Advertisement

Molecular Pathology and Diagnostics of Pancreatic Endocrine Neoplasms

  • Aejaz NasirEmail author
  • Jonathan R. Strosberg
  • Larry K. Kvols
  • Jalil Muhammad
  • Nelly A. Nasir
  • Omie Mills
  • Domenico Coppola
Chapter
  • 2.4k Downloads
Part of the Cancer Growth and Progression book series (CAGP, volume 16)

Abstract

Pancreatic Endocrine Neoplasms (PENs) are a group of rare tumors thought to arise from the endocrine cells of the pancreas. These tumors may be functional (hormone producing), or non functional. They have a wide range of presenting symptoms. Recent research efforts have shown the complex biology of these tumors, and have started to uncover the molecular alterations responsible for the genesis of these neoplasms. In this chapter we give an overview of the molecular tests available to detect such alterations, and of their diagnostic and prognostic significance.

Keywords

Pancreatic endocrine neoplasms Pancreatic endocrine tumors/carcinomas Classifications of PENS Molecular genetic Islets of Langerhans 

Abbreviations

AP1

Activator protein-1

bFGF

Basic fibroblast growth factor

CLP-PET

Clinically localized pancreatic endocrine tumors

CPGs

Candidate progression genes

EFR1

Estrogen receptor gene

FHIT

Fragile histidine triad

hMLH1

Human MutL homologue

IGF

Insulin-like growth factor

IGFBP-3

Insulin-like growth factor binding protein 3

IHC

Immunohistochemistry

LOH

Loss of heterozygosity

MAG

Metastasis-associated gene

MECC

Monohormonal endocrine cell clusters

MEN1

Multiple endocrine neoplasia type 1

MP

Metastatic primary

mTOR

Mammalian target of rapamycin

NF1

Neuofibromatosis type 1

NGF

Nerve growth factor

PECAs

Pancreatic endocrine carcinomas

PENS

Pancreatic endocrine neoplasm

PETs

Pancreatic endocrine tumors

PRAD-1

Parathyroid adenoma-related protein

SDHD

Succinate dehydrogenase subunit D

SST

Somatostatin

SSTRs

G-protein-coupled transmembrane receptors

TGF

Transforming growth factor

TSC1, TSC2

Tuberous sclerosis genes 1 & 2

VHL

von Hippel-Lindau genes

Notes

Acknowledgments

The authors would like to acknowledge the excellent support from Brenda Barrow and Rasa Hamilton of Moffitt Cancer Center, Tampa, FL, USA.

References

  1. 1.
    Ballian N, Hu M, Liu SH, Brunicardi FC (2007) Proliferation, hyperplasia, neogenesis, and neoplasia in the islets of Langerhans. Pancreas 35(3):199–206PubMedGoogle Scholar
  2. 2.
    Pour PM, Pandey KK, Batra SK (2003) What is the origin of pancreatic adenocarcinoma? Mol Cancer 2:13PubMedGoogle Scholar
  3. 3.
    Schmied BM, Ulrich AB, Friess H, Buchler MW, Pour PM (2001) The patterns of extrainsular endocrine cells in pancreatic cancer. Teratog Carcinog Mutagen 21(1):69–81PubMedGoogle Scholar
  4. 4.
    Grube D, Bohn R (1983) The microanatomy of human islets of Langerhans, with special reference to somatostatin (D-) cells. Arch Histol Jpn 46(3):327–353PubMedGoogle Scholar
  5. 5.
    Mittendorf EA, Shifrin AL, Inabnet WB, Libutti SK, McHenry CR, Demeure MJ (2006) Islet cell tumors. Curr Probl Surg 43(10):685–765PubMedGoogle Scholar
  6. 6.
    Rindi G, Capella C, Solcia E (2000) Introduction to a revised clinicopathological classification of neuroendocrine tumors of the gastroenteropancreatic tract. Q J Nucl Med 44(1):13–21PubMedGoogle Scholar
  7. 7.
    Goldin SB, Aston J, Wahi MM (2008) Sporadically occurring functional pancreatic endocrine tumors: review of recent literature. Curr Opin Oncol 20(1):25–33PubMedGoogle Scholar
  8. 8.
    Halfdanarson TR, Rubin J, Farnell MB, Grant CS, Petersen GM (2008) Pancreatic endocrine neoplasms: epidemiology and prognosis of pancreatic endocrine tumors. Endocr Relat Cancer 15(2):409–427PubMedGoogle Scholar
  9. 9.
    Tomassetti P, Campana D, Piscitelli L, Casadei R, Santini D, Nori F et al (2005) Endocrine pancreatic tumors: factors correlated with survival. Ann Oncol 16(11):1806–1810PubMedGoogle Scholar
  10. 10.
    Heitz P, Komminoth P, Perren A, Klimstra D, Dayal Y, Bordi C et al (2004) Tumors of the endocrine pancreas. IARC Press, LyonGoogle Scholar
  11. 11.
    Heymann MF, Joubert M, Nemeth J, Franc B, Visset J, Hamy A et al (2000) Prognostic and immunohistochemical validation of the capella classification of pancreatic neuroendocrine tumours: an analysis of 82 sporadic cases. Histopathology 36(5):421–432PubMedGoogle Scholar
  12. 12.
    Calender A (2000) Molecular genetics of neuroendocrine tumors. Digestion 62(Suppl 1):3–18PubMedGoogle Scholar
  13. 13.
    Chetty R (2008) An overview of practical issues in the diagnosis of gastroenteropancreatic neuroendocrine pathology. Arch Pathol Lab Med 132(8):1285–1289PubMedGoogle Scholar
  14. 14.
    Moldawer MP, Nardi GL, Raker JW (1954) Concomitance of multiple adenomas of the parathyroids and pancreatic islets with tumor of the pituitary: a syndrome with a familial incidence. Am J Med Sci 228(2):190–206PubMedGoogle Scholar
  15. 15.
    Wermer P (1954) Genetic aspects of adenomatosis of endocrine glands. Am J Med 16(3):363–371PubMedGoogle Scholar
  16. 16.
    Kronenberg H, Melmeds S, Polonsky K, Larson P (2008) Williams textbook of endocrinology, 11th edn. Saunders/Elsevier, PhiladelphiaGoogle Scholar
  17. 17.
    Brandi ML, Gagel RF, Angeli A, Bilezikian JP, Beck-Peccoz P, Bordi C et al (2001) Guidelines for diagnosis and therapy of MEN type 1 and type 2. J Clin Endocrinol Metab 86(12):5658–5671, Epub 2001/12/12PubMedGoogle Scholar
  18. 18.
    Marx SJ, Agarwal SK, Kester MB, Heppner C, Kim YS, Skarulis MC et al (1999) Multiple endocrine neoplasia type 1: clinical and genetic features of the hereditary endocrine neoplasias. Recent Prog Horm Res 54:397–438, discussion −9. Epub 1999/11/05PubMedGoogle Scholar
  19. 19.
    Pipeleers-Marichal M, Somers G, Willems G, Foulis A, Imrie C, Bishop AE et al (1990) Gastrinomas in the duodenums of patients with multiple endocrine neoplasia type 1 and the Zollinger-Ellison syndrome. N Engl J Med 322(11):723–727, Epub 1990/03/15PubMedGoogle Scholar
  20. 20.
    Skogseid B, Eriksson B, Lundqvist G, Lorelius LE, Rastad J, Wide L et al (1991) Multiple endocrine neoplasia type 1: a 10-year prospective screening study in four kindreds. J Clin Endocrinol Metab 73(2):281–287PubMedGoogle Scholar
  21. 21.
    Gaitan D, Loosen PT, Orth DN (1993) Two patients with Cushing’s disease in a kindred with multiple endocrine neoplasia type I. J Clin Endocrinol Metab 76(6):1580–1582PubMedGoogle Scholar
  22. 22.
    Burgess JR, Greenaway TM, Parameswaran V, Challis DR, David R, Shepherd JJ (1998) Enteropancreatic malignancy associated with multiple endocrine neoplasia type 1: risk factors and pathogenesis. Cancer 83(3):428–434PubMedGoogle Scholar
  23. 23.
    Norton JA, Fraker DL, Alexander HR, Venzon DJ, Doppman JL, Serrano J et al (1999) Surgery to cure the Zollinger-Ellison syndrome. N Engl J Med 341(9):635–644, Epub 1999/08/26PubMedGoogle Scholar
  24. 24.
    Thompson NW (1998) Current concepts in the surgical management of multiple endocrine neoplasia type 1 pancreatic-duodenal disease. Results in the treatment of 40 patients with Zollinger-Ellison syndrome, hypoglycaemia or both. J Intern Med 243(6):495–500PubMedGoogle Scholar
  25. 25.
    Majewski JT, Wilson SD (1979) The MEA-I syndrome: an all or none phenomenon? Surgery 86(3):475–484PubMedGoogle Scholar
  26. 26.
    Agarwal SK, Burns AL, Sukhodolets KE, Kennedy PA, Obungu VH, Hickman AB et al (2004) Molecular pathology of the MEN1 gene. Ann N Y Acad Sci 1014:189–198, Epub 2004/05/22PubMedGoogle Scholar
  27. 27.
    Knudson AG (1996) Hereditary cancer: two hits revisited. J Cancer Res Clin Oncol 122(3):135–140PubMedGoogle Scholar
  28. 28.
    Thepot D, Weitzman JB, Barra J, Segretain D, Stinnakre MG, Babinet C et al (2000) Targeted disruption of the murine JunD gene results in multiple defects in male reproductive function. Development 127(1):143–153, Epub 2000/02/02PubMedGoogle Scholar
  29. 29.
    Agarwal SK, Guru SC, Heppner C, Erdos MR, Collins RM, Park SY et al (1999) Menin interacts with the AP1 transcription factor JunD and represses JunD-activated transcription. Cell 96(1):143–152PubMedGoogle Scholar
  30. 30.
    Hendy GN, Kaji H, Sowa H, Lebrun JJ, Canaff L (2005) Menin and TGF-beta superfamily member signaling via the Smad pathway in pituitary, parathyroid and osteoblast. Horm Metab Res 37(6):375–379PubMedGoogle Scholar
  31. 31.
    Kaji H, Canaff L, Lebrun JJ, Goltzman D, Hendy GN (2001) Inactivation of menin, a Smad3-interacting protein, blocks transforming growth factor type beta signaling. Proc Natl Acad Sci U S A 98(7):3837–3842PubMedGoogle Scholar
  32. 32.
    Lemmens IH, Forsberg L, Pannett AA, Meyen E, Piehl F, Turner JJ et al (2001) Menin interacts directly with the homeobox-containing protein Pem. Biochem Biophys Res Commun 286(2):426–431PubMedGoogle Scholar
  33. 33.
    Heppner C, Bilimoria KY, Agarwal SK, Kester M, Whitty LJ, Guru SC et al (2001) The tumor suppressor protein menin interacts with NF-kappaB proteins and inhibits NF-kappaB-mediated transactivation. Oncogene 20(36):4917–4925PubMedGoogle Scholar
  34. 34.
    Agarwal S, Scecheri P, Rice T, Kennedy P, Ozawa A, Burgess-Hickman A et al (2006) MEN1 gene: mutation and pathophysiology. Ann Endocrinol (Paris) 67(Suppl 4):IS12–IS13Google Scholar
  35. 35.
    Agarwal SK, Impey S, McWeeney S, Scacheri PC, Collins FS, Goodman RH et al (2007) Distribution of menin-occupied regions in chromatin specifies a broad role of menin in transcriptional regulation. Neoplasia 9(2):101–107PubMedGoogle Scholar
  36. 36.
    Thakker RV, Bouloux P, Wooding C, Chotai K, Broad PM, Spurr NK et al (1989) Association of parathyroid tumors in multiple endocrine neoplasia type 1 with loss of alleles on chromosome 11. N Engl J Med 321(4):218–224, Epub 1989/07/27PubMedGoogle Scholar
  37. 37.
    Agarwal SK, Debelenko LV, Kester MB, Guru SC, Manickam P, Olufemi SE et al (1998) Analysis of recurrent germline mutations in the MEN1 gene encountered in apparently unrelated families. Hum Mutat 12(2):75–82PubMedGoogle Scholar
  38. 38.
    Kishi M, Tsukada T, Shimizu S, Futami H, Ito Y, Kanbe M et al (1998) A large germline deletion of the MEN1 gene in a family with multiple endocrine neoplasia type 1. Jpn J Cancer Res 89(1):1–5PubMedGoogle Scholar
  39. 39.
    Agarwal SK, Kester MB, Debelenko LV, Heppner C, Emmert-Buck MR, Skarulis MC et al (1997) Germline mutations of the MEN1 gene in familial multiple endocrine neoplasia type 1 and related states. Hum Mol Genet 6(7):1169–1175PubMedGoogle Scholar
  40. 40.
    Kumar V, Fausto N (eds) (2005) Pathologic basis of disease, 7th edn. Elsevier/Saunders, PhiladelphiaGoogle Scholar
  41. 41.
    Lubensky IA, Pack S, Ault D, Vortmeyer AO, Libutti SK, Choyke PL et al (1998) Multiple neuroendocrine tumors of the pancreas in von Hippel-Lindau disease patients: histopathological and molecular genetic analysis. Am J Pathol 153(1):223–231PubMedGoogle Scholar
  42. 42.
    Debelenko LV, Zhuang Z, Emmert-Buck MR, Chandrasekharappa SC, Manickam P, Guru SC et al (1997) Allelic deletions on chromosome 11q13 in multiple endocrine neoplasia type 1-associated and sporadic gastrinomas and pancreatic endocrine tumors. Cancer Res 57(11):2238–2243PubMedGoogle Scholar
  43. 43.
    Eubanks PJ, Sawicki MP, Samara GJ, Gatti R, Nakamura Y, Tsao D et al (1994) Putative tumor-suppressor gene on chromosome 11 is important in sporadic endocrine tumor formation. Am J Surg 167(1):180–185, Epub 1994/01/01PubMedGoogle Scholar
  44. 44.
    Zhuang Z, Vortmeyer AO, Pack S, Huang S, Pham TA, Wang C et al (1997) Somatic mutations of the MEN1 tumor suppressor gene in sporadic gastrinomas and insulinomas. Cancer Res 57(21):4682–4686PubMedGoogle Scholar
  45. 45.
    Wang EH, Ebrahimi SA, Wu AY, Kashefi C, Passaro E Jr, Sawicki MP (1998) Mutation of the MENIN gene in sporadic pancreatic endocrine tumors. Cancer Res 58(19):4417–4420PubMedGoogle Scholar
  46. 46.
    Goebel SU, Heppner C, Burns AL, Marx SJ, Spiegel AM, Zhuang Z et al (2000) Genotype/phenotype correlation of multiple endocrine neoplasia type 1 gene mutations in sporadic gastrinomas. J Clin Endocrinol Metab 85(1):116–123PubMedGoogle Scholar
  47. 47.
    Gortz B, Roth J, Krahenmann A, de Krijger RR, Muletta-Feurer S, Rutimann K et al (1999) Mutations and allelic deletions of the MEN1 gene are associated with a subset of sporadic endocrine pancreatic and neuroendocrine tumors and not restricted to foregut neoplasms. Am J Pathol 154(2):429–436PubMedGoogle Scholar
  48. 48.
    Williamson C, Pannett AA, Pang JT, Wooding C, McCarthy M, Sheppard MN et al (1997) Localisation of a gene causing endocrine neoplasia to a 4 cM region on chromosome 1p35-p36. J Med Genet 34(8):617–619PubMedGoogle Scholar
  49. 49.
    Kytola S, Makinen MJ, Kahkonen M, Teh BT, Leisti J, Salmela P (1998) Comparative genomic hybridization studies in tumours from a patient with multiple endocrine neoplasia type 1. Eur J Endocrinol 139(2):202–206PubMedGoogle Scholar
  50. 50.
    Franklin DS, Godfrey VL, O’Brien DA, Deng C, Xiong Y (2000) Functional collaboration between different cyclin-dependent kinase inhibitors suppresses tumor growth with distinct tissue specificity. Mol Cell Biol 20(16):6147–6158PubMedGoogle Scholar
  51. 51.
    Pestell RG, Albanese C, Reutens AT, Segall JE, Lee RJ, Arnold A (1999) The cyclins and cyclin-dependent kinase inhibitors in hormonal regulation of proliferation and differentiation. Endocr Rev 20(4):501–534PubMedGoogle Scholar
  52. 52.
    Perren A, Anlauf M, Henopp T, Rudolph T, Schmitt A, Raffel A et al (2007) Multiple endocrine neoplasia type 1 (MEN1): loss of one MEN1 allele in tumors and monohormonal endocrine cell clusters but not in islet hyperplasia of the pancreas. J Clin Endocrinol Metab 92(3):1118–1128, Epub 2006/12/21PubMedGoogle Scholar
  53. 53.
    Anlauf M, Perren A, Meyer CL, Schmid S, Saremaslani P, Kruse ML et al (2005) Precursor lesions in patients with multiple endocrine neoplasia type 1-associated duodenal gastrinomas. Gastroenterology 128(5):1187–1198, Epub 2005/05/12PubMedGoogle Scholar
  54. 54.
    Crabtree JS, Scacheri PC, Ward JM, Garrett-Beal L, Emmert-Buck MR, Edgemon KA et al (2001) A mouse model of multiple endocrine neoplasia, type 1, develops multiple endocrine tumors. Proc Natl Acad Sci U S A 98(3):1118–1123PubMedGoogle Scholar
  55. 55.
    Crabtree JS, Scacheri PC, Ward JM, McNally SR, Swain GP, Montagna C et al (2003) Of mice and MEN1: insulinomas in a conditional mouse knockout. Mol Cell Biol 23(17):6075–6085PubMedGoogle Scholar
  56. 56.
    Frosch M, Anthony D, Girolami U (2005) Robin’s and Cotran’s pathologic basis of disease, 7th edn. Elsevier/Saunders, PhiladelphiaGoogle Scholar
  57. 57.
    Binkovitz LA, Johnson CD, Stephens DH (1990) Islet cell tumors in von Hippel-Lindau disease: increased prevalence and relationship to the multiple endocrine neoplasias. AJR Am J Roentgenol 155(3):501–505PubMedGoogle Scholar
  58. 58.
    Hough DM, Stephens DH, Johnson CD, Binkovitz LA (1994) Pancreatic lesions in von Hippel-Lindau disease: prevalence, clinical significance, and CT findings. AJR Am J Roentgenol 162(5):1091–1094PubMedGoogle Scholar
  59. 59.
    Neumann HP, Dinkel E, Brambs H, Wimmer B, Friedburg H, Volk B et al (1991) Pancreatic lesions in the von Hippel-Lindau syndrome. Gastroenterology 101(2):465–471PubMedGoogle Scholar
  60. 60.
    LaForgia S, Lasota J, Latif F, Boghosian-Sell L, Kastury K, Ohta M et al (1993) Detailed genetic and physical map of the 3p chromosome region surrounding the familial renal cell carcinoma chromosome translocation, t(3;8)(p14.2;q24.1). Cancer Res 53(13):3118–3124PubMedGoogle Scholar
  61. 61.
    Pugh CW, Ratcliffe PJ (2003) Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9(6):677–684, Epub 2003/06/05PubMedGoogle Scholar
  62. 62.
    Maxwell PH, Pugh CW, Ratcliffe PJ (2001) The pVHL-hIF-1 system. A key mediator of oxygen homeostasis. Adv Exp Med Biol 502:365–376PubMedGoogle Scholar
  63. 63.
    Ratcliffe PJ, O’Rourke JF, Maxwell PH, Pugh CW (1998) Oxygen sensing, hypoxia-inducible factor-1 and the regulation of mammalian gene expression. J Exp Biol 201(Pt 8):1153–1162PubMedGoogle Scholar
  64. 64.
    Kim WY, Kaelin WG (2004) Role of VHL gene mutation in human cancer. J Clin Oncol 22(24):4991–5004PubMedGoogle Scholar
  65. 65.
    Lamberts SW, Krenning EP, Reubi JC (1991) The role of somatostatin and its analogs in the diagnosis and treatment of tumors. Endocr Rev 12(4):450–482PubMedGoogle Scholar
  66. 66.
    Na X, Wu G, Ryan CK, Schoen SR, di’Santagnese PA, Messing EM (2003) Overproduction of vascular endothelial growth factor related to von Hippel-Lindau tumor suppressor gene mutations and hypoxia-inducible factor-1 alpha expression in renal cell carcinomas. J Urol 170(2 Pt 1):588–592PubMedGoogle Scholar
  67. 67.
    Wang XC, Xu SY, Wu XY, Song HD, Mao YF, Fan HY et al (2004) Gene expression profiling in human insulinoma tissue: genes involved in the insulin secretion pathway and cloning of novel full-length cDNAs. Endocr Relat Cancer 11(2):295–303PubMedGoogle Scholar
  68. 68.
    Petrella BL, Lohi J, Brinckerhoff CE (2005) Identification of membrane type-1 matrix metalloproteinase as a target of hypoxia-inducible factor-2 alpha in von Hippel-Lindau renal cell carcinoma. Oncogene 24(6):1043–1052, Epub 2004/12/14PubMedGoogle Scholar
  69. 69.
    Petrella BL, Brinckerhoff CE (2006) Tumor cell invasion of von Hippel Lindau renal cell carcinoma cells is mediated by membrane type-1 matrix metalloproteinase. Mol Cancer 5:66, Epub 2006/12/05PubMedGoogle Scholar
  70. 70.
    Konno H, Arai T, Tanaka T, Baba M, Matsumoto K, Kanai T et al (1998) Antitumor effect of a neutralizing antibody to vascular endothelial growth factor on liver metastasis of endocrine neoplasm. Jpn J Cancer Res 89(9):933–939PubMedGoogle Scholar
  71. 71.
    Yao JC, Hoff PM (2007) Molecular targeted therapy for neuroendocrine tumors. Hematol Oncol Clin North Am 21(3):575–581PubMedGoogle Scholar
  72. 72.
    Hammel PR, Vilgrain V, Terris B, Penfornis A, Sauvanet A, Correas JM et al (2000) Pancreatic involvement in von Hippel-Lindau disease. The Groupe Francophone d’Etude de la Maladie de von Hippel-Lindau. Gastroenterology 119(4):1087–1095PubMedGoogle Scholar
  73. 73.
    Hoang MP, Hruban RH, Albores-Saavedra J (2001) Clear cell endocrine pancreatic tumor mimicking renal cell carcinoma: a distinctive neoplasm of von Hippel-Lindau disease. Am J Surg Pathol 25(5):602–609PubMedGoogle Scholar
  74. 74.
    Chung DC, Smith AP, Louis DN, Graeme-Cook F, Warshaw AL, Arnold A (1997) A novel pancreatic endocrine tumor suppressor gene locus on chromosome 3p with clinical prognostic implications. J Clin Invest 100(2):404–410PubMedGoogle Scholar
  75. 75.
    Missiaglia E, Moore PS, Williamson J, Lemoine NR, Falconi M, Zamboni G et al (2002) Sex chromosome anomalies in pancreatic endocrine tumors. Int J Cancer 98(4):532–538PubMedGoogle Scholar
  76. 76.
    Tan CC, Hall RI, Semeraro D, Irons RP, Freeman JG (1996) Ampullary somatostatinoma associated with von Recklinghausen’s neurofibromatosis presenting as obstructive jaundice. Eur J Surg Oncol 22(3):298–301PubMedGoogle Scholar
  77. 77.
    van Slegtenhorst M, de Hoogt R, Hermans C, Nellist M, Janssen B, Verhoef S et al (1997) Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277(5327):805–808, Epub 1997/08/08PubMedGoogle Scholar
  78. 78.
    European Chromosome 16 Tuberous Sclerosis C (1993) Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 75(7):1305–1315, Epub 1993/12/31Google Scholar
  79. 79.
    Sandsmark DK, Pelletier C, Weber JD, Gutmann DH (2007) Mammalian target of rapamycin: master regulator of cell growth in the nervous system. Histol Histopathol 22(8):895–903, Epub 2007/05/16PubMedGoogle Scholar
  80. 80.
    Castro AF, Rebhun JF, Clark GJ, Quilliam LA (2003) Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin- and farnesylation-dependent manner. J Biol Chem 278(35):32493–32496, Epub 2003/07/05PubMedGoogle Scholar
  81. 81.
    Zikusoka MN, Kidd M, Eick G, Latich I, Modlin IM (2005) The molecular genetics of gastroenteropancreatic neuroendocrine tumors. Cancer 104(11):2292–2309PubMedGoogle Scholar
  82. 82.
    Mak BC, Takemaru K, Kenerson HL, Moon RT, Yeung RS (2003) The tuberin-hamartin complex negatively regulates beta-catenin signaling activity. J Biol Chem 278(8):5947–5951PubMedGoogle Scholar
  83. 83.
    Verhoef S, van Diemen-Steenvoorde R, Akkersdijk WL, Bax NM, Ariyurek Y, Hermans CJ et al (1999) Malignant pancreatic tumour within the spectrum of tuberous sclerosis complex in childhood. Eur J Pediatr 158(4):284–287PubMedGoogle Scholar
  84. 84.
    Swenne I (1982) The role of glucose in the in vitro regulation of cell cycle kinetics and proliferation of fetal pancreatic B-cells. Diabetes 31(9):754–760PubMedGoogle Scholar
  85. 85.
    Bonner-Weir S, Deery D, Leahy JL, Weir GC (1989) Compensatory growth of pancreatic beta-cells in adult rats after short-term glucose infusion. Diabetes 38(1):49–53PubMedGoogle Scholar
  86. 86.
    Paris M, Bernard-Kargar C, Berthault MF, Bouwens L, Ktorza A (2003) Specific and combined effects of insulin and glucose on functional pancreatic beta-cell mass in vivo in adult rats. Endocrinology 144(6):2717–2727, Epub 2003/05/15PubMedGoogle Scholar
  87. 87.
    Jonkers YM, Ramaekers FC, Speel EJ (2007) Molecular alterations during insulinoma tumorigenesis. Biochim Biophys Acta 1775(2):313–332PubMedGoogle Scholar
  88. 88.
    Balogh K, Racz K, Patocs A, Hunyady L (2006) Menin and its interacting proteins: elucidation of menin function. Trends Endocrinol Metab 17(9):357–364, Epub 2006/09/26PubMedGoogle Scholar
  89. 89.
    Jin S, Mao H, Schnepp RW, Sykes SM, Silva AC, D’Andrea AD et al (2003) Menin associates with FANCD2, a protein involved in repair of DNA damage. Cancer Res 63(14):4204–4210PubMedGoogle Scholar
  90. 90.
    Gumbs AA, Moore PS, Falconi M, Bassi C, Beghelli S, Modlin I et al (2002) Review of the clinical, histological, and molecular aspects of pancreatic endocrine neoplasms. J Surg Oncol 81(1):45–53, discussion 4. Epub 2002/09/05PubMedGoogle Scholar
  91. 91.
    Speel EJ, Richter J, Moch H, Egenter C, Saremaslani P, Rutimann K et al (1999) Genetic differences in endocrine pancreatic tumor subtypes detected by comparative genomic hybridization. Am J Pathol 155(6):1787–1794PubMedGoogle Scholar
  92. 92.
    Zhao J, Moch H, Scheidweiler AF, Baer A, Schaffer AA, Speel EJ et al (2001) Genomic imbalances in the progression of endocrine pancreatic tumors. Genes Chromosomes Cancer 32(4):364–372PubMedGoogle Scholar
  93. 93.
    Speel EJ, Scheidweiler AF, Zhao J, Matter C, Saremaslani P, Roth J et al (2001) Genetic evidence for early divergence of small functioning and nonfunctioning endocrine pancreatic tumors: gain of 9Q34 is an early event in insulinomas. Cancer Res 61(13):5186–5192PubMedGoogle Scholar
  94. 94.
    Stumpf E, Aalto Y, Hoog A, Kjellman M, Otonkoski T, Knuutila S et al (2000) Chromosomal alterations in human pancreatic endocrine tumors. Genes Chromosomes Cancer 29(1):83–87PubMedGoogle Scholar
  95. 95.
    Tonnies H, Toliat MR, Ramel C, Pape UF, Neitzel H, Berger W et al (2001) Analysis of sporadic neuroendocrine tumours of the enteropancreatic system by comparative genomic hybridisation. Gut 48(4):536–541PubMedGoogle Scholar
  96. 96.
    Terris B, Meddeb M, Marchio A, Danglot G, Flejou JF, Belghiti J et al (1998) Comparative genomic hybridization analysis of sporadic neuroendocrine tumors of the digestive system. Genes Chromosomes Cancer 22(1):50–56PubMedGoogle Scholar
  97. 97.
    Kytola S, Hoog A, Nord B, Cedermark B, Frisk T, Larsson C et al (2001) Comparative genomic hybridization identifies loss of 18q22-qter as an early and specific event in tumorigenesis of midgut carcinoids. Am J Pathol 158(5):1803–1808PubMedGoogle Scholar
  98. 98.
    Pizzi S, D’Adda T, Azzoni C, Rindi G, Grigolato P, Pasquali C et al (2002) Malignancy-associated allelic losses on the X-chromosome in foregut but not in midgut endocrine tumours. J Pathol 196(4):401–407PubMedGoogle Scholar
  99. 99.
    Brown MR, Kohn EC, Hutter RV (2000) The new millennium: applying novel technology to the study of the cancer cell in situ. Cancer 88(1):2–5, Epub 2000/01/05PubMedGoogle Scholar
  100. 100.
    Ebrahimi SA, Wang EH, Wu A, Schreck RR, Passaro E Jr, Sawicki MP (1999) Deletion of chromosome 1 predicts prognosis in pancreatic endocrine tumors. Cancer Res 59(2):311–315PubMedGoogle Scholar
  101. 101.
    Guo SS, Arora C, Shimoide AT, Sawicki MP (2002) Frequent deletion of chromosome 3 in malignant sporadic pancreatic endocrine tumors. Mol Cell Endocrinol 190(1–2):109–114PubMedGoogle Scholar
  102. 102.
    Chen YJ, Vortmeyer A, Zhuang Z, Huang S, Jensen RT (2003) Loss of heterozygosity of chromosome 1q in gastrinomas: occurrence and prognostic significance. Cancer Res 63(4):817–823PubMedGoogle Scholar
  103. 103.
    Lott ST, Chandler DS, Curley SA, Foster CJ, El-Naggar A, Frazier M et al (2002) High frequency loss of heterozygosity in von Hippel-Lindau (VHL)-associated and sporadic pancreatic islet cell tumors: evidence for a stepwise mechanism for malignant conversion in VHL tumorigenesis. Cancer Res 62(7):1952–1955PubMedGoogle Scholar
  104. 104.
    Nikiforova MN, Nikiforov YE, Biddinger P, Gnepp DR, Grosembacher LA, Wajchenberg BL et al (1999) Frequent loss of heterozygosity at chromosome 3p14.2-3p21 in human pancreatic islet cell tumours. Clin Endocrinol (Oxf) 51(1):27–33Google Scholar
  105. 105.
    Guo SS, Wu AY, Sawicki MP (2002) Deletion of chromosome 1, but not mutation of MEN-1, predicts prognosis in sporadic pancreatic endocrine tumors. World J Surg 26(7):843–847PubMedGoogle Scholar
  106. 106.
    Barghorn A, Speel EJ, Farspour B, Saremaslani P, Schmid S, Perren A et al (2001) Putative tumor suppressor loci at 6q22 and 6q23-q24 are involved in the malignant progression of sporadic endocrine pancreatic tumors. Am J Pathol 158(6):1903–1911PubMedGoogle Scholar
  107. 107.
    Muscarella P, Melvin WS, Fisher WE, Foor J, Ellison EC, Herman JG et al (1998) Genetic alterations in gastrinomas and nonfunctioning pancreatic neuroendocrine tumors: an analysis of p16/MTS1 tumor suppressor gene inactivation. Cancer Res 58(2):237–240PubMedGoogle Scholar
  108. 108.
    Rigaud G, Missiaglia E, Moore PS, Zamboni G, Falconi M, Talamini G et al (2001) High resolution allelotype of nonfunctional pancreatic endocrine tumors: identification of two molecular subgroups with clinical implications. Cancer Res 61(1):285–292PubMedGoogle Scholar
  109. 109.
    Wild A, Langer P, Celik I, Chaloupka B, Bartsch DK (2002) Chromosome 22q in pancreatic endocrine tumors: identification of a homozygous deletion and potential prognostic associations of allelic deletions. Eur J Endocrinol 147(4):507–513PubMedGoogle Scholar
  110. 110.
    Ikawa S, Nakagawara A, Ikawa Y (1999) p53 family genes: structural comparison, expression and mutation. Cell Death Differ 6(12):1154–1161PubMedGoogle Scholar
  111. 111.
    Moore PS, Orlandini S, Zamboni G, Capelli P, Rigaud G, Falconi M et al (2001) Pancreatic tumours: molecular pathways implicated in ductal cancer are involved in ampullary but not in exocrine nonductal or endocrine tumorigenesis. Br J Cancer 84(2):253–262PubMedGoogle Scholar
  112. 112.
    Perren A, Komminoth P, Saremaslani P, Matter C, Feurer S, Lees JA et al (2000) Mutation and expression analyses reveal differential subcellular compartmentalization of PTEN in endocrine pancreatic tumors compared to normal islet cells. Am J Pathol 157(4):1097–1103PubMedGoogle Scholar
  113. 113.
    Hirawake H, Taniwaki M, Tamura A, Amino H, Tomitsuka E, Kita K (1999) Characterization of the human SDHD gene encoding the small subunit of cytochrome b (cybS) in mitochondrial succinate-ubiquinone oxidoreductase. Biochim Biophys Acta 1412(3):295–300PubMedGoogle Scholar
  114. 114.
    Moore PS, Missiaglia E, Antonello D, Zamo A, Zamboni G, Corleto V et al (2001) Role of disease-causing genes in sporadic pancreatic endocrine tumors: MEN1 and VHL. Genes Chromosomes Cancer 32(2):177–181PubMedGoogle Scholar
  115. 115.
    Bartsch D, Hahn SA, Danichevski KD, Ramaswamy A, Bastian D, Galehdari H et al (1999) Mutations of the DPC4/Smad4 gene in neuroendocrine pancreatic tumors. Oncogene 18(14):2367–2371PubMedGoogle Scholar
  116. 116.
    Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, Rozenblum E et al (1996) DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271(5247):350–353PubMedGoogle Scholar
  117. 117.
    Perren A, Saremaslani P, Schmid S, Bonvin C, Locher T, Roth J et al (2003) DPC4/Smad4: no mutations, rare allelic imbalances, and retained protein expression in pancreatic endocrine tumors. Diagn Mol Pathol 12(4):181–186PubMedGoogle Scholar
  118. 118.
    Wild A, Langer P, Ramaswamy A, Chaloupka B, Bartsch DK (2001) A novel insulinoma tumor suppressor gene locus on chromosome 22q with potential prognostic implications. J Clin Endocrinol Metab 86(12):5782–5787PubMedGoogle Scholar
  119. 119.
    Biegel JA, Fogelgren B, Zhou JY, James CD, Janss AJ, Allen JC et al (2000) Mutations of the INI1 rhabdoid tumor suppressor gene in medulloblastomas and primitive neuroectodermal tumors of the central nervous system. Clin Cancer Res 6(7):2759–2763, Epub 2000/07/29PubMedGoogle Scholar
  120. 120.
    Chen YJ, Vortmeyer A, Zhuang Z, Gibril F, Jensen RT (2004) X-chromosome loss of heterozygosity frequently occurs in gastrinomas and is correlated with aggressive tumor growth. Cancer 100(7):1379–1387PubMedGoogle Scholar
  121. 121.
    Ponce-Castaneda MV, Lee MH, Latres E, Polyak K, Lacombe L, Montgomery K et al (1995) p27Kip1: chromosomal mapping to 12p12-12p13.1 and absence of mutations in human tumors. Cancer Res 55(6):1211–1214PubMedGoogle Scholar
  122. 122.
    Guo SS, Wu X, Shimoide AT, Wong J, Sawicki MP (2001) Anomalous overexpression of p27(Kip1) in sporadic pancreatic endocrine tumors. J Surg Res 96(2):284–288PubMedGoogle Scholar
  123. 123.
    Canavese G, Azzoni C, Pizzi S, Corleto VD, Pasquali C, Davoli C et al (2001) p27: a potential main inhibitor of cell proliferation in digestive endocrine tumors but not a marker of benign behavior. Hum Pathol 32(10):1094–1101PubMedGoogle Scholar
  124. 124.
    Mao L, Merlo A, Bedi G, Shapiro GI, Edwards CD, Rollins BJ et al (1995) A novel p16INK4A transcript. Cancer Res 55(14):2995–2997PubMedGoogle Scholar
  125. 125.
    Liggett WH Jr, Sidransky D (1998) Role of the p16 tumor suppressor gene in cancer. J Clin Oncol 16(3):1197–1206PubMedGoogle Scholar
  126. 126.
    Lubomierski N, Kersting M, Bert T, Muench K, Wulbrand U, Schuermann M et al (2001) Tumor suppressor genes in the 9p21 gene cluster are selective targets of inactivation in neuroendocrine gastroenteropancreatic tumors. Cancer Res 61(15):5905–5910PubMedGoogle Scholar
  127. 127.
    Schuuring E, Verhoeven E, Mooi WJ, Michalides RJ (1992) Identification and cloning of two overexpressed genes, U21B31/PRAD1 and EMS1, within the amplified chromosome 11q13 region in human carcinomas. Oncogene 7(2):355–361PubMedGoogle Scholar
  128. 128.
    Arnold A, Motokura T, Bloom T, Rosenberg C, Bale A, Kronenberg H et al (1992) PRAD1 (cyclin D1): a parathyroid neoplasia gene on 11q13. Henry Ford Hosp Med J 40(3–4):177–180PubMedGoogle Scholar
  129. 129.
    Chung DC, Brown SB, Graeme-Cook F, Seto M, Warshaw AL, Jensen RT et al (2000) Overexpression of cyclin D1 occurs frequently in human pancreatic endocrine tumors. J Clin Endocrinol Metab 85(11):4373–4378PubMedGoogle Scholar
  130. 130.
    Guo SS, Wu X, Shimoide AT, Wong J, Moatamed F, Sawicki MP (2003) Frequent overexpression of cyclin D1 in sporadic pancreatic endocrine tumours. J Endocrinol 179(1):73–79PubMedGoogle Scholar
  131. 131.
    Gille H, Downward J (1999) Multiple Ras effector pathways contribute to G(1) cell cycle progression. J Biol Chem 274(31):22033–22040PubMedGoogle Scholar
  132. 132.
    Lavoie JN, L’Allemain G, Brunet A, Muller R, Pouyssegur J (1996) Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem 271(34):20608–20616PubMedGoogle Scholar
  133. 133.
    Weber JD, Raben DM, Phillips PJ, Baldassare JJ (1997) Sustained activation of extracellular-signal-regulated kinase 1 (ERK1) is required for the continued expression of cyclin D1 in G1 phase. Biochem J 326(Pt 1):61–68PubMedGoogle Scholar
  134. 134.
    Iwamura Y, Futagawa T, Kaneko M, Nakagawa K, Kawai K, Yamashita K et al (1992) Co-deletions of the retinoblastoma gene and Wilms’ tumor gene and rearrangement of the Krev-1 gene in a human insulinoma. Jpn J Clin Oncol 22(1):6–9PubMedGoogle Scholar
  135. 135.
    Nakamura T, Iwamura Y, Kaneko M, Nakagawa K, Kawai K, Mitamura K et al (1991) Deletions and rearrangements of the retinoblastoma gene in hepatocellular carcinoma, insulinoma and some neurogenic tumors as found in a study of 121 tumors. Jpn J Clin Oncol 21(5):325–329PubMedGoogle Scholar
  136. 136.
    Chung DC, Smith AP, Louis DN, Graeme-Cook F, Warshaw AL, Arnold A (1997) Analysis of the retinoblastoma tumour suppressor gene in pancreatic endocrine tumours. Clin Endocrinol (Oxf) 47(5):523–528Google Scholar
  137. 137.
    Kawahara M, Kammori M, Kanauchi H, Noguchi C, Kuramoto S, Kaminishi M et al (2002) Immunohistochemical prognostic indicators of gastrointestinal carcinoid tumours. Eur J Surg Oncol 28(2):140–146PubMedGoogle Scholar
  138. 138.
    Nishikura K, Watanabe H, Iwafuchi M, Fujiwara T, Kojima K, Ajioka Y (2003) Carcinogenesis of gastric endocrine cell carcinoma: analysis of histopathology and p53 gene alteration. Gastric Cancer 6(4):203–209PubMedGoogle Scholar
  139. 139.
    Weckstrom P, Hedrum A, Makridis C, Akerstrom G, Rastad J, Scheibenpflug L et al (1996) Midgut carcinoids and solid carcinomas of the intestine: differences in endocrine markers and p53 mutations. Endocr Pathol 7(4):273–279PubMedGoogle Scholar
  140. 140.
    Oberg K, Eriksson B (2005) Endocrine tumours of the pancreas. Best Pract Res Clin Gastroenterol 19(5):753–781, Epub 2005/10/29PubMedGoogle Scholar
  141. 141.
    Kraus C, Liehr T, Hulsken J, Behrens J, Birchmeier W, Grzeschik KH et al (1994) Localization of the human beta-catenin gene (CTNNB1) to 3p21: a region implicated in tumor development. Genomics 23(1):272–274PubMedGoogle Scholar
  142. 142.
    Gerdes B, Ramaswamy A, Simon B, Pietsch T, Bastian D, Kersting M et al (1999) Analysis of beta-catenin gene mutations in pancreatic tumors. Digestion 60(6):544–548PubMedGoogle Scholar
  143. 143.
    Sinke RJ, Geurts van Kessel AG (1995) Localization of the human phosphatidylinositol-specific phospholipase c beta 3 gene (PLCB3) within chromosome band 11q13. Genomics 25(2):568–569PubMedGoogle Scholar
  144. 144.
    Chan AO, Kim SG, Bedeir A, Issa JP, Hamilton SR, Rashid A (2003) CpG island methylation in carcinoid and pancreatic endocrine tumors. Oncogene 22(6):924–934PubMedGoogle Scholar
  145. 145.
    Mattei MG, de The H, Mattei JF, Marchio A, Tiollais P, Dejean A (1988) Assignment of the human hap retinoic acid receptor RAR beta gene to the p24 band of chromosome 3. Hum Genet 80(2):189–190PubMedGoogle Scholar
  146. 146.
    Bernal-Mizrachi E, Wen W, Stahlhut S, Welling CM, Permutt MA (2001) Islet beta cell expression of constitutively active Akt1/PKB alpha induces striking hypertrophy, hyperplasia, and hyperinsulinemia. J Clin Invest 108(11):1631–1638PubMedGoogle Scholar
  147. 147.
    Hugl SR, White MF, Rhodes CJ (1998) Insulin-like growth factor I (IGF-I)-stimulated pancreatic beta-cell growth is glucose-dependent. Synergistic activation of insulin receptor substrate-mediated signal transduction pathways by glucose and IGF-I in INS-1 cells. J Biol Chem 273(28):17771–17779PubMedGoogle Scholar
  148. 148.
    Jetton TL, Lausier J, LaRock K, Trotman WE, Larmie B, Habibovic A et al (2005) Mechanisms of compensatory beta-cell growth in insulin-resistant rats: roles of Akt kinase. Diabetes 54(8):2294–2304PubMedGoogle Scholar
  149. 149.
    McBride OW, Swan DC, Tronick SR, Gol R, Klimanis D, Moore DE et al (1983) Regional chromosomal localization of N-ras, K-ras-1, K-ras-2 and myb oncogenes in human cells. Nucleic Acids Res 11(23):8221–8236PubMedGoogle Scholar
  150. 150.
    McCormick F (1995) Ras-related proteins in signal transduction and growth control. Mol Reprod Dev 42(4):500–506PubMedGoogle Scholar
  151. 151.
    Yashiro T, Fulton N, Hara H, Yasuda K, Montag A, Yashiro N et al (1993) Comparison of mutations of ras oncogene in human pancreatic exocrine and endocrine tumors. Surgery 114(4):758–763, discussion 63–4PubMedGoogle Scholar
  152. 152.
    Pavelic K, Hrascan R, Kapitanovic S, Karapandza N, Vranes Z, Belicza M et al (1995) Multiple genetic alterations in malignant metastatic insulinomas. J Pathol 177(4):395–400, Epub 1995/12/01PubMedGoogle Scholar
  153. 153.
    Dilley WG, Kalyanaraman S, Verma S, Cobb JP, Laramie JM, Lairmore TC (2005) Global gene expression in neuroendocrine tumors from patients with the MEN1 syndrome. Mol Cancer 4(1):9, Epub 2005/02/05PubMedGoogle Scholar
  154. 154.
    Pelengaris S, Khan M (2001) Oncogenic co-operation in beta-cell tumorigenesis. Endocr Relat Cancer 8(4):307–314PubMedGoogle Scholar
  155. 155.
    Hager JH, Hanahan D (1999) Tumor cells utilize multiple pathways to down-modulate apoptosis. Lessons from a mouse model of islet cell carcinogenesis. Ann N Y Acad Sci 887:150–163PubMedGoogle Scholar
  156. 156.
    Muleris M, Almeida A, Malfoy B, Dutrillaux B (1997) Assignment of v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2 (ERBB2) to human chromosome band 17q21.1 by in situ hybridization. Cytogenet Cell Genet 76(1–2):34–35PubMedGoogle Scholar
  157. 157.
    Bacus SS, Zelnick CR, Plowman G, Yarden Y (1994) Expression of the erbB-2 family of growth factor receptors and their ligands in breast cancers. Implication for tumor biology and clinical behavior. Am J Clin Pathol 102(4 Suppl 1):S13–S24PubMedGoogle Scholar
  158. 158.
    Goebel SU, Iwamoto M, Raffeld M, Gibril F, Hou W, Serrano J et al (2002) Her-2/neu expression and gene amplification in gastrinomas: correlations with tumor biology, growth, and aggressiveness. Cancer Res 62(13):3702–3710PubMedGoogle Scholar
  159. 159.
    Gosden JR, Middleton PG, Rout D (1986) Localization of the human oestrogen receptor gene to chromosome 6q24–q27 by in situ hybridization. Cytogenet Cell Genet 43(3–4):218–220PubMedGoogle Scholar
  160. 160.
    Altundag O, Altundag K, Gunduz M (2004) DNA methylation inhibitor, procainamide, may decrease the tamoxifen resistance by inducing overexpression of the estrogen receptor beta in breast cancer patients. Med Hypotheses 63(4):684–687PubMedGoogle Scholar
  161. 161.
    Kolodner RD, Hall NR, Lipford J, Kane MF, Morrison PT, Finan PJ et al (1995) Structure of the human MLH1 locus and analysis of a large hereditary nonpolyposis colorectal carcinoma kindred for mlh1 mutations. Cancer Res 55(2):242–248PubMedGoogle Scholar
  162. 162.
    House MG, Herman JG, Guo MZ, Hooker CM, Schulick RD, Cameron JL et al (2003) Prognostic value of hMLH1 methylation and microsatellite instability in pancreatic endocrine neoplasms. Surgery 134(6):902–908, discussion 9PubMedGoogle Scholar
  163. 163.
    Wick M, Zubov D, Hagen G (1999) Genomic organization and promoter characterization of the gene encoding the human telomerase reverse transcriptase (hTERT). Gene 232(1):97–106PubMedGoogle Scholar
  164. 164.
    Vezzosi D, Bouisson M, Escourrou G, Laurell H, Selves J, Seguin P et al (2006) Clinical utility of telomerase for the diagnosis of malignant well-differentiated endocrine tumours. Clin Endocrinol (Oxf) 64(1):63–67Google Scholar
  165. 165.
    House MG, Schulick RD (2006) Endocrine tumors of the pancreas. Curr Opin Oncol 18(1):23–29PubMedGoogle Scholar
  166. 166.
    Iino S, Abeyama K, Kawahara K, Yamakuchi M, Hashiguchi T, Matsukita S et al (2004) The antimetastatic role of thrombomodulin expression in islet cell-derived tumors and its diagnostic value. Clin Cancer Res 10(18 Pt 1):6179–6188PubMedGoogle Scholar
  167. 167.
    von Wichert G, Jehle PM, Hoeflich A, Koschnick S, Dralle H, Wolf E et al (2000) Insulin-like growth factor-I is an autocrine regulator of chromogranin A secretion and growth in human neuroendocrine tumor cells. Cancer Res 60(16):4573–4581, Epub 2000/09/02Google Scholar
  168. 168.
    Terris B, Scoazec JY, Rubbia L, Bregeaud L, Pepper MS, Ruszniewski P et al (1998) Expression of vascular endothelial growth factor in digestive neuroendocrine tumours. Histopathology 32(2):133–138, Epub 1998/04/17PubMedGoogle Scholar
  169. 169.
    La Rosa S, Uccella S, Finzi G, Albarello L, Sessa F, Capella C (2003) Localization of vascular endothelial growth factor and its receptors in digestive endocrine tumors: correlation with microvessel density and clinicopathologic features. Hum Pathol 34(1):18–27, Epub 2003/02/28PubMedGoogle Scholar
  170. 170.
    Alexiev BA, Drachenberg CB, Papadimitriou JC (2007) Endocrine tumors of the gastrointestinal tract and pancreas: grading, tumor size and proliferation index do not predict malignant behavior. Diagn Pathol 2:28, Epub 2007/08/10PubMedGoogle Scholar
  171. 171.
    Bajetta E, Catena L, Procopio G, Bichisao E, Ferrari L, Della Torre S et al (2005) Is the new WHO classification of neuroendocrine tumours useful for selecting an appropriate treatment? Ann Oncol 16(8):1374–1380, Epub 2005/06/09PubMedGoogle Scholar
  172. 172.
    Falconi M, Plockinger U, Kwekkeboom DJ, Manfredi R, Korner M, Kvols L et al (2006) Well-differentiated pancreatic nonfunctioning tumors/carcinoma. Neuroendocrinology 84(3):196–211, Epub 2007/02/22PubMedGoogle Scholar
  173. 173.
    Bettini R, Boninsegna L, Mantovani W, Capelli P, Bassi C, Pederzoli P et al (2008) Prognostic factors at diagnosis and value of WHO classification in a mono-institutional series of 180 non-functioning pancreatic endocrine tumours. Ann Oncol 19(5):903–908, Epub 2008/01/23PubMedGoogle Scholar
  174. 174.
    Pape UF, Jann H, Muller-Nordhorn J, Bockelbrink A, Berndt U, Willich SN et al (2008) Prognostic relevance of a novel TNM classification system for upper gastroenteropancreatic neuroendocrine tumors. Cancer 113(2):256–265, Epub 2008/05/29PubMedGoogle Scholar
  175. 175.
    Kloppel G, Rindi G, Anlauf M, Perren A, Komminoth P (2007) Site-specific biology and pathology of gastroenteropancreatic neuroendocrine tumors. Virchows Arch 451(Suppl 1):S9–S27, Epub 2007/08/09PubMedGoogle Scholar
  176. 176.
    Solcia E, Rindi G, Paolotti D, La Rosa S, Capella C, Fiocca R (1999) Clinicopathological profile as a basis for classification of the endocrine tumours of the gastroenteropancreatic tract. Ann Oncol 10(Suppl 2):S9–S15, Epub 1999/07/10PubMedGoogle Scholar
  177. 177.
    Wick MR, Graeme-Cook FM (2001) Pancreatic neuroendocrine neoplasms: a current summary of diagnostic, prognostic, and differential diagnostic information. Am J Clin Pathol 115(Suppl):S28–S45, Epub 2002/05/08PubMedGoogle Scholar
  178. 178.
    Hochwald SN, Zee S, Conlon KC, Colleoni R, Louie O, Brennan MF et al (2002) Prognostic factors in pancreatic endocrine neoplasms: an analysis of 136 cases with a proposal for low-grade and intermediate-grade groups. J Clin Oncol 20(11):2633–2642, Epub 2002/06/01PubMedGoogle Scholar
  179. 179.
    Rindi G, Kloppel G, Alhman H, Caplin M, Couvelard A, de Herder WW et al (2006) TNM staging of foregut (neuro)endocrine tumors: a consensus proposal including a grading system. Virchows Arch 449(4):395–401, Epub 2006/09/13PubMedGoogle Scholar
  180. 180.
    Maitra A, Hansel DE, Argani P, Ashfaq R, Rahman A, Naji A et al (2003) Global expression analysis of well-differentiated pancreatic endocrine neoplasms using oligonucleotide microarrays. Clin Cancer Res 9(16 Pt 1):5988–5995, Epub 2003/12/17PubMedGoogle Scholar
  181. 181.
    Bloomston M, Durkin A, Yang I, Rojiani M, Rosemurgy AS, Enkmann S et al (2004) Identification of molecular markers specific for pancreatic neuroendocrine tumors by genetic profiling of core biopsies. Ann Surg Oncol 11(4):413–419, Epub 2004/04/09PubMedGoogle Scholar
  182. 182.
    Capurso G, Lattimore S, Crnogorac-Jurcevic T, Panzuto F, Milione M, Bhakta V et al (2006) Gene expression profiles of progressive pancreatic endocrine tumours and their liver metastases reveal potential novel markers and therapeutic targets. Endocr Relat Cancer 13(2):541–558, Epub 2006/05/27PubMedGoogle Scholar
  183. 183.
    Couvelard A, Hu J, Steers G, O’Toole D, Sauvanet A, Belghiti J et al (2006) Identification of potential therapeutic targets by gene-expression profiling in pancreatic endocrine tumors. Gastroenterology 131(5):1597–1610, Epub 2006/10/27PubMedGoogle Scholar
  184. 184.
    Duerr EM, Mizukami Y, Ng A, Xavier RJ, Kikuchi H, Deshpande V et al (2008) Defining molecular classifications and targets in gastroenteropancreatic neuroendocrine tumors through DNA microarray analysis. Endocr Relat Cancer 15(1):243–256, Epub 2008/03/04PubMedGoogle Scholar
  185. 185.
    Shida T, Furuya M, Kishimoto T, Nikaido T, Tanizawa T, Koda K et al (2008) The expression of NeuroD and mASH1 in the gastroenteropancreatic neuroendocrine tumors. Mod Pathol 21(11):1363–1370, Epub 2008/07/01PubMedGoogle Scholar
  186. 186.
    Hansel DE, Rahman A, Hermans J, de Krijger RR, Ashfaq R, Yeo CJ et al (2003) Liver metastases arising from well-differentiated pancreatic endocrine neoplasms demonstrate increased VEGF-C expression. Mod Pathol 16(7):652–659PubMedGoogle Scholar
  187. 187.
    Hansel DE, Rahman A, House M, Ashfaq R, Berg K, Yeo CJ et al (2004) Met proto-oncogene and insulin-like growth factor binding protein 3 overexpression correlates with metastatic ability in well-differentiated pancreatic endocrine neoplasms. Clin Cancer Res 10(18 Pt 1):6152–6158, Epub 2004/09/28PubMedGoogle Scholar
  188. 188.
    Vortmeyer AO, Lubensky IA, Skarulis M, Li G, Moon YW, Park WS et al (1999) Multiple endocrine neoplasia type 1: atypical presentation, clinical course, and genetic analysis of multiple tumors. Mod Pathol 12(9):919–924, Epub 1999/09/25PubMedGoogle Scholar
  189. 189.
    Van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536, Epub 2002/02/02Google Scholar
  190. 190.
    Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C et al (2002) Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1(2):203–209, Epub 2002/06/28PubMedGoogle Scholar
  191. 191.
    Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M, McLaughlin ME et al (2002) Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415(6870):436–442, Epub 2002/01/25PubMedGoogle Scholar
  192. 192.
    Metz DC, Jensen RT (2008) Gastrointestinal neuroendocrine tumors: pancreatic endocrine tumors. Gastroenterology 135(5):1469–1492PubMedGoogle Scholar
  193. 193.
    Nasir A, McCarthy S, Agrawal D, Bloom G, Zeringer E, Chen D, et al. (eds) (2008) Novel progression genes in pancreatic endocrine neoplasms. In: Annual meeting of the American Society of Clinical Oncology, ChicagoGoogle Scholar
  194. 194.
    Nasir A, McCarthy S, Zeringer E, Bloom G, Eschrich S, Chen D, et al. (eds) (2008) Discovery and validation of progression-associated genes in primary pancreatic endocrine tumors. In: North American Neuroendocrine Tumor Society (NANETS) symposium, South Hampton, BermudaGoogle Scholar
  195. 195.
    Nasir A, Helm J, Strosberg J, Henderson-Jackson E, Turner L, Hafez N, et al. (eds) (2009) Molecular markers outclass pathologic criteria of malignancy in predicting liver metastases in primary pancreatic endocrine neoplasms. In: International meeting of the European Neuroendocrine Tumor Society (ENETS) meeting, GranadaGoogle Scholar
  196. 196.
    Nasir A, Helm J, Turner L, Chen DT, Strosberg J, Hafez N et al (2011) RUNX1T1: a novel predictor of liver metastasis in primary pancreatic endocrine neoplasms. Pancreas 40(4):627–633, Epub 2011/04/19PubMedGoogle Scholar
  197. 197.
    Henderson-Jackson EB, Helm J, Strosberg J, Nasir NA, Yeatman TJ, Kvols LK et al (2011) Palladin is a marker of liver metastasis in primary pancreatic endocrine carcinomas. Anticancer Res 31(9):2957–2962, Epub 2011/08/27PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Aejaz Nasir
    • 1
    Email author
  • Jonathan R. Strosberg
    • 2
  • Larry K. Kvols
    • 2
  • Jalil Muhammad
    • 3
  • Nelly A. Nasir
    • 4
  • Omie Mills
    • 5
  • Domenico Coppola
    • 2
    • 5
    • 6
  1. 1.Diagnostic & Experimental Pathology & Tailored Therapeutics ProgramEli Lilly & CompanyIndianapolisUSA
  2. 2.GI Tumor Program, Neuroendocrine Research DivisionH. Lee Moffitt Cancer Center and Research InstituteTampaUSA
  3. 3.School of MedicineGeorge Mason UniversityFalls ChurchUSA
  4. 4.Department of Pathology & Laboratory Medicine, Sir Mortimer Jewish General HospitalMcGill UniversityMontrealCanada
  5. 5.Department of Pathology & Cell Biology, College of MedicineUniversity of South FloridaTampaUSA
  6. 6.Department of Anatomic PathologyH. Lee Moffitt Cancer Center and Research InstituteTampaUSA

Personalised recommendations