of cutaneous melanoma at different latitudes. Int J Cancer 124:420–428

    PubMed  CAS  Google Scholar 

  30. Hansson J (2008) Familial melanoma. Surg Clin North Am 88:897–916, viii

    PubMed  Google Scholar 

  31. Platz A, Ringborg U, Hansson J (2000) Hereditary cutaneous melanoma. Semin Cancer Biol 10:319–326

    PubMed  CAS  Google Scholar 

  32. Smalley KS (2010) Understanding melanoma signaling networks as the basis for molecular targeted therapy. J Invest Dermatol 130:28–37

    PubMed  CAS  Google Scholar 

  33. Kong Y, Kumar SM, Xu X (2010) Molecular pathogenesis of sporadic melanoma and melanoma-initiating cells. Arch Pathol Lab Med 134:1740–1749

    PubMed  CAS  Google Scholar 

  34. Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM, Moses TY, Hostetter G, Wagner U, Kakareka J, Salem G, Pohida T, Heenan P, Duray P, Kallioniemi O, Hayward NK, Trent JM, Meltzer PS (2003) High frequency of BRAF mutations in nevi. Nat Genet 33:19–20

    PubMed  CAS  Google Scholar 

  35. Puzanov I, Flaherty KT (2010) Targeted molecular therapy in melanoma. Semin Cutan Med Surg 29:196–201

    PubMed  CAS  Google Scholar 

  36. Wan PT, Garnett MJ, Roe SM, Niculescu-Duvaz D, Good VM, Jones CM, Marshall CJ, Springer CJ, Barford D, Marais R, Cancer Genome Project (2004) Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116:855–867

    PubMed  CAS  Google Scholar 

  37. Benbow U, Tower GB, Wyatt CA, Buttice G, Brinckerhoff CE (2002) High levels of MMP-1 expression in the absence of the 2G single nucleotide polymorphism is mediated by p38 and ERK1/2 mitogen-activated protein kinases in VMM5 melanoma cells. J Cell Biochem 86:307–319

    PubMed  CAS  Google Scholar 

  38. Cartlidge RA, Thomas GR, Cagnol S, Jong KA, Molton SA, Finch AJ, McMahon M (2008) Oncogenic BRAF (V600E) inhibits BIM expression to promote melanoma cell survival. Pigment Cell Melanoma Res 21:534–544

    PubMed  CAS  Google Scholar 

  39. Eisenmann KM, VanBrocklin MW, Staffend NA, Kitchen SM, Koo HM (2003) Mitogen-activated protein kinase pathway-dependent tumor-specific survival signaling in melanoma cells through inactivation of the proapoptotic protein bad. Cancer Res 63:8330–8337

    PubMed  CAS  Google Scholar 

  40. Huntington JT, Shields JM, Der CJ, Wyatt CA, Benbow U, Slingluff CL Jr, Brinckerhoff CE (2004) Overexpression of collagenase 1 (MMP-1) is mediated by the ERK pathway in invasive melanoma cells: role of BRAF mutation and fibroblast growth factor signaling. J Biol Chem 279:33168–33176

    PubMed  CAS  Google Scholar 

  41. Kono M, Dunn IS, Durda PJ, Butera D, Rose LB, Haggerty TJ, Benson EM, Kurnick JT (2006) Role of the mitogen-activated protein kinase signaling pathway in the regulation of human melanocytic antigen expression. Mol Cancer Res 4:779–792

    PubMed  CAS  Google Scholar 

  42. Kumar SM, Yu H, Edwards R, Chen L, Kazianis S, Brafford P, Acs G, Herlyn M, Xu X (2007) Mutant V600E BRAF increases hypoxia inducible factor-1alpha expression in melanoma. Cancer Res 67:3177–3184

    PubMed  CAS  Google Scholar 

  43. Sharma A, Tran MA, Liang S, Sharma AK, Amin S, Smith CD, Dong C, Robertson GP (2006) Targeting mitogen-activated protein kinase/extracellular signal-regulated kinase kinase in the mutant (V600E) B-Raf signaling cascade effectively inhibits melanoma lung metastases. Cancer Res 66:8200–8209

    PubMed  CAS  Google Scholar 

  44. Sharma A, Trivedi NR, Zimmerman MA, Tuveson DA, Smith CD, Robertson GP (2005) Mutant V599EB-Raf regulates growth and vascular development of malignant melanoma tumors. Cancer Res 65:2412–2421

    PubMed  CAS  Google Scholar 

  45. Soengas MS, Lowe SW (2003) Apoptosis and melanoma chemoresistance. Oncogene 22:3138–3151

    PubMed  CAS  Google Scholar 

  46. Sumimoto H, Imabayashi F, Iwata T, Kawakami Y (2006) The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J Exp Med 203:1651–1656

    PubMed  CAS  Google Scholar 

  47. Woods D, Cherwinski H, Venetsanakos E, Bhat A, Gysin S, Humbert M, Bray PF, Saylor VL, McMahon M (2001) Induction of beta3-integrin gene expression by sustained activation of the Ras-regulated Raf-MEK-extracellular signal-regulated kinase signaling pathway. Mol Cell Biol 21:3192–3205

    PubMed  CAS  Google Scholar 

  48. Zhang XD, Borrow JM, Zhang XY, Nguyen T, Hersey P (2003) Activation of ERK1/2 protects melanoma cells from TRAIL-induced apoptosis by inhibiting Smac/DIABLO release from mitochondria. Oncogene 22:2869–2881

    PubMed  CAS  Google Scholar 

  49. Luke JJ, Hodi FS (2013) The oncologist 18:717–725

    PubMed  CAS  Google Scholar 

  50. Tsai J, Lee JT, Wang W et al (2008) Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc Natl Acad Sci U S A 105:3041–3046

    PubMed  CAS  Google Scholar 

  51. Koch WH (2004) Technology platforms for pharmacogenomic diagnostic assays. Nat Rev Drug Discov 3:749–761

    PubMed  CAS  Google Scholar 

  52. Busam KJ, Hedva C, Pulitzer M, von Deimling A, Jungbluth AA (2013) Am J Surg Pathol 37:413–420

    PubMed  Google Scholar 

  53. Viros A, Fridlyand J, Bauer J, Lasithiotakis K, Garbe C, Pinkel D, Bastian BC (2008) Improving melanoma classification by integrating genetic and morphologic features. PLoS Med 5(6):e120

    PubMed  Google Scholar 

  54. Yarden Y, Kuang WJ, Yang-Feng T, Coussens L, Munemitsu S, Dull TJ, Chen E, Schlessinger J (1987) Human proto-oncogene c-kit: a new cell surface receptor tyrosine kinase for an unidentified ligand. EMBO J 6:3341–3351

    PubMed  CAS  Google Scholar 

  55. Woodman SE, Davies MA (2010) Targeting KIT in melanoma: a paradigm of molecular medicine and targeted therapeutics. Biochem Pharmacol 80:568–574

    PubMed  CAS  Google Scholar 

  56. Flaherty KT, Hodi FS, Bastian BC (2010) Mutation-driven drug development in melanoma. Curr Opin Oncol 22:178–183

    PubMed  CAS  Google Scholar 

  57. Antonescu CR, Busam KJ, Francone TD, Wong GC, Guo T, Agaram NP, Besmer P, Jungbluth A, Gimbel M, Chen CT, Veach D, Clarkson BD, Paty PB, Weiser MR (2007) L576P KIT mutation in anal melanomas correlates with KIT protein expression and is sensitive to specific kinase inhibition. Int J Cancer 121:257–264

    PubMed  CAS  Google Scholar 

  58. Ashida A, Takata M, Murata H, Kido K, Saida T (2009) Pathological activation of KIT in metastatic tumors of acral and mucosal melanomas. Int J Cancer 124:862–868

    PubMed  CAS  Google Scholar 

  59. Beadling C, Jacobson-Dunlop E, Hodi FS, Le C, Warrick A, Patterson J, Town A, Harlow A, Cruz F 3rd, Azar S, Rubin BP, Muller S, West R, Heinrich MC, Corless CL (2008) KIT gene mutations and copy number in melanoma subtypes. Clin Cancer Res 14:6821–6828

    PubMed  CAS  Google Scholar 

  60. Curtin JA, Busam K, Pinkel D, Bastian BC (2006) Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol 24:4340–4346

    PubMed  CAS  Google Scholar 

  61. Rivera RS, Nagatsuka H, Gunduz M, Cengiz B, Gunduz E, Siar CH, Tsujigiwa H, Tamamura R, Han KN, Nagai N (2008) C-kit protein expression correlated with activating mutations in KIT gene in oral mucosal melanoma. Virchows Arch 452:27–32

    PubMed  CAS  Google Scholar 

  62. Smalley KS, Sondak VK, Weber JS (2009) c-KIT signaling as the driving oncogenic event in sub-groups of melanomas. Histol Histopathol 24:643–650

    PubMed  CAS  Google Scholar 

  63. Lennartsson J, Blume-Jensen P, Hermanson M, Ponten E, Carlberg M, Ronnstrand L (1999) Phosphorylation of Shc by Src family kinases is necessary for stem cell factor receptor/c-kit mediated activation of the Ras/MAP kinase pathway and c-fos induction. Oncogene 18:5546–5553

    PubMed  CAS  Google Scholar 

  64. Mol CD, Dougan DR, Schneider TR, Skene RJ, Kraus ML, Scheibe DN, Snell GP, Zou H, Sang BC, Wilson KP (2004) Structural basis for the autoinhibition and STI-571 inhibition of c-Kit tyrosine kinase. J Biol Chem 279:31655–31663

    PubMed  CAS  Google Scholar 

  65. Hodi FS, Friedlander P, Corless CL, Heinrich MC, Mac Rae S, Kruse A, Jagannathan J, Van den Abbeele AD, Velazquez EF, Demetri GD, Fisher DE (2008) Major response to imatinib mesylate in KIT-mutated melanoma. J Clin Oncol 26:2046–2051

    PubMed  CAS  Google Scholar 

  66. Lutzky J, Bauer J, Bastian BC (2008) Dose-dependent, complete response to imatinib of a metastatic mucosal melanoma with a K642E KIT mutation. Pigment Cell Melanoma Res 21:492–493

    PubMed  Google Scholar 

  67. Eton O, Billings L, Kim K et al (2004) Phase II trial of imatinib mesylate (STI-571) in metastatic melanoma (MM) [abstract]. J Clin Oncol 22(14S):7528

    Google Scholar 

  68. Platz A, Egyhazi S, Ringborg U, Hansson J (2008) Human cutaneous melanoma; a review of NRAS and BRAF mutation frequencies in relation to histogenetic subclass and body site. Mol Oncol 1:395–405

    PubMed  Google Scholar 

  69. Margolin KA, Moon J, Flaherty LE et al (2010) Randomized phase II trial of sorafenib (SO) with temsirolimus (TEM) or tipifarnib (TIPI) in metastatic melanoma: Southwest Oncology Group Trial S0438 [abstract]. J Clin Oncol 28(15s):7528

    Google Scholar 

  70. Kaplan FM, Shao Y, Mayberry MM, Aplin AE (2011) Hyperactivation of MEK-ERK1/2 signaling and resistance to apoptosis induced by the oncogenic B-RAF inhibitor, PLX4720, in mutant N-RAS melanoma cells. Oncogene 30:366–371

    PubMed  CAS  Google Scholar 

  71. Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H, Chen Z, Lee MK, Attar N, Sazegar H, Chodon T, Nelson SF, McArthur G, Sosman JA, Ribas A, Lo RS (2010) Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468:973–977

    PubMed  CAS  Google Scholar 

  72. Koprowski H, Herlyn M, Balaban G, Parmiter A, Ross A, Nowell P (1985) Expression of the receptor for epidermal growth factor correlates with increased dosage of chromosome 7 in malignant melanoma. Somat Cell Mol Genet 11:297–302

    PubMed  CAS  Google Scholar 

  73. Rakosy Z, Vizkeleti L, Ecsedi S et al (2007) EGFR gene copy number alterations in primary cutaneous malignant melanomas are associated with poor prognosis. Int J Cancer 121(8):1729–1737

    PubMed  CAS  Google Scholar 

  74. Bastian BC, Olshen AB, LeBoit PE, Pinkel D (2003) Classifying melanocytic tumors based on DNA copy number changes. Am J Pathol 163(5):1765–1770

    PubMed  CAS  Google Scholar 

  75. Bastian BC, LeBoit PE, Hamm H, Brocker EB, Pinkel D (1998) Chromosomal gains and losses in primary cutaneous melanomas detected by comparative genomic hybridization. Cancer Res 58:2170–2175

    PubMed  CAS  Google Scholar 

  76. Balazs M, Adam Z, Treszl A, Begany A, Hunyadi J, Adany R (2001) Chromosomal imbalances in primary and metastatic melanomas revealed by comparative genomic hybridization. Cytometry 46:222–232

    PubMed  CAS  Google Scholar 

  77. Namiki T, Yanagawa S, Izumo T, Ishikawa M, Tachibana M, Kawakami Y, Yokozeki H, Nishioka K, Kaneko Y (2005) Genomic alterations in primary cutaneous melanomas detected by metaphase comparative genomic hybridization with laser capture or manual microdissection: 6p gains may predict poor outcome. Cancer Genet Cytogenet 157(1):1–11

    PubMed  CAS  Google Scholar 

  78. Bastian BC, Xiong J, Frieden IJ, Williams ML, Chou P, Busam K, Pinkel D, LeBoit PE (2002) Genetic changes in neoplasms arising in congenital melanocytic nevi: differences between nodular proliferations and melanomas. Am J Pathol 161:1163–1169

    PubMed  CAS  Google Scholar 

  79. Bastian BC, Wesselmann U, Pinkel D, Leboit PE (1999) Molecular cytogenetic analysis of Spitz nevi shows clear differences to melanoma. J Invest Dermatol 113:1065–1069

    PubMed  CAS  Google Scholar 

  80. Bastian BC (2003) Understanding the progression of melanocytic neoplasia using genomic analysis: from fields to cancer. Oncogene 22:3081–3086

    PubMed  CAS  Google Scholar 

  81. Bastian BC, Kashani-Sabet M, Hamm H, Godfrey T, Moore DH 2nd, Bröcker EB, LeBoit PE, Pinkel D (2000) Gene amplifications characterize acral melanoma and permit the detection of occult tumor cells in the surrounding skin. Cancer Res 60:1968–1973

    PubMed  CAS  Google Scholar 

  82. Morey AL, Murali R, McCarthy SW, Mann GJ, Scolyer RA (2009) Diagnosis of cutaneous melanocytic tumours by four-colour fluorescence in situ hybridisation. Pathology 41:383–387

    PubMed  CAS  Google Scholar 

  83. Gaiser T, Kutzner H, Palmedo G, Siegelin MD, Wiesner T, Bruckner T, Hartschuh W, Enk AH, Becker MR (2010) Classifying ambiguous melanocytic lesions with FISH and correlation with clinical long-term follow up. Mod Pathol 23:413–419

    PubMed  CAS  Google Scholar 

  84. Vergier B, Prochazkova-Carlotti M, de la Fouchardiere A, Cerroni L, Massi D, De Giorgi V, Bailly C, Wesselmann U, Karlseladze A, Avril MF, Jouary T, Merlio JP (2011) Fluorescence in situ hybridization, a diagnostic aid in ambiguous melanocytic tumors: European study of 113 cases. Mod Pathol 24:613–623

    PubMed  CAS  Google Scholar 

  85. Gerami P, Wass A, Mafee M, Fang Y, Pulitzer MP, Busam KJ (2009) Fluorescence in situ hybridization for distinguishing nevoid melanomas from mitotically active nevi. Am J Surg Pathol 33:1783–1788

    PubMed  Google Scholar 

  86. Pouryazdanparast P, Newman M, Mafee M, Haghighat Z, Guitart J, Gerami P (2009) Distinguishing epithelioid blue nevus from blue nevus-like cutaneous melanoma metastasis using fluorescence in situ hybridization. Am J Surg Pathol 33:1396–1400

    PubMed  Google Scholar 

  87. Dalton SR, Gerami P, Kolaitis NA, Charzan S, Werling R, LeBoit PE, Bastian BC (2010) Use of fluorescence in situ hybridization (FISH) to distinguish intranodal nevus from metastatic melanoma. Am J Surg Pathol 34:231–237

    PubMed  Google Scholar 

  88. Gerami P, Barnhill RL, Beilfuss BA, LeBoit P, Schneider P, Guitart J (2010) Superficial melanocytic neoplasms with pagetoid melanocytosis: a study of interobserver concordance and correlation with FISH. Am J Surg Pathol 34:816–821

    PubMed  Google Scholar 

  89. Newman MD, Lertsburapa T, Mirzabeigi M, Mafee M, Guitart J, Gerami P (2009) Fluorescence in situ hybridization as a tool for microstaging in malignant melanoma. Mod Pathol 22:989–995

    PubMed  CAS  Google Scholar 

  90. Gould Rothberg BE, Bracken MB, Rimm DL (2009) Tissue biomarkers for prognosis in cutaneous melanoma: a systematic review and meta-analysis. J Natl Cancer Inst 101:452–474

    PubMed  Google Scholar 

  91. Gould Rothberg BE, Rimm DL (2010) Biomarkers: the useful and the not so useful – an assessment of molecular prognostic markers for cutaneous melanoma. J Invest Dermatol 130:1971–1987

    PubMed  CAS  Google Scholar 

  92. Gimotty PA, Guerry D (2010) Prognostication in thin cutaneous melanomas. Arch Pathol Lab Med 134:1758–1763

    PubMed  Google Scholar 

  93. Denicourt C, Saenz CC, Datnow B, Cui XS, Dowdy SF (2007) Relocalized p27Kip1 tumor suppressor functions as a cytoplasmic metastatic oncogene in melanoma. Cancer Res 67:9238–9243

    PubMed  CAS  Google Scholar 

  94. Briese J, Schulte HM, Bamberger CM, Loning T, Bamberger AM (2006) Expression pattern of osteopontin in endometrial carcinoma: correlation with expression of the adhesion molecule CEACAM1. Int J Gynecol Pathol 25:161–169

    PubMed  Google Scholar 

  95. Gavert N, Sheffer M, Raveh S, Spaderna S, Shtutman M, Brabletz T, Barany F, Paty P, Notterman D, Domany E, Ben-Ze’ev A (2007) Expression of L1-CAM and ADAM10 in human colon cancer cells induces metastasis. Cancer Res 67:7703–7712

    PubMed  CAS  Google Scholar 

  96. Thies A, Moll I, Berger J, Wagener C, Brümmer J, Schulze HJ, Brunner G, Schumacher U (2002) CEACAM1 expression in cutaneous malignant melanoma predicts the development of metastatic disease. J Clin Oncol 20:2530–2536

    PubMed  CAS  Google Scholar 

  97. Watson-Hurst K, Becker D (2006) The role of N-cadherin, MCAM and beta3 integrin in melanoma progression, proliferation, migration and invasion. Cancer Biol Ther 5:1375–1382

    PubMed  CAS  Google Scholar 

  98. Bornstein P, Sage EH (2002) Matricellular proteins: extracellular modulators of cell function. Curr Opin Cell Biol 14:608–616

    PubMed  CAS  Google Scholar 

  99. Dessinioti C, Antoniou C, Katsambas A, Stratigos AJ (2010) Basal cell carcinoma: what’s new under the sun. Photochem Photobiol 86:481–491

    PubMed  CAS  Google Scholar 

  100. Gallagher RP, Hill GB, Bajdik CD, Fincham S, Coldman AJ, McLean DI, Threlfall WJ (1995) Sunlight exposure, pigmentary factors, and risk of nonmelanocytic skin cancer. I. Basal cell carcinoma. Arch Dermatol 131:157–163

    PubMed  CAS  Google Scholar 

  101. Miller SJ (1991) Biology of basal cell carcinoma (Part I). J Am Acad Dermatol 24:1–13

    PubMed  CAS  Google Scholar 

  102. Oberyszyn TM (2008) Non-melanoma skin cancer: importance of gender, immunosuppressive status and vitamin D. Cancer Lett 261:127–136

    PubMed  CAS  Google Scholar 

  103. Epstein EH (2008) Basal cell carcinomas: attack of the hedgehog. Nat Rev Cancer 8:743–754

    PubMed  CAS  Google Scholar 

  104. Bodak N, Queille S, Avril MF, Bouadjar B, Drougard C, Sarasin A, Daya-Grosjean L (1999) High levels of patched gene mutations in basal-cell carcinomas from patients with xeroderma pigmentosum. Proc Natl Acad Sci U S A 96:5117–5122

    PubMed  CAS  Google Scholar 

  105. Tilli CM, Van Steensel MA, Krekels GA, Neumann HA, Ramaekers FC (2005) Molecular aetiology and pathogenesis of basal cell carcinoma. Br J Dermatol 152:1108–1124

    PubMed  CAS  Google Scholar 

  106. Hanada K, Ishikawa H, Tamai K, Hashimoto I, Sato K (1991) Expression of glutathione S-transferase-pi in malignant skin tumors. J Dermatol Sci 2:18–23

    PubMed  CAS  Google Scholar 

  107. Saldanha G, Fletcher A, Slater DN (2003) Basal cell carcinoma: a dermatopathological and molecular biological update. Br J Dermatol 148:195–202

    PubMed  CAS  Google Scholar 

  108. Reifenberger J, Wolter M, Knobbe CB, Köhler B, Schönicke A, Scharwächter C, Kumar K, Blaschke B, Ruzicka T, Reifenberger G (2005) Somatic mutations in the PTCH, SMOH, SUFUH and TP53 genes in sporadic basal cell carcinomas. Br J Dermatol 152:43–51

    PubMed  CAS  Google Scholar 

  109. Lindstrom E, Shimokawa T, Toftgard R, Zaphiropoulos PG (2006) PTCH mutations: distribution and analyses. Hum Mutat 27:215–219

    PubMed  CAS  Google Scholar 

  110. Peukert S, Miller-Moslin K (2010) Small-molecule inhibitors of the hedgehog signaling pathway as cancer therapeutics. ChemMedChem 5:500–512

    PubMed  CAS  Google Scholar 

  111. O’Driscoll L, McMorrow J, Doolan P, McKiernan E, Mehta JP, Ryan E, Gammell P, Joyce H, O’Donovan N, Walsh N, Clynes M (2006) Investigation of the molecular profile of basal cell carcinoma using whole genome microarrays. Mol Cancer 5:74

    PubMed  Google Scholar 

  112. Hatta N, Hirano T, Kimura T, Hashimoto K, Mehregan DR, Ansai S, Takehara K, Takata M (2005) Molecular diagnosis of basal cell carcinoma and other basaloid cell neoplasms of the skin by the quantification of Gli1 transcript levels. J Cutan Pathol 32:131–136

    PubMed  Google Scholar 

  113. Jimeno A, Feldmann G, Suarez-Gauthier A, Rasheed Z, Solomon A, Zou GM, Rubio-Viqueira B, García-García E, López-Ríos F, Matsui W, Maitra A, Hidalgo M (2009) A direct pancreatic cancer xenograft model as a platform for cancer stem cell therapeutic development. Mol Cancer Ther 8:310–314

    PubMed  CAS  Google Scholar 

  114. Mueller MT, Hermann PC, Witthauer J, Rubio-Viqueira B, Leicht SF, Huber S, Ellwart JW, Mustafa M, Bartenstein P, D’Haese JG, Schoenberg MH, Berger F, Jauch KW, Hidalgo M, Heeschen C (2009) Combined targeted treatment to eliminate tumorigenic cancer stem cells in human pancreatic cancer. Gastroenterology 137:1102–1113

    PubMed  CAS  Google Scholar 

  115. Von Hoff DD, LoRusso PM, Rudin CM, Reddy JC, Yauch RL, Tibes R, Weiss GJ, Borad MJ, Hann CL, Brahmer JR, Mackey HM, Lum BL, Darbonne WC, Marsters JC Jr, de Sauvage FJ, Low JA (2009) Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N Engl J Med 361:1164–1172

    Google Scholar 

  116. Dose finding and safety of oral LDE225 in patients with advanced solid tumors 2010. http://clinicaltrials.gov/ct2/show/NCT00880308. Accessed 25 July 2013

  117. Hosoya T, Arai MA, Koyano T, Kowithayakorn T, Ishibashi M (2008) Naturally occurring small-molecule inhibitors of hedgehog/GLI-mediated transcription. Chembiochem 9:1082–1092

    PubMed  CAS  Google Scholar 

  118. Mahindroo N, Connelly MC, Punchihewa C, Kimura H, Smeltzer MP, Wu S, Fujii N (2009) Structure-activity relationships and cancer-cell selective toxicity of novel inhibitors of glioma-associated oncogene homologue 1 (Gli1) mediated transcription. J Med Chem 52:4277–4287

    PubMed  CAS  Google Scholar 

  119. Lacour JP (2002) Carcinogenesis of basal cell carcinomas: genetics and molecular mechanisms. Br J Dermatol 146(Suppl 61):17–19

    PubMed  CAS  Google Scholar 

  120. Hussein MR (2005) Ultraviolet radiation and skin cancer: molecular mechanisms. J Cutan Pathol 32:191–205

    PubMed  Google Scholar 

  121. Howell BG, Solish N, Lu C, Watanabe H, Mamelak AJ, Freed I, Wang B, Sauder DN (2005) Microarray profiles of human basal cell carcinoma: insights into tumor growth and behavior. J Dermatol Sci 39(1):39–51

    PubMed  CAS  Google Scholar 

  122. Boukamp P (2005) Non-melanoma skin cancer: what drives tumor development and progression? Carcinogenesis 26:1657–1667

    PubMed  CAS  Google Scholar 

  123. Lazar AJF, Murphy GF (2010) The skin. In: Kumar VM, Abul K, Abbas M, Nelson Fausto M, Jon C, Aster M (eds) Robbins and Cotran pathologic basis of disease, 8th edn. Elsevier, Philadelphia, pp 1178–1181

    Google Scholar 

  124. Harwood CA, Proby CM (2002) Human papillomaviruses and non-melanoma skin cancer. Curr Opin Infect Dis 15:101–114

    PubMed  Google Scholar 

  125. Rubin AI, Chen EH, Ratner D (2005) Basal-cell carcinoma. N Engl J Med 353:2262–2269

    PubMed  CAS  Google Scholar 

  126. Benjamin CL, Melnikova VO, Ananthaswamy HN (2008) P53 protein and pathogenesis of melanoma and nonmelanoma skin cancer. Adv Exp Med Biol 624:265–282

    PubMed  CAS  Google Scholar 

  127. Owens DM (2007) p53, chemokines, and squamous cell carcinoma. J Clin Invest 117:1752–1755

    PubMed  CAS  Google Scholar 

  128. Jensen V, Prasad AR, Smith A, Raju M, Wendel CS, Schmelz M, Leyva W, Warneke J, Krouse RS (2010) Prognostic criteria for squamous cell cancer of the skin. J Surg Res 159:509–516

    PubMed  CAS  Google Scholar 

  129. Meyer T, Arndt R, Christophers E, Nindl I, Stockfleth E (2001) Importance of human papillomaviruses for the development of skin cancer. Cancer Detect Prev 25:533–547

    PubMed  CAS  Google Scholar 

  130. Ke H, Harris R, Coloff JL, Jin JY, Leshin B, Miliani de Marval P, Tao S, Rathmell JC, Hall RP, Zhang JY (2010) The c-Jun NH2-terminal kinase 2 plays a dominant role in human epidermal neoplasia. Cancer Res 70:3080–3088

    PubMed  CAS  Google Scholar 

  131. Chakraborty S, Swanson BJ, Bonthu N, Batra SK (2010) Aberrant upregulation of MUC4 mucin expression in cutaneous condyloma acuminatum and squamous cell carcinoma suggests a potential role in the diagnosis and therapy of skin diseases. J Clin Pathol 63:579–584

    PubMed  Google Scholar 

  132. Chou TH, Liang CH (2009) The molecular effects of aloe-emodin (AE)/liposome-AE on human nonmelanoma skin cancer cells and skin permeation. Chem Res Toxicol 22:2017–2028

    PubMed  CAS  Google Scholar 

  133. Feng H, Shuda M, Chang Y, Moore PS (2008) Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 319:1096–1100

    PubMed  CAS  Google Scholar 

  134. Shuda M, Feng H, Kwun HJ, Chang Y, Moore PS (2008) T antigen mutations are a human tumor-specific signature for Merkel cell polyomavirus. Proc Natl Acad Sci U S A 105:16272–16277

    PubMed  CAS  Google Scholar 

  135. Bhatia K, Goedert JJ, Modali R, Preiss L, Ayers LW (2010) Merkel cell carcinoma subgroups by Merkel cell polyomavirus DNA relative abundance and oncogene expression. Int J Cancer 126(9):2240–2246

    PubMed  CAS  Google Scholar 

  136. Sihto H, Kukko H, Koljonen V, Sankila R, Bohling T, Joensuu H (2009) Clinical factors associated with Merkel cell polyomavirus infection in Merkel cell carcinoma. J Natl Cancer Inst 101:938–945

    PubMed  CAS  Google Scholar 

  137. Garneski KM, Warcola AH, Feng Q, Kiviat NB, Leonard JH, Nghiem P (2009) Merkel cell polyomavirus is more frequently present in North American than Australian Merkel cell carcinoma tumors. J Invest Dermatol 129:246–248

    PubMed  CAS  Google Scholar 

  138. Becker JC, Houben R, Ugurel S, Trefzer U, Pfohler C, Schrama D (2009) MC polyomavirus is frequently present in Merkel cell carcinoma of European patients. J Invest Dermatol 129:248–250

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane L. Messina M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gaudi, S., McNab, P.M., McCardle, T.W., Messina, J.L. (2014). Molecular Pathology and Diagnostics of Cutaneous Malignancy. In: Coppola, D. (eds) Molecular Pathology and Diagnostics of Cancer. Cancer Growth and Progression, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7192-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7192-5_16

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7191-8

  • Online ISBN: 978-94-007-7192-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics