Molecular Pathology and Diagnostics of Gynecologic Malignancies

  • Rodney E. Shackelford
  • Masoumeh Ghayouri
  • Domenico Coppola
  • Ardeshir HakamEmail author
Part of the Cancer Growth and Progression book series (CAGP, volume 16)


Gynecologic malignancies account for roughly 13 % of solid tissue tumors in women. Many of these malignancies, such as many ovarian tumors, first present at an advanced stage, making them difficult to treat. Until recently the analysis of these malignancies was largely limited to hematoxylin-eosin-stained slide examination, supplemented with immunohistochemical stains. Recently, molecular diagnostic techniques have been applied to these tumors with some success, especially with BRCA1/2 mutations and Lynch syndrome analyses. Here, we describe the present molecular diagnostic tests applied to gynecologic malignancies and discuss possible future developments in this field.


Gynecologic malignancies HPV BRCA1 BRCA2 Mole Nampt Ovary Vulva Fallopian tubes Vagina Lynch syndrome Endometrium 



Cyclin-dependent protein kinase


Double-stranded DNA


Endometrial stromal tumor


US Food and Drug Administration


Hereditary nonpolyposis colorectal cancer


Human papilloma virus


High-resolution melting analysis


Malignant mixed mullerian tumor


Nicotinamide phosphoribosyltransferase


Polymerase chain reaction


Peutz-Jeghers syndrome


Uterine clear cell carcinoma


Uterine endometrial adenocarcinoma


Uterine serous carcinoma



We would like to thank Miss Jennifer Burton for her help in manuscript preparation and proof reading.


  1. 1.
    American Cancer Society (2000) Cancer facts and figures-2000. American Cancer Society, AtlantaGoogle Scholar
  2. 2.
    Parkin DM (2005) Global cancer statistics. CA J Clin 55:74–108Google Scholar
  3. 3.
    American Cancer Society (2006) The worldwide cancer burden. American Cancer Society, AtlantaGoogle Scholar
  4. 4.
    Allison M (2008) Is personalized medicine finally arriving? Nat Biotechnol 26:509–517PubMedGoogle Scholar
  5. 5.
    Brown ML, Lipscomb J, Snyder C (2001) The burden of illness of cancer: economic cost and quality of life. Annu Rev Public Health 22:91–113PubMedGoogle Scholar
  6. 6.
    Munoz N, Bosch FX, de Sanjose S, Herrero R, Castellsague X, Shah KV, Snijders PJ, Meijer CJ, International Agency for Research on Cancer Multicenter Cervical Cancer Study Group (2003) Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 348:518–527PubMedGoogle Scholar
  7. 7.
    Bosch FX, de Sanjose S (2002) Human papillomavirus in cervical cancer. Curr Oncol Rep 4:175–183PubMedGoogle Scholar
  8. 8.
    Li S, Hursting SD, Davis BJ, McLachlan JA, Barrett JC (2003) Environmental exposure, DNA methylation, and gene regulation: lessons from diethylstilbesterol-induced cancers. Ann N Y Acad Sci 983:161–169PubMedGoogle Scholar
  9. 9.
    de Villiers EM, Fauquet C, Broker TR, Bernard HU, zur Hausen H (2004) Classification of papillomaviruses. Virology 324:17–27PubMedGoogle Scholar
  10. 10.
    Shukla S, Bharti AC, Mahata S, Hussain S, Kumar R, Hedau S, Das BC (2009) Infection of human papillomaviruses in cancers of different human organ sites. Indian J Med Res 130:222–233PubMedGoogle Scholar
  11. 11.
    Lorincz AT, Reid R, Jensen AB, Greenberg MD, Lancaster W, Kurman RJ (1992) Human papillomavirus infection of the cervix: relative risk associations of 15 common anogenital types. Obstet Gynecol 79:328–337PubMedGoogle Scholar
  12. 12.
    Wang SS, Zuna RE, Wentzensen N, Dunn ST, Sherman ME, Gold MA, Schiffman M, Wacholder S, Allen RA, Block I, Downing K, Jeronimo J, Carreon JD, Safaeian M, Brown D, Walker JL (2009) Human papillomavirus cofactors by disease progression and human papillomavirus types in the study to understand cervical cancer early endpoints and determinants. Cancer Epidemiol Biomarkers Prev 18:113–120PubMedGoogle Scholar
  13. 13.
    Szostek S, Zawilinska B, Kopec J, Kosz-Vnenchak M (2009) Herpesviruses as possible cofactors in HPV-16-related oncogenesis. Acta Biochim Pol 56:337–342PubMedGoogle Scholar
  14. 14.
    Howley PM, Lowy DR (2001) In: Knipe DM et al (eds) Papillomaviruses and their replication. Lippincott Williams & Wilkins, Philadelphia, pp 2197–2230Google Scholar
  15. 15.
    McGlennen RC (2000) Human papillomavirus oncogenesis. Clin Lab Med 20:383–406PubMedGoogle Scholar
  16. 16.
    Pett M, Coleman N (2007) Integration of high-risk human papillomavirus: a key event in cervical carcinogenesis? J Pathol 212:356–367PubMedGoogle Scholar
  17. 17.
    Jeon S, Allen-Hoffmann BL, Lambert PF (1995) Integration of human papillomavirus type 16 into the human genome correlates with a selective growth advantage of cells. J Virol 69:2989–2997PubMedGoogle Scholar
  18. 18.
    Romanczuk H, Howley PM (1992) Disruption of either the E1 or the E2 regulatory gene of human papillomavirus type 16 increases viral immortalization capacity. Proc Natl Acad Sci U S A 89:3159–3163PubMedGoogle Scholar
  19. 19.
    Romanczuk H, Thierry F, Howley PM (1990) Mutational analysis of cis elements involved in E2 modulation of human papillomavirus type 16 P97 and type 18 P105 promoters. J Virol 64:2849–2859PubMedGoogle Scholar
  20. 20.
    Shackelford RE, Kaufmann WK, Paules RS (1999) Cell cycle control, checkpoint mechanisms, and genotoxic stress. Environ Health Perspect 107(Suppl 1):5–24PubMedGoogle Scholar
  21. 21.
    Kadaja M, Isok-Paas H, Laos T, Ustav E, Ustav M (2009) Mechanism of genomic instability in cells infected with the high-risk human papillomaviruses. PLoS Pathog 5:e1000397PubMedGoogle Scholar
  22. 22.
    Taichman LB, Reilly SS, LaPorta RF (1983) The role of keratinocyte differentiation in the expression of epitheliotropic viruses. J Invest Dermatol 81(1 Suppl):137s–140sPubMedGoogle Scholar
  23. 23.
    Koss LG, Durfee GR (1956) Unusual patterns of squamous epithelium of the uterine cervix: cytologic and histologic study of koilocytotic atypia. Ann N Y Acad Sci 63:1245–1261PubMedGoogle Scholar
  24. 24.
    Pirog EC, Baergen RN, Soslow RA, Tam D, DeMattia AE, Chen YT, Isacson C (2002) Diagnostic accuracy of cervical low-grade squamous intraepithelial lesions is improved with MIB-1 immunostaining. Am J Surg Pathol 26:70–75PubMedGoogle Scholar
  25. 25.
    Logani S, Lu D, Quint WG, Ellenson LH, Pirog EC (2003) Low-grade vulvar and vaginal intraepithelial neoplasia: correlation of histologic features with human papillomavirus DNA detection and MIB-1 immunostaining. Mod Pathol 16:735–741PubMedGoogle Scholar
  26. 26.
    Wheeler CM, Parmenter CA, Hunt WC, Becker TM, Greer CE, Hildesheim A, Manos MM (1993) Determinants of genital human papillomavirus infection among cytologically normal women attending the University of New Mexico student health center. Sex Transm Dis 20:286–289PubMedGoogle Scholar
  27. 27.
    Denny L, Kuhn L, Pollack A, Wainwright H, Wright TC Jr (2000) Evaluation of alternative methods of cervical cancer screening for resource-poor settings. Cancer 89:826–833PubMedGoogle Scholar
  28. 28.
    Bauer HM, Hildesheim A, Schiffman MH, Glass AG, Rush BB, Scott DR, Cadell DM, Kurman RJ, Manos MM (1993) Determinants of genital human papillomavirus infection in low-risk women in Portland, Oregon. Sex Transm Dis 20:274–278PubMedGoogle Scholar
  29. 29.
    Bosch FX, de Sanjosé S (2007) The epidemiology of human papillomavirus infection and cervical cancer. Dis Markers 23:213–227PubMedGoogle Scholar
  30. 30.
    Fonatsch C, Duchrow M, Rieder H, Schlüter C, Gerdes J (1991) Assignment of the human Ki-67 gene (MK167) to 10q25-qter. Genomics 11:476–477PubMedGoogle Scholar
  31. 31.
    Gerdes J, Lemke H, Baisch H, Wacker H-H, Schwab U, Stein H (1984) Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol 133:1710–1715PubMedGoogle Scholar
  32. 32.
    Schlüter C, Duchrow M, Wohlenberg C, Becker MH, Key G, Flad HD, Gerdes J (1993) The cell proliferation-associated antigen of antibody Ki-67: a very large, ubiquitous nuclear protein with numerous repeated elements, representing a new kind of cell cycle-maintaining proteins. J Cell Biol 123:513–522PubMedGoogle Scholar
  33. 33.
    Payne S, Kernohan NM, Walker F (1996) Proliferation in the normal cervix and in preinvasive cervical lesions. J Clin Pathol 49:667–671PubMedGoogle Scholar
  34. 34.
    Isacson C, Kessis TD, Hedrick L, Cho KR (1996) Both cell proliferation and apoptosis increase with lesion grade in cervical neoplasia but do not correlate with human papillomavirus type. Cancer Res 56:669–674PubMedGoogle Scholar
  35. 35.
    Sahebali S, Depuydt CE, Segers K, Vereecken AJ, Van Marck E, Bogers JJ (2003) Ki-67 immunocytochemistry in liquid based cervical cytology: useful as an adjunctive tool? Clin Pathol 56:681–686Google Scholar
  36. 36.
    Scurry J, Beshay V, Cohen C, Allen D (1998) Ki67 expression in lichen sclerosus of vulva in patients with and without associated squamous cell carcinoma. Histopathology 32:399–404PubMedGoogle Scholar
  37. 37.
    Serrano M, Hannon GJ, Beach D (1993) A new regulatory motif in cell cycle control causing specific inhibition of cycling D/CDK4. Nature 366:704–707PubMedGoogle Scholar
  38. 38.
    Cobrinik D, Dowdy SF, Hinds PW, Mittnacht S, Weinberg RA (1992) The retinoblastoma protein and the regulation of cell cycling. Trends Biochem Sci 17:312–315PubMedGoogle Scholar
  39. 39.
    Mantovani F, Banks L (2001) The human papillomavirus E6 protein and its contribution to malignant progression. Oncogene 20:7874–7887PubMedGoogle Scholar
  40. 40.
    Munger K, Basile JR, Duensing S, Eichten A, Gonzalez SL, Grace M, Zacny VL (2001) Biological activities and molecular targets of the human papillomavirus E7 oncoprotein. Oncogene 20:7888–7898PubMedGoogle Scholar
  41. 41.
    Khleif SN, DeGregori J, Yee CL, Otterson GA, Kaye FJ, Nevins JR, Howley PM (1996) Inhibition of cyclin D-CDK4/CDK6 activity is associated with an E2F-mediated induction of cyclin kinase inhibitor activity. Proc Natl Acad Sci U S A 93:4350–4354PubMedGoogle Scholar
  42. 42.
    Cuschieri K, Wentzensen N (2008) Human papillomavirus mRNA and p16 detection as biomarkers for the improved diagnosis of cervical neoplasia. Cancer Epidemiol Biomarkers Prev 17:2536–2545PubMedGoogle Scholar
  43. 43.
    Horree N, Heintz AP, Sie-Go DM, van Diest PJ (2007) p16 is consistently expressed in endometrial tubal metaplasia. Cell Oncol 29:37–45PubMedGoogle Scholar
  44. 44.
    Bryce LA, Morrison N, Hoare SF, Muir S, Keith WN (2000) Mapping of the gene for the human telomerase reverse transcriptase, hTERT, to chromosome 5p15.33 by fluorescence in situ hybridization. Neoplasia 2:197–201PubMedGoogle Scholar
  45. 45.
    Nakamura TM, Morin GB, Chapman KB, Weinrich SL, Andrews WH, Lingner J, Harley CB, Cech TR (1997) Telomerase catalytic subunit homologs from fission yeast and human. Science 277:955–959PubMedGoogle Scholar
  46. 46.
    Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011–2015PubMedGoogle Scholar
  47. 47.
    Kailash U, Soundararajan CC, Lakshmy R, Arora R, Vivekanandhan S, Das BC (2006) Telomerase activity as an adjunct to high-risk human papillomavirus types 16 and 18 and cytology screening in cervical cancer. Br J Cancer 95(9):1250–1257, Epub 2006 Oct 24PubMedGoogle Scholar
  48. 48.
    Sui W, Ou M, Dai Y, Chen J, Lan H, Yan Q, Huang H (2009) Gain of the human telomerase RNA gene TERC at 3q26 is strongly associated with cervical intraepithelial neoplasia and carcinoma. Int J Gynecol Cancer 19:1303–1306PubMedGoogle Scholar
  49. 49.
    Ancuţa E, Ancuţa C, Cozma LG, Iordache C, Anghelache-Lupaşcu I, Anton E, Carasevici E, Chirieac R (2009) Tumor biomarkers in cervical cancer: focus on Ki-67 proliferation factor and E-cadherin expression. Rom J Morphol Embryol 50:413–418PubMedGoogle Scholar
  50. 50.
    Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dötsch V, Andrews NC, Caput D, McKeon F (1998) p63, a p53 homolog at 3q27–29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell 2:305–316PubMedGoogle Scholar
  51. 51.
    Shirendeb U, Hishikawa Y, Moriyama S, Win N, Thu MM, Mar KS, Khatanbaatar G, Masuzaki H, Koji T (2009) Human papillomavirus infection and its possible correlation with p63 expression in cervical cancer in Japan, Mongolia, and Myanmar. Acta Histochem Cytoc 42:181–190Google Scholar
  52. 52.
    Khan MJ, Castle PE, Lorincz AT, Wacholder S, Sherman M, Scott DR, Rush BB, Glass AG, Schiffman M (2005) The elevated 10-year risk of cervical precancer and cancer in women with human papillomavirus (HPV) type 16 or 18 and the possible utility of type-specific HPV testing in clinical practice. Natl Cancer Inst 97:1072–1079Google Scholar
  53. 53.
    Gravitt PE, Kovacic MB, Herrero R, Schiffman M, Bratti C, Hildesheim A, Morales J, Alfaro M, Sherman ME, Wacholder S, Rodriguez AC, Burk RD (2007) High load for most high risk human papillomavirus genotypes is associated with prevalent cervical cancer precursors but only HPV16 load predicts the development of incident disease. Int J Cancer 121:2787–2793PubMedGoogle Scholar
  54. 54.
    Lamarcq L, Deeds J, Ginzinger D, Perry J, Padmanabha S, Smith-McCune K (2002) Measurements of human papillomavirus transcripts by real time quantitative reverse transcription-polymerase chain reaction in samples collected for cervical cancer screening. J Mol Diagn 4:97–102PubMedGoogle Scholar
  55. 55.
    Gharizadeh B, Oggionni M, Zheng B, Akom E, Pourmand N, Ahmadian A, Wallin KL, Nyrén P (2005) Type-specific multiple sequencing primers: a novel strategy for reliable and rapid genotyping of human papillomaviruses by pyrosequencing technology. J Mol Diagn 7:198–205PubMedGoogle Scholar
  56. 56.
    Schiffman MH, Kiviat NB, Burk RD, Shah KV, Daniel RW, Lewis R, Kuypers J, Manos MM, Scott DR, Sherman ME et al (1995) Accuracy and interlaboratory reliability of human papillomavirus DNA testing by hybrid capture. J Clin Microbiol 33:545–550PubMedGoogle Scholar
  57. 57.
    Negri G, Rigo B, Vittadello F, Egarter-Vigl E, Mian C (2004) Human papillomavirus typing with hybrid capture II on archived liquid-based cytologic specimens: is HPV typing always reproducible? Am J Clin Pathol 122:90–93PubMedGoogle Scholar
  58. 58.
    Brosens LA, van Hattem WA, Jansen M, de Leng WW, Giardiello FM, Offerhaus GJ (2007) Gastrointestinal polyposis syndromes. Curr Mol Med 7:29–46PubMedGoogle Scholar
  59. 59.
    Boardman LA, Thibodeau SN, Schaid DJ, Lindor NM, McDonnell SK, Burgart LJ, Ahlquist DA, Podratz KC, Pittelkow M, Hartmann LC (1998) Increased risk for cancer in patients with the Peutz-Jeghers syndrome. Ann Intern Med 128:896–899PubMedGoogle Scholar
  60. 60.
    Giardiello FM, Welsh SB, Hamilton SR, Offerhaus GJ, Gittelsohn AM, Booker SV, Krush AJ, Yardley JH, Luk GD (1987) Increased risk of cancer in the Peutz-Jeghers syndrome. N Engl J Med 316:1511–1514PubMedGoogle Scholar
  61. 61.
    Karuman P, Gozani O, Odze RD et al (2001) The Peutz–Jegher gene product LKB1 is a mediator of p53-dependent cell death. Mol Cell 7:1307–1319PubMedGoogle Scholar
  62. 62.
    Gong L, Zhang WD, Liu XY, Han XJ, Yao L, Zhu SJ, Lan M, Li YH, Zhang W (2010) Clonal status and clinicopathological observation of cervical minimal deviation adenocarcinoma. Diagn Pathol 5:25PubMedGoogle Scholar
  63. 63.
    Young RH (2005) Sex cord-stromal tumors of the ovary and testis: their similarities and differences with consideration of selected problems. Mod Pathol 18(Suppl 2):S81–S98PubMedGoogle Scholar
  64. 64.
    Howe JR, Roth S, Ringold JC, Summers RW, Järvinen HJ, Sistonen P, Tomlinson IP, Houlston RS, Bevan S, Mitros FA, Stone EM, Aaltonen LA (1998) Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science 280:1086–1088PubMedGoogle Scholar
  65. 65.
    Calva-Cerqueira D, Chinnathambi S, Pechman B, Bair J, Larsen-Haidle J, Howe JR (2009) The rate of germline mutations and large deletions of SMAD4 and BMPR1A in juvenile polyposis. Clin Genet 75:79–85PubMedGoogle Scholar
  66. 66.
    Sweet K, Willis J, Zhou XP, Gallione C, Sawada T, Alhopuro P, Khoo SK, Patocs A, Martin C, Bridgeman S, Heinz J, Pilarski R, Lehtonen R, Prior TW, Frebourg T, Teh BT, Marchuk DA, Aaltonen LA, Eng C (2005) Molecular classification of patients with unexplained hamartomatous and hyperplastic polyposis. JAMA 294:2465–2473PubMedGoogle Scholar
  67. 67.
    Tavassoli FA, Devilee P (eds) (2003) World Health Organization classification of tumors: pathology and genetics. Tumours of the breast and female genital organs. IARC, LyonGoogle Scholar
  68. 68.
    Gilks CB, Prat J (2009) Ovarian carcinoma pathology and genetics: recent advances. Hum Pathol 40:1213–1223PubMedGoogle Scholar
  69. 69.
    Auersperg N, Ota T, Mitchell GW (2002) Early events in ovarian epithelial carcinogenesis: progress and problems in experimental approaches. Int J Gynecol Cancer 12:691–703PubMedGoogle Scholar
  70. 70.
    Brown ML, Riley GF, Schussler N, Etzioni RD (2002) Estimated health care costs related to cancer treatment from SEER-Medicare data. Medical Care 40(8 Suppl):IV104–IV117Google Scholar
  71. 71.
    Gilks CB (2010) Molecular abnormalities in ovarian cancer subtypes other than high-grade serous carcinoma. J Oncol 2010:740968PubMedGoogle Scholar
  72. 72.
    Malumbres M, Barbacid M (2003) RAS oncogenes: the first 30 years. Nat Rev Cancer 3:459–465PubMedGoogle Scholar
  73. 73.
    Der CJ, Krontiris TG, Cooper GM (1982) Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses. Proc Natl Acad Sci U S A 79:3637–3640PubMedGoogle Scholar
  74. 74.
    Graziani A, Gramaglia D, dalla Zonca P, Comoglio PM (1993) Hepatocyte growth factor/scatter factor stimulates the Ras-guanine nucleotide exchanger. J Biol Chem 268:9165–9168PubMedGoogle Scholar
  75. 75.
    Hu YP, Patil SB, Panasiewicz M, Li W, Hauser J, Humphrey LE, Brattain MG (2008) Heterogeneity of receptor function in colon carcinoma cells determined by cross-talk between type I insulin-like growth factor receptor and epidermal growth factor receptor. Cancer Res 68:8004–8013PubMedGoogle Scholar
  76. 76.
    Bos JL (1989) Ras oncogenes in human cancer: a review. Cancer Res 49:4682–4689PubMedGoogle Scholar
  77. 77.
    Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signaling network. Nat Rev Mol Cell Biol 2:127–137PubMedGoogle Scholar
  78. 78.
    Singer G, Oldt R 3rd, Cohen Y, Wang BG, Sidransky D, Kurman RJ, Shih I-M (2003) Mutations in BRAF and KRAS characterize the development of low-grade ovarian serous carcinoma. J Natl Cancer Inst 95:484–486PubMedGoogle Scholar
  79. 79.
    Körner M, Burckhardt E, Mazzucchelli L (2006) Higher frequency of chromosomal aberrations in ovarian endometriosis compared to extragonadal endometriosis: a possible link to endometrioid adenocarcinoma. Mod Pathol 19:1615–1623PubMedGoogle Scholar
  80. 80.
    Barault L, Veyrie N, Jooste V, Lecorre D, Chapusot C, Ferraz JM, Lièvre A, Cortet M, Bouvier AM, Rat P, Roignot P, Faivre J, Laurent-Puig P, Piard F (2008) Mutations in the RAS-MAPK, PI(3)K (phosphatidylinositol-3-OH kinase) signaling network correlate with poor survival in a population-based series of colon cancers. Int J Cancer 122:2255–2259PubMedGoogle Scholar
  81. 81.
    Loupakis F, Ruzzo A, Cremolini C, Vincenzi B, Salvatore L, Santini D, Masi G, Stasi I, Canestrari E, Rulli E, Floriani I, Bencardino K, Galluccio N, Catalano V, Tonini G, Magnani M, Fontanini G, Basolo F, Falcone A, Graziano F (2009) KRAS codon 61, 146 and BRAF mutations predict resistance to cetuximab plus irinotecan in KRAS codon 12 and 13 wild-type metastatic colorectal cancer. Br J Cancer 101:715–721PubMedGoogle Scholar
  82. 82.
    Benvenuti S, Sartore-Bianchi A, Di Nicolantonio F, Zanon C, Moroni M, Veronese S, Siena S, Bardelli A (2007) Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies. Cancer Res 67:2643–2648PubMedGoogle Scholar
  83. 83.
    Mayr D, Hirschmann A, Löhrs U, Diebold J (2006) KRAS and BRAF mutations in ovarian tumors: a comprehensive study of invasive carcinomas, borderline tumors and extraovarian implants. Gynecol Oncol 103(3):883–887PubMedGoogle Scholar
  84. 84.
    Ueda M, Toji E, Noda S (2007) Germ line and somatic mutations of BRAF V599E in ovarian carcinoma. Int J Gynecol Cancer 17:794–797PubMedGoogle Scholar
  85. 85.
    Chen YL, Law PY, Loh HH (2005) Inhibition of PI3K/Akt signaling: an emerging paradigm for targeted cancer therapy. Curr Med Chem Anticancer Agents 5:575–589PubMedGoogle Scholar
  86. 86.
    Thomas EJ, Campbell IG (2000) Molecular genetic defects in endometriosis. Gynecol Obstet Invest 50:44–50PubMedGoogle Scholar
  87. 87.
    Obata K, Hoshiai H (2000) Common genetic changes between endometriosis and ovarian cancer. Gynecol Obstet Invest 50:39–43PubMedGoogle Scholar
  88. 88.
    Oliva E, Sarrio D, Brachtel EF, Sánchez-Estévez C, Soslow RA, Moreno-Bueno G, Palacios J (2006) High frequency of beta-catenin mutations in borderline endometrioid tumours of the ovary. J Pathol 208:708–713PubMedGoogle Scholar
  89. 89.
    Ilyas M, Tomlinson IP (1997) The interactions of APC, E-cadherin and beta-catenin in tumour development and progression. J Pathol 182:128–137PubMedGoogle Scholar
  90. 90.
    van Es JH, Barker N, Clevers H (2003) You Wnt some, you lose some: oncogenes in the Wnt signaling pathway. Curr Opin Genet Dev 13:28–33PubMedGoogle Scholar
  91. 91.
    Palacios J, Gamallo C (1998) Mutations in the beta-catenin gene (CTNNB1) in endometrioid ovarian carcinomas. Cancer Res 58:1344–1347PubMedGoogle Scholar
  92. 92.
    Dinulescu DM, Ince TA, Quade BJ, Shafer SA, Crowley D, Jacks T (2005) Role of K-ras and Pten in the development of mouse models of endometriosis and endometrioid ovarian cancer. Nat Med 11:63–70PubMedGoogle Scholar
  93. 93.
    Wu R, Hendrix-Lucas N, Kuick R, Zhai Y, Schwartz DR, Akyol A, Hanash S, Misek DE, Katabuchi H, Williams BO, Fearon ER, Cho KR (2007) Mouse model of human ovarian endometrioid adenocarcinoma based on somatic defects in the Wnt/beta-catenin and PI3K/Pten signaling pathways. Cancer Cell 11:321–333PubMedGoogle Scholar
  94. 94.
    Enomoto T, Weghorst CM, Inoue M, Tanizawa O, Rice JM (1991) K-ras activation occurs frequently in mucinous adenocarcinomas and rarely in other common epithelial tumors of the human ovary. Am J Pathol 139:777–785PubMedGoogle Scholar
  95. 95.
    Cuatrecasas M, Villanueva A, Matias-Guiu X, Prat J (1997) K-ras mutations in mucinous ovarian tumors: a clinicopathologic and molecular study of 95 cases. Cancer 79:1581–1586PubMedGoogle Scholar
  96. 96.
    Karaferic A, Jovanovic D, Jelic S (2009) Expression of HER2/neu, estrogen and progesterone receptors, CA 125 and CA19-9 on cancer cell membrane in patients with serous and mucinous carcinoma of the ovary. J BUON 14:635–639PubMedGoogle Scholar
  97. 97.
    Kuo KT, Mao TL, Jones S, Veras E, Ayhan A, Wang TL, Glas R, Slamon D, Velculescu VE, Kuman RJ, Shih I-M (2009) Frequent activating mutations of PIK3CA in ovarian clear cell carcinoma. Am J Pathol 174:1597–1601PubMedGoogle Scholar
  98. 98.
    Kuo KT, Mao TL, Chen X, Feng Y, Nakayama K, Wang Y, Glas R, Ma MJ, Kurman RJ, Shih IM, Wang TL (2010) DNA copy numbers profiles in affinity-purified ovarian clear cell carcinoma. Clin Cancer Res 16:1997–2008PubMedGoogle Scholar
  99. 99.
    Cossu-Rocca P, Zhang S, Roth LM, Eble JN, Zheng W, Karim FW, Michael H, Emerson RE, Jones TD, Hattab EM, Cheng L (2006) Chromosome 12p abnormalities in dysgerminoma of the ovary: a FISH analysis. Mod Pathol 19:611–615PubMedGoogle Scholar
  100. 100.
    Hoei-Hansen CE, Kraggerud SM, Abeler VM, Kaern J, Rajpert-De Meyts E, Lothe RA (2007) Ovarian dysgerminomas are characterised by frequent KIT mutations and abundant expression of pluripotency markers. Mol Cancer 6:12PubMedGoogle Scholar
  101. 101.
    Tian Q, Frierson HF Jr, Krystal GW, Moskaluk CA (1999) Activating c-kit gene mutations in human germ cell tumors. Am J Pathol 154:1643–1647PubMedGoogle Scholar
  102. 102.
    Pauls K, Wardelmann E, Merkelbach-Bruse S, Büttner R, Zhou H (2004) c-KIT codon 816 mutation in a recurrent and metastatic dysgerminoma of a 14-year-old girl: case study. Virchows Arch 445:651–654PubMedGoogle Scholar
  103. 103.
    Benayoun BA, Caburet S, Dipietromaria A, Georges A, D’Haene B, Pandaranayaka PJ, L’Hôte D, Todeschini AL, Krishnaswamy S, Fellous M, De Baere E, Veitia RA (2010) Functional exploration of the adult ovarian granulosa cell tumor-associated somatic FOXL2 mutation p.Cys134Trp (c.402C > G). PLoS One 5:e8789PubMedGoogle Scholar
  104. 104.
    Kalfa N, Philibert P, Patte C, Ecochard A, Duvillard P, Baldet P, Jaubert F, Fellous M, Sultan C (2007) Extinction of FOXL2 expression in aggressive ovarian granulosa cell tumors in children. Fertil Steril 87:896–901PubMedGoogle Scholar
  105. 105.
    Shah SP, Kobel M, Senz J, Morin RD, Clarke BA et al (2009) Mutation of FOXL2 in granulosa-cell tumors of the ovary. N Engl J Med 360:2719–2729PubMedGoogle Scholar
  106. 106.
    Crisponi L, Deiana M, Loi A, Chiappe F, Uda M et al (2001) The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/ epicanthus inversus syndrome. Nat Genet 27:159–166PubMedGoogle Scholar
  107. 107.
    Cocquet J, De Baere E, Gareil M, Pannetier M, Xia X, Fellous M, Veitia RA (2003) Structure, evolution and expression of the FOXL2 transcription unit. Cytogenet Genome Res 101:206–211PubMedGoogle Scholar
  108. 108.
    Anglesio MS, Arnold JM, George J, Tinker AV, Tothill R, Waddell N, Simms L, Locandro B, Fereday S, Traficante N, Russell P, Sharma R, Birrer MJ, AOCS Study Group, deFazio A, Chenevix-Trench G, Bowtell DD (2008) Mutation of ERBB2 provides a novel alternative mechanism for the ubiquitous activation of RAS-MAPK in ovarian serous low malignant potential tumors. Mol Cancer Res 6:1678–1690PubMedGoogle Scholar
  109. 109.
    Dehari R, Kurman RJ, Logani S, Shih IM (2007) The development of high-grade serous carcinoma from atypical proliferative (borderline) serous tumors and low-grade micropapillary serous carcinoma: a morphologic and molecular genetic analysis. Am J Surg Pathol 31:1007–1012PubMedGoogle Scholar
  110. 110.
    Ahmed AA, Etemadmoghadam D, Temple J, Lynch AG, Riad M, Sharma R, Stewart C, Fereday S, Caldas C, Defazio A, Bowtell D, Brenton JD (2010) Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary. J Pathol 221:49–56PubMedGoogle Scholar
  111. 111.
    Esteller M, Silva JM, Dominguez G, Bonilla F, Matias-Guiu X, Lerma E, Bussaglia E, Prat J, Harkes IC, Repasky EA, Gabrielson E, Schutte M, Baylin SB, Herman JG (2000) Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst 92:564–569PubMedGoogle Scholar
  112. 112.
    Pal T, Permuth-Wey J, Betts JA, Krischer JP, Fiorica J, Arango H, LaPolla J, Hoffman M, Martino MA, Wakeley K, Wilbanks G, Nicosia S, Cantor A, Sutphen R (2005) BRCA1 and BRCA2 mutations account for a large proportion of ovarian carcinoma cases. Cancer 104:2807–2816PubMedGoogle Scholar
  113. 113.
    Thrall M, Gallion HH, Kryscio R, Kapali M, Armstrong DK, DeLoia JA (2006) BRCA1 expression in a large series of sporadic ovarian carcinomas: a Gynecologic Oncology Group study. Int J Gynecol Cancer 16(Suppl 1):166–171PubMedGoogle Scholar
  114. 114.
    Shackelford RE, Bui MM, Coppola D, Hakam A (2010) Over-expression of nicotinamide phosphoribosyltransferase in ovarian cancers. Int J Clin Exp Pathol 3:522–527PubMedGoogle Scholar
  115. 115.
    Garten A, Petzold S, Körner A, Imai S, Kiess W (2009) Nampt: linking NAD biology, metabolism and cancer. Trends Endocrinol Metab 20:130–138PubMedGoogle Scholar
  116. 116.
    Hasmann M, Schemainda I (2003) FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis. Cancer Res 63:7436–7442PubMedGoogle Scholar
  117. 117.
    Pogrebniak A, Schemainda I, Azzam K, Pelka- Fleischer R, Nüssler V, Hasmann M (2006) Chemopotentiating effects of a novel NAD biosynthesis inhibitor, FK866, in combination with antineoplastic agents. Eur J Med Res 11:313–321PubMedGoogle Scholar
  118. 118.
    Szabo CI, King MC (1995) Inherited breast and ovarian cancer. Hum Mol Genet 4:1811–1817PubMedGoogle Scholar
  119. 119.
    Neuhausen S, Gilewski T, Norton L, Tran T, McGuire P, Swensen J, Hampel H, Borgen P, Brown K, Skolnick M, Shattuck-Eidens D, Jhanwar S, Goldgar D, Offit K (1996) Recurrent BRCA2 6174delT mutations in Ashkenazi Jewish women affected by breast cancer. Nat Genet 13:126–128PubMedGoogle Scholar
  120. 120.
    Struewing JP, Abeliovich D, Peretz T, Avishai N, Kaback MM, Collins FS, Brody LC (1995) The carrier frequency of the BRCA1 185delAG mutation is approximately 1 % in Ashkenazi Jewish individuals. Nat Genet 11:198–200PubMedGoogle Scholar
  121. 121.
    Ferla R, Calò V, Cascio S, Rinaldi G, Badalamenti G, Carreca I, Surmacz E, Colucci G, Bazan V, Russo A (2007) Founder mutations in BRCA1 and BRCA2 genes. Ann Oncol 18(Suppl 6):vi93–vi98PubMedGoogle Scholar
  122. 122.
    Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ, Qin J (2000) BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev 14:927–939PubMedGoogle Scholar
  123. 123.
  124. 124.
  125. 125.
  126. 126.
    King MC, Wieand S, Hale K, Lee M, Walsh T, Owens K, Tait J, Ford L, Dunn BK, Costantino J, Wickerham L, Wolmark N, Fisher B, National Surgical Adjuvant Breast and Bowel Project (2001) Tamoxifen and breast cancer incidence among women with inherited mutations in BRCA1 and BRCA2: National Surgical Adjuvant Breast and Bowel Project (NSABP-P1) Breast Cancer Prevention Trial. JAMA 286:2251–2256PubMedGoogle Scholar
  127. 127.
    Bellosillo B, Tusquets I (2006) Pitfalls and caveats in BRCA sequencing. Ultrastruct Pathol 30:229–235PubMedGoogle Scholar
  128. 128.
    Takano EA, Mitchell G, Fox SB, Dobrovic A (2008) Rapid detection of carriers with BRCA1 and BRCA2 mutations using high resolution melting analysis. BMC Cancer 8:59PubMedGoogle Scholar
  129. 129.
    Franklin WA, Haney J, Sugita M, Bemis L, Jimeno A, Messersmith WA (2010) KRAS mutation: comparison of testing methods and tissue sampling techniques in colon cancer. J Mol Diagn 12:43–50PubMedGoogle Scholar
  130. 130.
    Huang MM, Arnheim N, Goodman MF (1992) Extension of base mispairs by Taq DNA polymerase: implications for single nucleotide discrimination in PCR. Nucleic Acids Res 20:4567–4573PubMedGoogle Scholar
  131. 131.
    Abbaszadegan MR, Struewing JP, Brown KM, Snider JV, Goodsaid F, Gore-Langton R, Hughes MR (1997) Automated detection of prevalent mutations in BRCA1 and BRCA2 genes, using a fluorogenic PCR allelic discrimination assay. Genet Test 1:171–180PubMedGoogle Scholar
  132. 132.
    Powell SM, Petersen GM, Krush AJ, Booker S, Jen J, Giardiello FM, Hamilton SR, Vogelstein B, Kinzler KW (1993) Molecular diagnosis of familial adenomatous polyposis. N Engl J Med 329:1982–1987PubMedGoogle Scholar
  133. 133.
    Gerhardus A, Schleberger H, Schlegelberger B, Gadzicki D (2007) Diagnostic accuracy of methods for the detection of BRCA1 and BRCA2 mutations: a systematic review. Eur J Hum Genet 15:619–627PubMedGoogle Scholar
  134. 134.
    Kadouri L, Bercovich D, Elimelech A, Lerer I, Sagi M, Glusman G, Shochat C, Korem S, Hamburger T, Nissan A, Abu-Halaf N, Badrriyah M, Abeliovich D, Peretz T (2007) A novel BRCA-1 mutation in Arab kindred from east Jerusalem with breast and ovarian cancer. BMC Cancer 7:14PubMedGoogle Scholar
  135. 135.
    Vidal-Millán S, Taja-Chayeb L, Gutiérrez-Hernández O, Ramírez Ugalde MT, Robles-Vidal C, Bargallo-Rocha E, Mohar-Betancourt A, Dueñas-González A (2009) Mutational analysis of BRCA1 and BRCA2 genes in Mexican breast cancer patients. Eur J Gynaecol Oncol 30:527–530PubMedGoogle Scholar
  136. 136.
    Ratajska M, Brozek I, Senkus-Konefka E, Jassem J, Stepnowska M, Palomba G, Pisano M, Casula M, Palmieri G, Borg A, Limon J (2008) BRCA1 and BRCA2 point mutations and large rearrangements in breast and ovarian cancer families in Northern Poland. Oncol Rep 19:263–268PubMedGoogle Scholar
  137. 137.
    Kauff ND, Domchek SM, Friebel TM, Robson ME, Lee J, Garber JE, Isaacs C, Evans DG, Lynch H, Eeles RA, Neuhausen SL, Daly MB, Matloff E, Blum JL, Sabbatini P, Barakat RR, Hudis C, Norton L, Offit K, Rebbeck TR (2008) Risk-reducing salpingo-oophorectomy for the prevention of BRCA1- and BRCA2-associated breast and gynecologic cancer: a multicenter, prospective study. J Clin Oncol 26:1331–1337PubMedGoogle Scholar
  138. 138.
    Narod SA, Brunet JS, Ghadirian P, Robson M, Heimdal K, Neuhausen SL, Stoppa-Lyonnet D, Lerman C, Pasini B, de los Rios P, Weber B, Lynch H, Hereditary Breast Cancer Clinical Study Group (2000) Tamoxifen and risk of contralateral breast cancer in BRCA1 and BRCA2 mutation carriers: a case–control study. Hereditary Breast Cancer Clinical Study Group. Lancet 356:1876–1881PubMedGoogle Scholar
  139. 139.
    Gronwald J, Tung N, Foulkes WD, Offit K, Gershoni R, Daly M, Kim-Sing C, Olsson H, Ainsworth P, Eisen A, Saal H, Friedman E, Olopade O, Osborne M, Weitzel J, Lynch H, Ghadirian P, Lubinski J, Sun P, Narod SA, Hereditary Breast Cancer Clinical Study Group (2006) Tamoxifen and contralateral breast cancer in BRCA1 and BRCA2 carriers: an update. Int J Cancer 118:2281–2284PubMedGoogle Scholar
  140. 140.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics, 2008. CA Cancer J Clin 58:71–96PubMedGoogle Scholar
  141. 141.
    Han SS, Cho JY, Park IA, Park SK, Jeon YT, Kim JW, Park NH, Kang SB, Lee HP, Song YS (2008) Feasibility of routine lymphadenectomy in clinical stage-I endometrial cancer. Med Sci Monit 14:CR183–CR189PubMedGoogle Scholar
  142. 142.
    Cho KR (2009) Ovarian cancer update: lessons from morphology, molecules, and mice. Arch Pathol Lab Med 133:1775–1781PubMedGoogle Scholar
  143. 143.
    Bokhman JV (1983) Two pathogenetic types of endometrial carcinoma. Gynecol Oncol 15:10–17PubMedGoogle Scholar
  144. 144.
    Deligdisch L, Kalir T, Cohen CJ, de Latour M, Le Bouedec G, Penault-Llorca F (2000) Endometrial histopathology in 700 patients treated with tamoxifen for breast cancer. Gynecol Oncol 78:181–186PubMedGoogle Scholar
  145. 145.
    Fisher B, Costantino JP, Wickerham DL, Redmond CK, Kavanah M, Cronin WM, Vogel V, Robidoux A, Dimitrov N, Atkins J, Daly M, Wieand S, Tan-Chiu E, Ford L, Wolmark N (1998) Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst 90(18):1371–1388PubMedGoogle Scholar
  146. 146.
    Mourits MJ, Ten Hoor KA, van der Zee AG, Willemse PH, de Vries EG, Hollema H (2002) The effects of tamoxifen on proliferation and steroid receptor expression in postmenopausal endometrium. J Clin Pathol 55:514–519PubMedGoogle Scholar
  147. 147.
    Lax SF (2004) Molecular genetic pathways in various types of endometrial carcinoma: from a phenotypical to a molecular-based classification. Virchows Arch 444:213–223PubMedGoogle Scholar
  148. 148.
    Hecht JL, Mutter GL (2006) Molecular and pathologic aspects of endometrial carcinogenesis. J Clin Oncol 24:4783–4791PubMedGoogle Scholar
  149. 149.
    Bansal N, Yendluri V, Wenham RM (2009) The molecular biology of endometrial cancers and the implications for pathogenesis, classification, and targeted therapies. Cancer Control 16:8–13PubMedGoogle Scholar
  150. 150.
    Levine RL, Cargile CB, Blazes MS, van Rees B, Kurman RJ, Ellenson LH (1998) PTEN mutations and microsatellite instability in complex atypical hyperplasia, a precursor lesion to uterine endometrioid carcinoma. Cancer Res 58:3254–3258PubMedGoogle Scholar
  151. 151.
    Sun H, Enomoto T, Fujita M, Wada H, Yoshino K, Ozaki K, Nakamura T, Murata Y (2001) Mutational analysis of the PTEN gene in endometrial carcinoma and hyperplasia. Am J Clin Pathol 115:32–38PubMedGoogle Scholar
  152. 152.
    Samarnthai N, Hall K, Yeh IT (2010) Molecular profiling of endometrial malignancies. Obstet Gynecol Int 2010:162363PubMedGoogle Scholar
  153. 153.
    Samuels Y, Velculescu VE (2004) Oncogenic mutations of PIK3CA in human cancers. Cell Cycle 3:1221–1224PubMedGoogle Scholar
  154. 154.
    Wong KK, Engelman JA, Cantley LC (2010) Targeting the PI3K signaling pathway in cancer. Curr Opin Genet Dev 20:87–90PubMedGoogle Scholar
  155. 155.
    Liu P, Cheng H, Roberts TM, Zhao JJ (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8:627–644PubMedGoogle Scholar
  156. 156.
    Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657PubMedGoogle Scholar
  157. 157.
    Catasus L, Gallardo A, Cuatrecasas M, Prat J (2009) Concomitant PI3K-AKT and p53 alterations in endometrial carcinomas are associated with poor prognosis. Mod Pathol 22:522–529PubMedGoogle Scholar
  158. 158.
    Dobrzycka B, Terlikowski SJ, Mazurek A, Kowalczuk O, Niklińska W, Chyczewski L, Kulikowski M (2009) Mutations of the KRAS oncogene in endometrial hyperplasia and carcinoma. Folia Histochem Cytobiol 47:65–68PubMedGoogle Scholar
  159. 159.
    Kovalev S, Marchenko ND, Gugliotta BG, Chalas E, Chumas J, Moll UM (1998) Loss of p53 function in uterine papillary serous carcinoma. Hum Pathol 29:613–619PubMedGoogle Scholar
  160. 160.
    Zhang X, Liang SX, Jia L, Chen N, Fadare O, Schwartz PE, Kong B, Zheng W (2009) Molecular identification of “latent precancers” for endometrial serous carcinoma in benign-appearing endometrium. Am J Pathol 174:2000–2006PubMedGoogle Scholar
  161. 161.
    Santin AD, Bellone S, Van Stedum S, Bushen W, De Las Casas LE, Korourian S, Tian E, Roman JJ, Burnett A, Pecorelli S (2006) Determination of HER2/neu status in uterine serous papillary carcinoma: comparative analysis of immunohistochemistry and fluorescence in situ hybridization. Gynecol Oncol 98:24–30Google Scholar
  162. 162.
    Goldstein NS, Uzieblo A (2002) WT1 immunoreactivity in uterine papillary serous carcinomas is different from ovarian serous carcinomas. Am J Clin Pathol 117:541–545PubMedGoogle Scholar
  163. 163.
    An HJ, Logani S, Isacson C, Ellenson LH (2004) Molecular characterization of uterine clear cell carcinoma. Mod Pathol 17:530–537PubMedGoogle Scholar
  164. 164.
    Soong R, Knowles S, Hammond IG, Michael C, Iacopetta BJ (1999) p53 protein overexpression and gene mutation in mixed Müllerian tumors of the uterus. Cancer Detect Prev 23:8–12PubMedGoogle Scholar
  165. 165.
    Mansi JL, Ramachandra S, Wiltshaw E, Fisher C (1990) Endometrial stromal sarcomas. Gynecol Oncol 36:113–118PubMedGoogle Scholar
  166. 166.
    Hrzenjak A, Moinfar F, Tavassoli FA, Strohmeier B, Kremser ML, Zatloukal K, Denk H (2005) JAZF1/JJAZ1 gene fusion in endometrial stromal sarcomas: molecular analysis by reverse transcriptase-polymerase chain reaction optimized for paraffin-embedded tissue. J Mol Diagn 7:388–395PubMedGoogle Scholar
  167. 167.
    Hampel H, Frankel WL, Martin E, Arnold M, Khanduja K, Kuebler P, Clendenning M, Sotamaa K, Prior T, Westman JA, Panescu J, Fix D, Lockman J, LaJeunesse J, Comeras I, de la Chapelle A (2008) Feasibility of screening for Lynch syndrome among patients with colorectal cancer. J Clin Oncol 26:5783–5788PubMedGoogle Scholar
  168. 168.
    Lynch HT, Shaw MW, Magnuson CW, Larsen AL, Krush AJ (1966) Hereditary factors in cancer. Study of two large midwestern kindreds. Arch Intern Med 117:206–212PubMedGoogle Scholar
  169. 169.
    Umar A, Boland CR, Terdiman JP et al (2004) Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 96:261–268PubMedGoogle Scholar
  170. 170.
    Wijnen J, de Leeuw W, Vasen H, van der Klift H, Moller P, Stormorken A, Meijers-Heijboer H, Lindhout D, Menko F, Vossen S, Moslein G, Tops C, Brocker-Vriends A, Wu Y, Hofstra R, Sijmons R, Cornelisse C, Morreau H, Fodde R (1999) Familial endometrial cancer in female carriers of MSH6 germline mutations. Nat Genet 23:142–144PubMedGoogle Scholar
  171. 171.
    Holway AH, Rieger-Christ KM, Miner WR, Cain JW, Dugan JM, Pezza JA, Silverman ML, Shapter A, McLellan R, Summerhayes IC (2000) Somatic mutation of PTEN in vulvar cancer. Clin Cancer Res 6:3228–3235PubMedGoogle Scholar
  172. 172.
    Reddy A, Yuille M, Sullivan A, Repellin C, Bell A, Tidy JA, Evans DJ, Farrell PJ, Gusterson B, Gasco M, Crook T (2002) Analysis of CHK2 in vulval neoplasia. Br J Cancer 86:756–760PubMedGoogle Scholar
  173. 173.
    Kazmierczak B, Wanschura S, Meyer-Bolte K, Caselitz J, Meister P, Bartnitzke S, Van de Ven W, Bullerdiek J (1995) Cytogenic and molecular analysis of an aggressive angiomyxoma. Am J Pathol 147:580–585PubMedGoogle Scholar
  174. 174.
    Pillai MR, Halabi S, McKalip A, Jayaprakash PG, Rajalekshmi TN, Nair MK, Herman B (1996) The presence of human papillomavirus-16/-18 E6, p53, and Bcl-2 protein in cervicovaginal smears from patients with invasive cervical cancer. Cancer Epidemiol Biomarkers Prev 5:329–335PubMedGoogle Scholar
  175. 175.
    Skomedal H, Kristensen G, Helland A, Nesland JM, Kooi S, Børresen AL, Holm R (1995) TP53 gene mutations and protein accumulation in primary vaginal carcinomas. Br J Cancer 72:129–133PubMedGoogle Scholar
  176. 176.
    Gross AL, Kurman RJ, Vang R, Shih I-M, Visvanathan K (2010) Precursor lesions of high-grade serous ovarian carcinoma: morphological and molecular characteristics. J Oncol 2010:126295PubMedGoogle Scholar
  177. 177.
    Devriendt K (2005) Hydatidiform mole and triploidy: the role of genomic imprinting in placental development. Hum Reprod Update 11:137–142PubMedGoogle Scholar
  178. 178.
    Murphy KM, McConnell TG, Hafez MJ, Vang R, Ronnett BM (2009) Molecular genotyping of hydatidiform moles: analytic validation of a multiplex short tandem repeat assay. J Mol Diagn 11:598–605PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Rodney E. Shackelford
    • 1
  • Masoumeh Ghayouri
    • 2
  • Domenico Coppola
    • 2
  • Ardeshir Hakam
    • 2
    Email author
  1. 1.Department of Pathology and Laboratory MedicineTulane University School of MedicineNew OrleansUSA
  2. 2.Department of PathologyH. Lee Moffitt Cancer Center and Research InstituteTampaUSA

Personalised recommendations