Skip to main content

Mites in Soil and Litter Systems

  • Chapter
  • First Online:
Book cover Mites: Ecology, Evolution & Behaviour

Abstract

People, like other large terrestrial mammals, tread the surface of the Earth and we know best the aboveground half of the ecosystems we inhabit. Forests, grasslands, meadows, fields, deserts and cities squat on the surface of the earth, but each has its shadow existence belowground. Less than half of the energy fixed by the sun is respired by the plants, animals and microbes that live aboveground: most falls into the living system we call soil (Macfadyen 1963). Soils are well known for their extraordinary biological diversity (Wardle 2006) and, more than any other habitat, this largely belowground system is the empire of mites.

The soil ecosystem is the poor man’s tropical rainforest. (Usher et al. 1982)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott, D. T., Seastedt, T. R., & Crossley, D. A., Jr. (1980). Abundance, distribution, and effects of clearcutting on Cryptostigmata in the Southern Appalachians. Environmental Entomology, 9, 618–623.

    Google Scholar 

  • Addington, R. N., & Seastedt, T. R. (1999). Activity of soil microarthropods beneath snowpack in alpine tundra and subalpine forest. Pedobiologia, 43, 47–53.

    Google Scholar 

  • Aitchison, C. W. (1979). Winter-active subnivean invertebrates in Southern Canada. III. Acari. Pedobiologia, 19, 153–160.

    Google Scholar 

  • Alberti, G. (1973). Ernährungsbiologie und Spinnvermögen der Schnabelmilben (Bdellidae, Trombidiformes). Zeitschrift für Morphologie und Ökologie der Tiere, 76, 283–338.

    Google Scholar 

  • Alberti, G. (2010). On predation in Epicriidae (Gamasida, Anactinotrichida) and fine-structural details of their forelegs. Soil Organisms, 82, 179–192.

    Google Scholar 

  • Alberti, G., & Ehrnsberger, R. (1977). Rasterelektronenmikroskopische untersuchungen zum Spinnvermögen der Bdelliden und Cunaxiden (Acari, Prostigmata). Acarologia, 19, 55–61.

    Google Scholar 

  • Ali, O., Dunne, R., & Bennan, R. (1997). Biological control of the sciarid fly, Lycoriella solani by the predatory mite, Hypoaspis miles (Acari: Lalelapidae) in mushroom crops. Systematic and Applied Acarology, 2, 71–80.

    Google Scholar 

  • Andersen, D. C. (1987). Below-ground herbivory in natural communities: A review emphasizing fossorial animals. The Quarterly Review of Biology, 62, 261–286.

    Google Scholar 

  • Anderson, J. M. (1975). Succession, diversity and trophic relationships of some soil animals in decomposing leaf litter. Journal of Animal Ecology, 44, 475–495.

    Google Scholar 

  • Anderson, J. M. (1978a). Inter- and intra-habitat relationships between woodland Cryptostigmata species diversity and the diversity of soil and litter microhabitats. Oecologia, 32, 341–348.

    Google Scholar 

  • Anderson, J. M. (1978b). Competition between two unrelated species of soil Cryptostigmata (Acarina) in experimental microcosms. Journal of Animal Ecology, 47, 787–803.

    Google Scholar 

  • Anderson, J. M., & MacFayden, A. (1976). The role of terrestrial and aquatic organisms in decomposition processes. Oxford: Blackwell.

    Google Scholar 

  • André, H. M., Noti, M.-I., & Lebrun, P. (1994). The soil fauna: The other last biotic frontier. Biodiversity and Conservation, 3, 45–56.

    Google Scholar 

  • Baker, A. S. (2009). Acari in archaeology. Experimental & Applied Acarology, 49, 147–160.

    Google Scholar 

  • Bal, L. (1982). Zoological ripening of soils. Wageningen: PUDOC.

    Google Scholar 

  • Barker, P. S. (1969). The response of a predator, Hypoaspis aculeifer (Canestrini) (Acarina: Laelapidae), to two species of prey. Canadian Journal of Zoology, 47, 343–345.

    Google Scholar 

  • Barrett, J. E., Virginia, R. A., Hopkins, D. W., Aislabie, J., Bargagli, R., Bockheim, J. G., Campbell, I. B., Lyons, W. B., Moorhead, D., Nkem, J., Sletten, R. S., Steltzer, H., Wall, D. H., & Wallenstein, M. (2006). Terrestrial ecosystem processes of Victoria Land, Antarctica. Soil Biology and Biochemistry, 38, 3019–3034.

    CAS  Google Scholar 

  • Basset, Y., et al. (2012). Arthropod diversity in a tropical forest. Science, 338, 1481–1484. doi:10.1126/science.1226727.

    CAS  PubMed  Google Scholar 

  • Beare, M. H., Coleman, D. C., Crossley, D. A., Jr., Hendrix, P. F., & Odum, E. P. (1995). A hierarchical approach to evaluating the significance of soil biodiversity to biogeochemical cycling. In H. P. Collins, G. P. Robertson, & M. J. Klug (Eds.), The significance and regulation of soil biodiversity. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Beaulieu, F. (2011). Saproxyly in predatory mites? Mesostigmata in decaying log habitats versus litter in a wet eucalypt forest, Tasmania, Australia. International Journal of Acarology, 138, 313–323. doi:10.1080/01647954.2011.647072.

    Google Scholar 

  • Beaulieu, F., & Walter, D. E. (2007). Predation in suspended and forest floor soils: Observations on Australian mesostigmatic mites. Acarologia, 47, 43–54.

    Google Scholar 

  • Beaulieu, F., Walter, D. E., Proctor, H. C., & Kitching, R. L. (2010). The canopy starts at 0.5 m: Predatory mites (Acari: Mesostigmata) differ between rain forest floor soil and suspended soil at any height. Biotropica, 42, 704–709.

    Google Scholar 

  • Behan, V. M., & Hill, S. B. (1978). Feeding habits and spore dispersal of oribatid mites in the North American Arctic. Revue D'Écologie et Biologie du Sol, 15, 497–516.

    Google Scholar 

  • Behan-Pelletier, V. M., & Hill, S. B. (1983). Feeding habits of sixteen species of Oribatei (Acari) from an acid peat bog, Glenamoy, Ireland. Revue D'Écologie et Biologie du Sol, 20, 221–267.

    Google Scholar 

  • Behan-Pelletier, V. M., & Walter, D. E. (2000). Biodiversity of oribatid mites (Acari: Oribatida) in tree canopies and litter. In D. C. Coleman & P. Hendrix (Eds.), Invertebrates as webmasters in ecosystems (pp. 187–202). Wallingford: CABI. ISBN 0 85199 394 X.

    Google Scholar 

  • Behan-Pelletier, V. M., Hill, S. B., Fjellberg, A., Norton, R. A., & Tomlin, A. (1985). Soil invertebrates: Major reference texts. Quaestiones Entomologicae, 21, 675–687.

    Google Scholar 

  • Blackwood, J. S., Croft, B. A., & Schausberger, P. (2001). Jerking in predaceous mites (Acari: Phytoseiidae) with emphasis on larvae. Experimental & Applied Acarology, 25, 475–492.

    CAS  Google Scholar 

  • Blaszak, C., Ehrnsberger, R., & Schuster, R. (1990). Beiträge zur Kenntnis der Lebensweise der Litoralmilbe Macrocheles superbus Hull, 1918 (Acarina: Gamasina). Osnabrücker naturwiss. Mitt., 16, 51–62.

    Google Scholar 

  • Block, W. (1979). Nanorchestes antarcticus Strandtmann (Prostigmata) from Antarctic ice. Acarologia, 21, 173–176.

    Google Scholar 

  • Block, W. (1984). Terrestrial microbiology, invertebrates and ecosystems. In R. M. Laws (Ed.), Antarctic ecology (Vol. 1, pp. 163–236). Sydney: Academic.

    Google Scholar 

  • Block, W. (1992). An annotated bibliography of Antarctic invertebrates (terrestrial and freshwater). Cambridge: British Antarctic Survey.

    Google Scholar 

  • Block, W., & Convey, P. (1995). The biology, life cycle and ecophysiology of the Antarctic mite Alaskozetes antarcticus. Journal of Zoology, 236, 431–449.

    Google Scholar 

  • Block, W., & Stary, J. (1996). Oribatid mites (Acari: Oribatida) of the maritime Antarctic and Antarctic Peninsula. Journal of Natural History, 30, 1059–1067.

    Google Scholar 

  • Brodie, E. D., Ducey, P. K., & Baness, E. A. (1991). Antipredator skin secretions of some tropical salamanders (Bolitoglossa) are toxic to snake predators. Biotropica, 23, 58–62. doi:10.2307/2388688.

    Google Scholar 

  • Buitenhuis, R., Shipp, L., & Scott-Dupree, C. (2010). Intra-guild vs extra-guild prey: Effect on predator fitness and preference of Amblyseius swirskii (Athias-Henriot) and Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae). Bulletin of Entomological Research, 100(2), 167–173.

    CAS  PubMed  Google Scholar 

  • Burke, J. L., Maerz, J. C., Milanovich, J. R., Fisk, M. C., & Gandhi, K. J. K. (2011). Invasion by exotic earthworms alters biodiversity and communities of litter- and soil-dwelling microarthropods. Diversity, 3, 155–175.

    Google Scholar 

  • Butler, J. F., Camino, M. L., et al. (1979). Boophilus microplus and the fire ant Solenopsis geminata. In J. G. Rodriguez (Ed.), Recent advances in acarology I (pp. 355–361). New York: Academic.

    Google Scholar 

  • Camann, M., Gillette, K., Lamoncha, K. L., & Mori, S. R. (2008). Response of forest soil Acari to prescribed fire following stand structure manipulation in the southern Cascade Range. Canadian Journal of Forestry Research, 38, 956–968.

    Google Scholar 

  • Cameron, E. K., Knysh, K. M., Proctor, H. C., & Bayne, E. M. (2012). Influence of two exotic earthworm species with different strategies on abundance and composition of boreal microarthropods. Soil Biology and Biochemistry, 57, 334–340.

    Google Scholar 

  • Cancela da Fonseca, J. P. (1975). Notes oribatologiques. Acarologia, 17, 320–330.

    Google Scholar 

  • Cannon, R. J. C., & Block, W. (1988). Cold tolerance of microarthropods. Biological Reviews, 63, 23–77.

    Google Scholar 

  • Cao, Z., Han, X., Hu, C., Chen, J., Zhang, D., & Steinberger, Y. (2011). Changes in the abundance and structure of a soil mite (Acari) community under long-term organic and chemical fertilizer treatments. Applied Soil Ecology, 49, 131–138.

    Google Scholar 

  • Castilho, R. C., de Moraes, G. J., Silva, E. S., et al. (2009). The predatory mite Stratiolaelaps scimitus as a control agent of the fungus gnat Bradysia matogrossensis in commercial production of the mushroom Agaricus bisporus. International Journal of Pest Management, 5, 181–185. doi:10.1080/09670870902725783.

    Google Scholar 

  • Chambers, R. J., Wright, E. M., et al. (1993). Biological control of glasshouse sciarid flies (Bradysia spp.) with the predatory mite, Hypoaspis miles, on cyclamen and poinsettia. Biocontrol Science and Technology, 3, 285–293.

    Google Scholar 

  • Chiba, S., Abe, T., Aoki, J., Imadate, G., Ishikawa, K., Kondoh, M., Shiba, M., & Watanabe, H. (1975). Studies on the productivity of soil animals in Pasoh Forest Reserve, West Malaysia. I. Seasonal change in density of soil mesofauna: Acari, Collembola and others. Science Report Hirosaki University, 22, 87–124.

    Google Scholar 

  • Choi, R. T., & Beard, K. H. (2012). Coqui frog invasions change invertebrate communities in Hawaii. Biological Invasions, 14, 939–948. doi:10.1007/s10530-011-0127-3.

    Google Scholar 

  • Clapperton, M. J., Kanashiro, D. A., & Behan-Pelletier, V. M. (2002). Changes in abundance and diversity of microarthropods associated with fescue prairie grazing regimes. Pedobiologia, 46, 496–511.

    Google Scholar 

  • Cohen, J. E. (1978). Food webs and niche space. Princeton: Princeton University Press.

    Google Scholar 

  • Coineau, Y. (1973). Les Caeculidae (Acariens Prostigmates) quelques aspects de leurs particularités éco-éthologiques. Bulletin D'Écologie, 4, 329–337.

    Google Scholar 

  • Coineau, Y., Haupt, J., Delamere Deboutteville, C., & Théron, P. (1978). Un remarquable exemple di convergenece écologique: l'adaption de Gordialycus tuzetae (Nematalycidae, Acariens) á la vie dans les interstices des sables fines. Comptes rendus de l'Academie des Sciences, 287, 883–886.

    Google Scholar 

  • Coleman, D. C. (2008). From peds to paradoxes: Linkages between soil biota and their influences on ecological processes. Soil Biology and Biochemistry, 40, 271–289. doi:10.1016/j.soilbio.2007.08.005.

    CAS  Google Scholar 

  • Colloff, M. J., & Cairns, A. (2011). A novel association between oribatid mites and leafy liverworts (Marchantiophyta: Jungermanniidae), with a description of a new species of Birobates Balogh, 1970 (Acari: Oribatida: Oripodidae). Australian Journal of Entomology, 50, 72–77.

    Google Scholar 

  • Connell, J. H. (1978). Diversity in tropical rainforests and coral reefs. Science, 99, 1302–1310.

    Google Scholar 

  • Croft, B. A., & McMurtry, J. A. (1971). Comparative studies on four strains of Typhlodromus occidentalis Nesbitt (Acarina: Phytoseiidae) IV. Life history studies. Acarologia, 13, 460–470.

    Google Scholar 

  • Cronberg, N., Natcheva, R., & Hedlund, K. (2006). Microarthropods mediate sperm transfer in mosses. Science, 313, 1255.

    CAS  PubMed  Google Scholar 

  • Crossley, D. A., Jr. (1977). The roles of terrestrial saprophagous arthropods in forest soils: Current status of concepts. In W. J. Mattson (Ed.), The role of arthropods in forest ecosystems (pp. 49–56). New York: Springer-Verlag.

    Google Scholar 

  • Cummins, K. W. (1974). Structure and function of stream ecosystems. Bioscience, 24, 631–641.

    Google Scholar 

  • Curl, E. A., & Truelove, B. (1986). The rhizosphere. New York: Springer-Verlag.

    Google Scholar 

  • Curry, J. P. (1994). Grassland invertebrates, ecology, influence on soil fertility and effects on plant growth. London: Chapman & Hall.

    Google Scholar 

  • Dawes-Gromadzki, T. Z., & Bull, C. M. (1997). Ant predation on different life stages of two Australian ticks. Experimental & Applied Acarology, 21, 109–115.

    Google Scholar 

  • De Deyn, G. B., Raaijmakers, C. E., Zoomer, H. R., Berg, M. P., DeRuiter, P. C., Verhoef, H. A., et al. (2003). Soil invertebrate fauna enhances grassland succession and diversity. Nature, 422, 711–713.

    PubMed  Google Scholar 

  • Déchêne, A. D., & Buddle, C. M. (2010). Decomposing logs increase oribatid mite assemblage diversity in mixedwood boreal forest. Biodiversity and Conservation, 19, 237–256.

    Google Scholar 

  • Denegri, G. M. (1993). Review of oribatid mites as intermediate hosts of tapeworms of the Anoplocephalidae. Experimental & Applied Acarology, 17, 567–580.

    Google Scholar 

  • Donnelly, M. A. (1991). Feeding patterns of the strawberry poison frog Dendrobates pumilio (Anura: Dendrobatidae). Copeia, 3, 723–730.

    Google Scholar 

  • Downes, B. J. (1986). Guild structure in water mites (Unionicola spp.) inhabiting freshwater mussels: Choice, competitive exclusion and sex. Oecologia, 70, 457–465.

    Google Scholar 

  • Ducarme, X., Andre, H. A., Wauthy, G., & Lebrun, P. (2004a). Comparison of endogeic and cave communities: Microarthropod density and mite species richness. European Journal of Soil Biology, 40, 129–138. doi:10.1016/j.ejsobi.2004.10.003.

    Google Scholar 

  • Ducarme, X., Andre, H. A., Wauthy, G., & Lebrun, P. (2004b). Are there real endogeic species in temperate forest mites? Pedobiologia, 48, 139–147. doi:10.1016/j.pedobi.2003.10.002.

    Google Scholar 

  • Eadie, J. M., Broekhoven, L., & Colgan, P. (1987). Size ratios and artifacts: Hutchinson's rule revisited. American Naturalist, 129, 1–17.

    Google Scholar 

  • Ebermann, E. (1995). Indication of jumping ability in the mite family Scutacaridae (Acari, Tarsonemina). Entomologische Mitteilungen aus dem Zoologischen Museum Hamburg, 11, 205–209.

    Google Scholar 

  • Edwards, C. A., & Stinner, B. R. (Eds.). (1988). Biological interactions in soil. Amsterdam: Elsevier.

    Google Scholar 

  • Eisenbeis, G., & Wichard, W. (1987). Atlas on the biology of soil arthropods. New York: Springer-Verlag.

    Google Scholar 

  • Eisenhauer, N. (2010). The action of an animal ecosystem engineer: Identification of the main mechanisms of earthworm impacts on soil microarthropods. Pedobiologia, 53, 343–352.

    Google Scholar 

  • Enders, F. (1975). The influence of hunting manner on prey size, particularly in spiders with long attack distances (Araneidae, Linyphiidae, and Salticidae). American Naturalist, 109, 737–763.

    Google Scholar 

  • Epsky, N. D., Walter, D. E., & Capinera, J. L. (1988). Potential role of nematophagous arthropods as biotic mortality factors of entomogenous nematodes (Rhabditida: Steinernematidae, Heterorhabditidae). Journal of Economic Entomology, 81, 821–825.

    Google Scholar 

  • Erickson, J. M. (1996). Can paleoacarology contribute to global change research? In R. Mitchell, D. J. Horn, G. R. Needham, & W. C. Welbourn (Eds.), Acarology IX (Vol. I, pp. 533–537). Columbus: Ohio Biological Survey.

    Google Scholar 

  • Faber, J. H. (1991). Functional classification of soil fauna: A new approach. Oikos, 62, 110–117.

    Google Scholar 

  • Fager, E. W. (1968). The community of invertebrates in decaying oak wood. Journal of Animal Ecology, 37, 121–142.

    Google Scholar 

  • Fauth, J. E., Bernardo, J., et al. (1996). Simplifying the Jargon of community ecology: A conceptual approach. American Naturalist, 147, 282–286.

    Google Scholar 

  • Fisher, J. R., Skvarla, M. J., Bauchan, G. R., Ochoa, R., & Dowling, A. P. G. (2011). Trachymolgus purpureus sp. n., an armored snout mite (Acari, Bdellidae) from the Ozark highlands: Morphology, development, and key to Trachymolgus Berlese. ZooKeys, 125, 1–34. doi:10.3897/zookeys.125.1875.

    PubMed  Google Scholar 

  • Fitzsimons, J. M. (1971). On the food habits of certain Antartic arthropods from coastal Victoria Land and adjacent islands. Pacific Insects Monograph, 25, 121–125.

    Google Scholar 

  • Flowers, M. A., & Graves, B. M. (1995). Prey selectivity and size-specific diet changes in Bufo cognatus and B. woodhousii during early postmetamorphic ontogeny. Journal of Herpetology, 23, 608–612.

    Google Scholar 

  • Freckman, D. W., & Virginia, R. A. (1997). Low diversity Antarctic soil nematode communities: Distribution and response to disturbance. Ecology, 78, 363–369.

    Google Scholar 

  • Garrett, C. J., Crossley, D. A., Jr., Coleman, D. C., Hendrix, P. F., Kisselle, K. E., & Potter, R. L. (2001). Impact of the rhizosphere on soil microarthropods in agroecosystems on the Georgia piedmont. Applied Soil Ecology, 16, 141–148.

    Google Scholar 

  • Gause, G. F. (1934). The struggle for existence. Baltimore: Williams & Wilkins.

    Google Scholar 

  • Gerson, U. (1972). Mites of the genus Ledermuelleria (Prostigmata: Stigmaeidae) association with mosses in Canada. Acarologia, 13, 319–342.

    Google Scholar 

  • Gill, R. W. (1969). Soil microarthropod abundance following old-field litter manipulation. Ecology, 50, 805–816.

    Google Scholar 

  • Giller, P. S. (1996). The diversity of soil communities, the ‘poor man’s tropical rainforest’. Biodiversity and Conservation, 5, 135–168.

    Google Scholar 

  • Gillespie, D. R., & Quiring, D. M. J. (1990). Biological control of fungus gnats, Bradysia spp. (Diptera: Sciaridae), and western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: thripidae), in greenhouses using a soil-dwelling predatory mite, Geolaelaps sp. nr. aculeifer (Canestrini) (Acari: Laelapidae). Canadian Entomologist, 122, 975–983.

    Google Scholar 

  • Gless, E. E. (1967). Notes on the biology of Coccorhagia gressitti Womersley and Strandtmann. In J. L. Gressitt (Ed.), Entomology of Antarctica (Vol. 10, pp. 321–324). Washington, DC: American Geophysical Union.

    Google Scholar 

  • Gochenaur, S. E. (1987). Evidence suggests that grazing regulates ascospore density in soil. Mycologia, 79, 445–450.

    Google Scholar 

  • Greene, C. H. (1986). Patterns of prey selection: Implications of predator foraging tactics. American Naturalist, 128, 824–839.

    Google Scholar 

  • Gressitt, J. L., & Shoup, J. (1967). Ecological notes on free-living mites in North Victoria land. Antarctic Research Series, 10, 307–320.

    Google Scholar 

  • Gwiazdowicz, D. J., Kamczyc, J., & Rakowsk, R. (2011). Mesostigmatid mites in four classes of wood decay. Experimental & Applied Acarology, 55, 155–165. doi:10.1007/s10493-011-9458-0.

    Google Scholar 

  • Hågvar, S., & Hågvar, E. B. (2011). Invertebrate activity under snow in a South-Norwegian spruce forest. Soil Organisms, 83, 187–209.

    Google Scholar 

  • Hågvar, S., Tolhoy, T., & Mong, C. E. (2009). Primary succession of soil mites (Acari) in a Norwegian glacier foreland, with emphasis on oribatid species. Arctic, Antarctic, and Alpine Research, 41, 219–227. doi:10.1657/1938-4246-41.2.

    Google Scholar 

  • Hairston, N. G., Smith, F. E., & Slobodkin, L. (1960). Community structure, population control, and competition. American Naturalist, 94, 421–425.

    Google Scholar 

  • Halffter, G., & Matthews, G. E. (1971). The natural history of dung beetles. A supplement on associated biota. Revista Latino-Americana de Microbiologia, 13, 147–164.

    CAS  Google Scholar 

  • Halliday, R. B. (2008). Oriflammella n. gen. (Acari: Ologamasidae), a remarkable new genus of mites from eastern Australia. International Journal of Acarology, 34, 43–53.

    Google Scholar 

  • Hamlen, R. A., & Mead, F. W. (1979). Fungus gnat larval control in greenhouse plant production. Journal of Economic Entomology, 72, 269–271.

    Google Scholar 

  • Hammer, M. (1972). Microhabitats of oribatid mites on a Danish woodland floor. Pedobiologia, 12, 412–423.

    Google Scholar 

  • Hansen, R. A. (2000). Effect of habitat complexity and composition on a diverse litter microarthropod assemblage. Ecology, 81, 1120–1132.

    Google Scholar 

  • Hansen, R. A., & Coleman, D. C. (1998). Litter complexity and composition are determinants of the diversity and species composition of oribatid mites (Acari: Oribatida) in litterbags. Applied Soil Ecology, 9, 17–23.

    Google Scholar 

  • Hawkins, C. P., & MacMahon, J. A. (1989). Guilds: The multiple meanings of a concept. Annual Review of Entomology, 34, 423–451.

    Google Scholar 

  • Heethoff, M., & Raspotnig, G. (2012). Triggering chemical defense in an oribatid mite using artificial stimuli. Experimental & Applied Acarology, 56, 287–295. doi:10.1007/s10493-012-9521-5.

    CAS  Google Scholar 

  • Heethoff, M., Koerner, L., Norton, R. A., & Raspotnig, G. (2011). Tasty but Protected – First evidence of chemical defense in oribatid mites. Journal of Chemical Ecology, 37, 1037–1043. doi:10.1007/s10886-011-0009-2.

    CAS  PubMed  Google Scholar 

  • Heggen, M., Birks, H. H., & Anderson, N. J. (2010). Long-term ecosystem dynamics of a small lake and its catchment in west Greenland. The Holocene, 20, 1207–1222.

    Google Scholar 

  • Heidemann, K., Scheu, S., Ruess, L., & Maraun, M. (2011). Molecular detection of nematode predation and scavenging in oribatid mites: Laboratory and field experiments. Soil Biology & Biochemistry, 43, 2229–2236.

    CAS  Google Scholar 

  • Heisler, C. (1995). Influence of agricultural traffic and crop management on Collembola and microbial biomass in arable soil. Biology and Fertility of Soils, 19, 159–165.

    Google Scholar 

  • Hendricks, P. F., Crossley, D. A., Jr., et al. (1990). Soil Biota as components of sustainable agroecosystems. In C. A. Edwards, R. Lal, P. Madden, R. H. Miller, & G. House (Eds.), Sustainable agricultural systems (pp. 637–654). Ankeny: Soil, Water and Conservation Society.

    Google Scholar 

  • Heneghan, L., & Bolger, T. (1996a). Effects of acid rain components on soil microarthropods: A field manipulation study. Pedobiologia, 40, 413–438.

    Google Scholar 

  • Heneghan, L., & Bolger, T. (1996b). Effect of components of 'acid rain' on the contribution of soil microarthropods to ecosystem function. Journal of Applied Ecology, 33, 1329–1344.

    Google Scholar 

  • Hodkinson, I. D., Coulson, S. J., & Webb, N. R. (2004). Invertebrate community assembly across proglacial chronosequences in the high Arctic. Journal of Animal Ecology, 73, 556–568.

    Google Scholar 

  • Hoffmann, D., Vierheilig, H., Pender, S., & Schausberger, S. (2011). Mycorrhiza modulates aboveground tri-trophic interactions to the fitness benefit of its host plant. Ecological Entomology, 36, 574–581.

    Google Scholar 

  • Holland, J. N., Cheng, W., & Crossley, D. A., Jr. (1996). Herbivore-induced changes in plant carbon allocation: Assessment of belowground C fluxes using carbon-14. Oecologia, 107, 87–94.

    Google Scholar 

  • Horn, H. S., & May, R. M. (1977). Limits to similarity among coexisting competitors. Nature, 270, 660–661.

    Google Scholar 

  • Huber, I. (1978). Prey attraction and immobilization by allomone from nymphs. Acarologia, 20, 112–115.

    Google Scholar 

  • Huey, R. B., & Pianka, E. R. (1981). Ecological consequences of foraging mode. Ecology, 62, 991–999.

    Google Scholar 

  • Hunt, H. W., Elliott, E. T., & Walter, D. E. (1989). Inferring trophic transfers from pulse-dynamics in detrital food webs. Plant and Soil, 115, 247–259.

    Google Scholar 

  • Hutchinson, G. E. (1959). Homage to Santa Rosalia, or why are there so many kinds of animals? American Naturalist, 93, 145–159.

    Google Scholar 

  • Hutchinson, G. E. (1965). The ecological theater and the evolutionary play. New Haven: Yale University Press.

    Google Scholar 

  • Hutchinson, G. E., & MacArthur, R. (1959). A theoretical ecological model of size distributions among species of animals. American Naturalist, 93, 117–126.

    Google Scholar 

  • Hutu, M. (1991). Reproduction, embryonic and postembryonic development of Trichouropoda obscurasimilis Hirschmann & Zirngiebl-Nicol 1961 (Anactinotrichida: Uropodina). In R. Schuster & P. W. Murphy (Eds.), The acari, reproduction, development and life-history strategies (pp. 279–299). Melbourne: Chapman & Hall.

    Google Scholar 

  • Inserra, R. N., & Davis, D. W. (1983). Hypoaspis nr. aculeifer: A mite predacious on root-knot and cyst nematodes. Journal of Nematology, 15, 324–325.

    CAS  PubMed  Google Scholar 

  • Jaksic, F. M. (1981). Abuse and misuse of the term “guild” in ecological studies. Oikos, 37, 397–400.

    Google Scholar 

  • Jones, C. G., Lawton, J. H., & Shachak, M. (1997). Positive and negative effects of organisms as physical ecosystem engineers. Ecology, 78, 1946–1957.

    Google Scholar 

  • Kaliszewski, M., Athias-Binche, F., & Lindquist, E. E. (1995). Parasitism and parasitoidism in Tarsonemina (Acari: Heterostigmata) and evolutionary considerations. Advances in Parasitology, 35, 335–367.

    CAS  PubMed  Google Scholar 

  • Kaneko, N. (1988). Feeding habits and cheliceral size of oribatid mites in cool temperate forest soils in Japan. Revue D'Écologie et Biologie du Sol, 25, 353–363.

    Google Scholar 

  • Kaneko, N. (1995). Composition of feeding types in oribatid mite communities in forest soils. Acta Zoologica Fennica, 196, 160–161.

    Google Scholar 

  • Kaneko, N., & Salamanca, N. (1999). Mixed leaf litter effects on decomposition rates and soil arthropod communities in an oakpine forest stand in Japan. Ecological Research, 14, 131–138.

    Google Scholar 

  • Karg, W. (1961). Okologische Untersuchungen von edaphischen Gamasiden (Acari: Parasitiformes). Pedobiologia, 1, 58–98.

    Google Scholar 

  • Karg, W. (1983). Verbreitung und Bedeutung von raubmilben der Cohors Gamasina als Antagonisten von Nematoden. Pedobiologia, 25, 419–432.

    Google Scholar 

  • Kethley, J. (1990). Acarina: Prostigmata (Actinedida). In D. L. Dindal (Ed.), Soil biology guide (pp. 667–756). New York: Wiley.

    Google Scholar 

  • Kinn, D. N., & Witcosky, J. J. (1977). The life cycle and behaviour of Macrocheles boudreauxi Krantz. Zeitschrift für Angewandte Entomologie, 84, 136–144.

    Google Scholar 

  • Kitching, R. L. (1987). Spatial and temporal variation in food webs in water-filled treeholes. Oikos, 48, 280–288.

    Google Scholar 

  • Kitching, R. L., & Pimm, S. L. (1985). The length of food chains: Phytotelmata in Australia and elsewhere. Proceedings of the Ecological Society of Australia, 14, 123–140.

    Google Scholar 

  • Klironomos, J. N., & Kendrick, B. (1995). Relationships among microarthropods, fungi and their environment. In H. P. Collins, G. P. Robertson, & M. J. Klug (Eds.), The significance and regulation of soil biodiversity (pp. 209–233). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Knülle, W. (1995). Expression of a dispersal trait in a guild of mites colonizing transient habitats. Evolutionary Ecology, 9, 341–353.

    Google Scholar 

  • Koehler, H. H. (1992). The use of soil mesofauna for the judgement of chemical impact on ecosystems. Agriculture, Ecosystems and Environment, 40, 193–205.

    Google Scholar 

  • Kolesnikov, V. B. (2010). The role of oribatid mites in the process of soil formation. Zashchita i Karantin Rastenii, 9, 40–41.

    Google Scholar 

  • Krantz, G. W. (1978). A manual of acarology. Corvallis: Oregon State University Bookstores.

    Google Scholar 

  • Krantz, G. W. (1983). Mites as biological control agents of dung-breeding flies, with special reference to the Macrochelidae. In M. A. Hoy, G. L. Cunningham, & L. Knutson (Eds.), Biological control of pests by mites (Special Publication 3304, pp. 91–98). Berkeley: University of California, Agriculture Experiment Station.

    Google Scholar 

  • Krantz, G. W., & Lindquist, E. E. (1979). Evolution of phytophagous mites (Acari). Annual Review of Entomology, 24, 121–158.

    Google Scholar 

  • Krantz, G. W., & Walter, D. E. (Eds.). (2009). A manual of acarology (3rd ed.). Lubbock: Texas Tech University Press. 807 p. 338 b/w illustrations; 60 figures ISBN 978-0-89672-620-8.

    Google Scholar 

  • Krisper, G. (1990). Das Sprungvermogen der Milbengattung Zetorchestes (Acarida, Oribatida). Zoologische Jahrbuecher Abteilung fuer Anatomie und Ontogenie der Tiere, 120, 289–312.

    Google Scholar 

  • Krisper, G. (1991). The saltatory capacity of an oribatid mite. In R. Schuster & P. W. Murphy (Eds.), The acari. Reproduction, development, and life-history strategies (p. 397). New York: Chapman & Hall.

    Google Scholar 

  • Kristin, A. (1993). Diet preferences of the Dunnock in various forest habitats. Vogelwelt, 114, 72–82.

    Google Scholar 

  • Kuwahara, Y. (1990). Chemical studies on astigmatid mites – Opisthonotal gland secretions and body surface components with biological functions. Journal of Pesticide Science, 15, 613–619.

    CAS  Google Scholar 

  • Labandeira, C. C., Phillips, T. L., & Norton, R. A. (1997). Oribatid mites and the decomposition of plant tissues in Paleozoic coal-swamp forests. Palaios, 12, 319–353.

    Google Scholar 

  • Lasebikan, B. A. (1974). A preliminary communication on microarthropods from a tropical rainforest in Nigeria. Pedobiologia, 14, 402–411.

    Google Scholar 

  • Lavelle, P. (1997). Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Advances in Ecological Research, 27, 93–132.

    Google Scholar 

  • Lavelle, P., Lattaud, C., Trigo, D., & Barois, I. (1994). Mutualism and biodiversity in soils. Plant and Soil, 170, 23–33.

    Google Scholar 

  • Lawton, J. H. (1984). Surface availability and insect community structure: The effects of architecture and fractal dimensions of plants. In B. E. Juniper & T. R. E. Southwood (Eds.), Insects and the plant surface (pp. 317–331). London: Arnold.

    Google Scholar 

  • Lebrun, P., & van Straalen, N. M. (1995). Oribatid mites: Prospects for their use in ecotoxicology. Experimental & Applied Acarology, 19, 361–379.

    Google Scholar 

  • Leetham, J., & Milchunas, D. G. (1985). The composition and distribution of soil microarthropods in the shortgrass steppe in relation to the soil water, root biomass and grazing by cattle. Pedobiologia, 28, 311–325.

    Google Scholar 

  • Lehmitz, R., Russell, D., Hohberg, K., Christian, A., & Xylander, W. E. R. (2011). Wind dispersal of oribatid mites as a mode of migration. Pedobiologia, 54, 201–207. doi:10.1016/j.pedobi.2011.01.002.

    Google Scholar 

  • Leinaas, H. P. (1981). Activity of Arthropoda in snow within a coniferous forest, with special reference to Collembola. Holarctic Ecology, 4, 127–138.

    Google Scholar 

  • Lesna, I., Sabelis, M. W., & Conijin, C. G. M. (1996). Biological control of the bulb mite, Rhizoglyphus robini, by the predatory mite, Hypoaspis aculeifer, on lillies: Predator–prey interactions at various spatial scales. Journal of Applied Ecology, 33, 369–376.

    Google Scholar 

  • Levings, S. C., & Windsor, D. M. (1982). Seasonal and annual variation in litter arthropod populations. In E. G. Leigh, A. S. Rand, & D. M. Windsor (Eds.), The ecology of a tropical forest: Seasonal rhythms and long-term changes (pp. 355–387). Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Lilleskov, E. A., & Bruns, T. D. (2005). Spore dispersal of a resupinate ectomycorrhizal fungus, Tomentella sublilacina, via soil food webs. Mycologia, 97, 762–769.

    PubMed  Google Scholar 

  • Lima, A. P., Magnusson, W. E., & Williams, D. G. (2000). Differences in diet among frogs and lizards coexisting in subtropical forests of Australia. Journal of Herpetology, 34, 40–46.

    Google Scholar 

  • Lindo, Z., & Gonzalez, A. (2010). The bryosphere: An integral and influential component of the earth’s biosphere. Ecosystems, 13, 612–627.

    Google Scholar 

  • Lindo, Z., & Visser, S. (2004). Forest floor microarthropod abundance and oribatid mite (Acari : Oribatida) composition following partial and clear-cut harvesting in the mixedwood boreal forest. Canadian Journal of Forest Research, 34, 998–1006. doi:10.1139/X03-284.

    Google Scholar 

  • Lindo, Z., & Winchester, N. N. (2008). Oribatid mite communities and foliar litter decomposition in canopy suspended soils and forest floor habitats of western redcedar forests, Vancouver Island, Canada. Soil Biology and Biochemistry, 39, 2957–2966. doi:10.1016/j.soilbio.2007.06.009.

    Google Scholar 

  • Lindo, Z., Winchester, N. N., & Didham, R. K. (2008). Nested patterns of community assembly in the colonisation of artificial canopy habitats by oribatid mites. Oikos, 117, 1856–1864. doi:10.1111/j.1600-0706.2008.16920.x.

    Google Scholar 

  • Lindquist, E. E. (1975). Associations between mites and other arthropods in forest floor habitats. Canadian Entomologist, 107, 425–437.

    Google Scholar 

  • Lindquist, E. E. (1985). Discovery of sporothecae in adult female Trochometridium Cross, with notes on analogous structures in Siteroptes Amerling (Acari: Heterostigmata). Experimental and Applied Acarology, 1, 73–85.

    Google Scholar 

  • Lindquist, E. E., & Walter, D. E. (1989). Biology and description of Antennoseius janus, new species (Mesostigmata: Ascidae), a mesostigmatic mite exhibiting adult female dimorphism. Canadian Journal of Zoology, 67, 1291–1310.

    Google Scholar 

  • Lipovsky, L. J. (1954). Studies on the food habits of postlarval chiggers (Acarina, Trombiculidae). University of Kansas Science Bulletin, 36, 943–958.

    Google Scholar 

  • Lister, A. (1984). Predation in an Antarctic micro-arthropod community. In D. A. Griffiths & C. E. Bowman (Eds.), Acarology VI (Vol. 1, pp. 886–892). Chichester: Ellis Horwood.

    Google Scholar 

  • Lister, A., Usher, M. B., & Block, W. (1987). Description and quantification of field attack rates by predatory mites: An example using an electrophoresis method with a species of Antarctic mite. Oecologia, 72, 185–191.

    Google Scholar 

  • Lister, A., Block, W., & Usher, M. B. (1988). Arthropod predation in an Antarctic terrestrial community. Journal of Animal Ecology, 57, 957–970.

    Google Scholar 

  • Lobbes, P., & Schotten, C. (1980). Capacities of increase of the soil mite Hypoaspis aculeifer Canestrini (Mesostigmata: Laelapidae). Zeitschrift für Angewandte Entomologie, 90, 9–22.

    Google Scholar 

  • Lugwig, M., Krantzmann, M., & Alberti, G. (1991). Accumulation of heavy metals in two oribatid mites. In F. Dusábek & V. Bukva (Eds.), Modern acarology (Vol. 1, pp. 431–437). Prague: SPB Academic Publishing.

    Google Scholar 

  • Lussenhop, J. (1992). Mechanisms of microarthropod-microbial interactions in soil. Advances in Ecological Research, 23, 1–33.

    Google Scholar 

  • Luxton, M. (1966). Laboratory studies on the feeding behaviour of Saltmarsh Acarina. Acarologia, 8, 163–175.

    Google Scholar 

  • Luxton, M. (1972). Studies on the oribatid mites of a Danish woodland soil. I. Nutritional biology. Pedobiologia, 12, 434–463.

    Google Scholar 

  • Luxton, M. (1979). Food and energy processing by oribatid mites. Revue D'Écologie et Biologie du Sol, 16, 103–111.

    Google Scholar 

  • Lynch, J. F. (1985). The feeding ecology of Aneides flavipunctatus and sympatric plethodontid salamanders in Northwestern California. Journal of Herpetology, 19, 328–352.

    Google Scholar 

  • Macfadyen, A. (1963). The contribution of the microfauna to total soil metabolism. In J. Doeksen & J. van der Drift (Eds.), Soil organisms (pp. 3–17). Amsterdam: North Holland Publishing.

    Google Scholar 

  • Maiorana, V. C. (1978). An explanation of ecological and developmental constants. Nature, 273, 375–377.

    Google Scholar 

  • Malmstrom, A., Persson, T., & Ahlstrom, K. (2008). Effects of fire intensity on survival and recovery of soil microarthropods after a clearcut burning. Canadian Journal of Forest Research, 38, 2465–2475. doi:10.1139/X08-094.

    Google Scholar 

  • Manning, M. J., & Halliday, R. B. (1994). Biology and reproduction of some Australian species of Macrochelidae (Acarina). Australian Entomologist, 21, 89–94.

    Google Scholar 

  • Maraun, M. A., Erdmann, G., Fischer, B. M., Pollierer, M. M., Norton, R. A., Schneider, K., & Scheu, S. (2011). Stable isotopes revisited: Their use and limits for oribatid mite trophic ecology. Soil Biology and Biochemistry, 43, 877–882.

    CAS  Google Scholar 

  • Marshall, D. J., & Pugh, P. J. A. (1996). Origin of the inland Acari of continental Antarctica, with particular reference to Dronning Maud Land. Zoological Journal of the Linnean Society, 118, 101–118.

    Google Scholar 

  • Masuko, K. (1994). Specialized predation on oribatid mites by two species of the ant genus Myrmecina (Hymenoptera: Formicidae). Psyche, 101, 159–173.

    Google Scholar 

  • Masuko, K. (2009). Studies on the predatory biology of Oriental dacetine ants (Hymenoptera: Formicidae). III. Predation on gamasid mites by Pyramica mazu with a supplementary note on P. hexamerus. Journal of the Kansas Entomological Society, 82, 109–113.

    Google Scholar 

  • Matsumoto, K., Wada, Y., & Okamoto, M. (1979). The alarm pheromone of grain mites and its antifungal effect. Recent Advances in Acarology, 1, 243–249.

    Google Scholar 

  • Matthewman, W. G., & Pielou, D. P. (1971). Arthropods inhabiting the sporophores of Fomes fomentarius (Polyporaceae) in Gatineau Park, Quebec. Canadian Entomologist, 103, 775–847.

    Google Scholar 

  • May, R. M. (1978). The dynamics and diversity of insect faunas. In L. A. Mound & N. Waloff (Eds.), Diversity of insect faunas (pp. 188–204). Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Mayr, E. (1969). Principles of systematic zoology. New York: McGraw-Hill.

    Google Scholar 

  • McAloon, F. M. (2004). Oribatid mites as intermediate hosts of Anoplocephala manubriata, cestode of the Asian elephant in India. Experimental & Applied Acarology, 32, 181–185.

    Google Scholar 

  • Mead, L. S., & Boback, S. M. (2006). Diet and microhabitat utilization of two sympatric neotropical Salamanders: Bolitoglossa pesrubra and B. cerroensis. Herpetological Natural History, 9, 135–140.

    Google Scholar 

  • Meier, F. A., Scherrer, S., & Honegger, R. (2002). Faecal pellets of lichenivorous mites contain viable cells of the lichen-forming ascomycete Xanthoria parietina and its green algal photobiont, Trebouxia arboricola. Biological Journal of the Linnaean Society, 76, 259–268.

    Google Scholar 

  • Messelink, G., & Van Wensveen, W. (2003). Biocontrol of Duponcheria fovealis (Lepidoptera: Pyralidae) with soil-dwelling predators in potted plants. Communications in Agricultural and Applied Biological Sciences, 68, 159–165.

    CAS  PubMed  Google Scholar 

  • Migge-Kleian, S., McLean, M. A., Maerz, J. C., & Heneghan, L. (2006). The influence of invasive earthworms on indigenous fauna in ecosystems previously uninhabited by earthworms. Biological Invasions, 8, 1275–1285.

    Google Scholar 

  • Mizoguchi, A., Murakami, K., Shimizu, N., Mori, N., Nishida, R., & Kuwahara, T. (2005). S-isorobinal as the female sex pheromone from an alarm pheromone emitting mite, Rhizoglyphus setosus. Experimental & Applied Acarology, 36, 107–117.

    CAS  Google Scholar 

  • Mollemann, F., & Walter, D. E. (2001). Niche segregation and canopeners: Scydmaenid beetles as predators of armoured mites in Australia. In R. B. Halliday, D. E. Walter, H. C. Proctor, R. A. Norton, & M. J. Colloff (Eds.), Acarology: Proceedings of the 10th international congress (pp. 281–288). Melbourne: CSIRO Publishing.

    Google Scholar 

  • Moore, J. C., Walter, D. E., & Hunt, H. W. (1988). Arthropod regulation of micro- and mesobiota in below-ground detrital foodwebs. Annual Review of Entomology, 33, 419–439.

    Google Scholar 

  • Mortimer, E., van Vuuren, B. J., Lee, J. E., Marshall, D. J., Convey, P., & Chown, S. L. (2011). Mite dispersal among the Southern Ocean Islands and Antarctica before the last glacial maximum. Proceedings of the Royal Society of London Series B Biological Sciences, 278, 1247–1255. doi:10.1098/rspb.2010.1779.

    CAS  Google Scholar 

  • Muraoka, M., & Ishibashi, N. (1976). Nematode-feeding mites and their feeding behaviour. Applied Entomology and Zoology, 11, 1–7.

    Google Scholar 

  • Navarro, M.-J., Gea, F.-J., & Escudero-Colomar, L. A. (2010). Abundance and distribution of Microdispus lambi (Acari: Microdispidae) in Spanish mushroom crops. Experimental & Applied Acarology, 50, 309–316. doi:10.1007/s10493-009-9326-3.

    Google Scholar 

  • Neher, D. A., Lewins, S. A., Weicht, T. R., & Darby, B. J. (2009). Microarthropod communities associated with biological soil crusts in the Colorado Plateau and Chihuahuan deserts. Journal of Arid Environments, 73, 672–677.

    Google Scholar 

  • Nicholas, W. L. (1984). The biology of free-living nematodes. Oxford: Clarendon Press.

    Google Scholar 

  • Nielsen, U. N., Osler, G. H. R., Campbell, C. D., Burslem, D. F. R. P., & van der Wal, R. (2012). Predictors of fine-scale spatial variation in soil mite and microbe community composition differ between biotic groups and habitats. Pedobiologia, 55, 83–91.

    Google Scholar 

  • Norton, R. A. (1985). Aspects of the biology and systematics of soil arachnids, particularly saprophagous and mycophagous mites. Quaestiones Entomologicae, 21, 523–541.

    Google Scholar 

  • Norton, R. A. (1994). Evolutionary aspects of oribatid mite life histories and consequences for the origin of the Astigmata. In M. A. Houck (Ed.), Mites: Ecological and evolutionary studies of life-history patterns (pp. 99–135). New York: Chapman & Hall.

    Google Scholar 

  • Norton, R. A., & Behan-Pelletier, V. P. (1991). Calcium carbonate and calcium oxalate as cuticular hardening agents in oribatid mites (Acari: Oribatida). Canadian Journal of Zoology, 69, 1504–1511.

    Google Scholar 

  • Norton, R. A., & Behan-Pelletier, V. M. (2009). Suborder Oribatida. In G. E. Krantz & D. E. Walter (Eds.), A manual of acarology (3rd ed., pp. 430–564). Lubbock: Texas Tech University Press.

    Google Scholar 

  • Norton, R. A., & MacNamara, M. C. (1976). The common newt (Notophthalmus viridescens) as a predator of soil mites in New York. The Journal of the Georgia Entomological Society, 11, 89–93.

    Google Scholar 

  • Norton, R. A., Kethley, J. B., Johnston, D. E., & OConnor, B. M. (1993). Phylogenetic perspectives on genetic systems and reproductive modes of mites. In D. L. Wrensch & M. A. Ebbert (Eds.), Evolution and diversity of sex ratio in insects and mites (pp. 8–99). New York: Chapman & Hall.

    Google Scholar 

  • Norton, R. A., Graham, T. B., & Alberti, G. (1996). A rotifer-eating ameronothroid (Acari: Ameronothridae) mite from ephemeral pools on the Colorado plateau. In R. Mitchell, D. J. Horn, G. R. Needham, & W. C. Welbourn (Eds.), Acarology IX (Vol. 1). Columbus: Ohio Biological Survey.

    Google Scholar 

  • O'Brien, W. J., Browman, H. I., & Evans, B. I. (1990). Search strategies of foraging animals. American Scientist, 78, 152–160.

    Google Scholar 

  • O'Connell, T., & Bolger, T. (1997). Stability, ephemerality and dispersal ability: Microarthropod assemblages on fungal sporophores. Biological Journal of the Linnean Society, 62, 111–131.

    Google Scholar 

  • O’Donnell, A. E., & Axtell, R. C. (1965). Predation by Fuscouropoda vegetans (Acarina: Uropodidae) on the House Fly (Musca domestica). Annals of the Entomological Society of America, 58, 403–404.

    PubMed  Google Scholar 

  • O'Donnell, A. E., & Nelson, E. L. (1967). Predation by Fuscouropoda vegetans (Acarina: Uropodidae) and Macrocheles muscaedomesticae (Acarina: Macrochelidae) on the eggs of the little house fly, Fannia canicularia. Journal of the Kansas Entomological Society, 40, 441–443.

    Google Scholar 

  • Odum, E. P. (1991). Fundamentals of ecology. Philadelphia: Sanders.

    Google Scholar 

  • Okabe, K., & Amano, H. (1992). Mite species collected from field mushrooms (I): Cryptostigmata. Journal of the Acarological Society of Japan, 1, 127–135.

    Google Scholar 

  • Okabe, K., & Amano, H. (1993). Mite species collected from field mushrooms (II): Mesostigmata, Prostigmata and Astigmata. Journal of the Acarological Society of Japan, 2, 19–28.

    Google Scholar 

  • Ostle, N., Briones, M. J. I., Ineson, P., Cole, L., Staddon, P., & Sleep, D. (2007). Isotopic detection of recent photosynthate carbon flow into grassland rhizosphere fauna. Soil Biology and Biochemistry, 39, 768–777. doi:10.1016/j.soilbio.2006.09.025.

    CAS  Google Scholar 

  • Paine, R. T. (1966). Food web complexity and species diversity. American Naturalist, 100, 65–74.

    Google Scholar 

  • Paine, R. T. (1996). Preface. In G. A. Polis & K. O. Winemiller (Eds.), Food webs, integration of patterns & dynamics (pp. ix–x). New York: Chapman & Hall.

    Google Scholar 

  • Park, O. (1947). Observations on Batrisodes (Coleoptera: Pselaphidae), with particular reference to the American species east of the Rocky Mountains. Bulletin of the Chicago Academy of Sciences, 8, 45–132.

    Google Scholar 

  • Pengilley, R. K. (1971). The food of some Australian anurans (Amphibia). Journal of Zoology, 163, 93–103. London.

    Google Scholar 

  • Perdomo, G., Evans, A., Maraun, M., Sunnucks, P., & Thompson, R. (2012). Mouthpart morphology and trophic position of microarthropods from soils and mosses are strongly correlated. Soil Biology and Biochemistry, 53, 56–63.

    CAS  Google Scholar 

  • Petersen, H. (1982). Structure and size of soil animal populations. Oikos, 39, 306–329.

    Google Scholar 

  • Petersen, H., & Luxton, M. (1982). A comparative analysis of soil faunal populations and their role in decomposition processes. Oikos, 39, 287–388.

    Google Scholar 

  • Pielou, D. P., & Verma, A. N. (1968). The arthropod fauna associated with the birch bracket fungus, Polyporus betulinus, in eastern Canada. Canadian Entomologist, 100, 1179–1199.

    Google Scholar 

  • Pimm, S. L. (1991). The balance of nature. Chicago: University of Chicago Press.

    Google Scholar 

  • Polak, M., & Markow, T. A. (1995). Effect of ectoparasitic mites on sexual selection in a Sonoran fruit fly. Evolution, 49, 660–669.

    Google Scholar 

  • Polis, G. A. (1991). Complex trophic interactions in deserts: an empirical critique of food web theory. American Naturalist, 138, 123–155.

    Google Scholar 

  • Polis, G. A., Myers, C. A., & Holt, R. D. (1989). The ecology and evolution of intraguild predation: Potential competitors that eat each other. Annual Review of Ecology and Systematics, 20, 297–330.

    Google Scholar 

  • Polis, G. A., Sissom, W. D., & McCormick, S. J. (1981). Predators of scorpions: Field data and a review. Journal of Arid Environments, 4, 309–326.

    Google Scholar 

  • Price, D. W., & Benham, G. S. (1976). Vertical distribution of pomerantziid mites (Acarina: Pomerantziidae). Proceedings of the Entomological Society of Washington, 78, 309–313.

    Google Scholar 

  • Price, D. W., & Benham, G. S. (1977). Vertical distribution of soil-inhabiting microarthropods in an agricultural habitat in California. Environmental Entomology, 6, 575–580.

    Google Scholar 

  • Pritchard, G., & Scholefield, P. (1978). Observations on the food, feeding behaviour, and associated sense organs of Grylloblatta campodeiformis (Grylloblattodea). Canadian Entomologist, 110, 205–212.

    Google Scholar 

  • Pugh, P. J. A. (1993). A synonymic catalogue of the Acari from Antarctica, the sub-Antarctic Islands and the Southern Ocean. Journal of Natural History, 27, 323–421.

    Google Scholar 

  • Pugh, P. J. A. (1994). Non-indigenous Acari of Antarctica and the sub-Antarctic islands. Zoological Journal of the Linnean Society, 110, 207–217.

    Google Scholar 

  • Pugh, P. J. A., & Convey, P. (2008). Surviving out in the cold: Antarctic endemic invertebrates and their refugia. Journal of Biogeography, 35, 2176–2186.

    Google Scholar 

  • Pugh, P. J. A., & King, P. E. (1985). Feeding in intertidal Acari. Journal of Experimental Marine Biology and Ecology, 94, 269–280.

    Google Scholar 

  • Qin, T.-K., & Halliday, R. B. (1997). Eriorhynchidae, a new family of Prostigmata (Acarina), with a cladistic analysis of eupodoid species of Australia and New Zealand. Systematic Entomology, 22, 151–171.

    Google Scholar 

  • Rabatin, S. C., & Rhodes, L. H. (1982). Acaulospora bireticulata inside oribatid mites. Mycologia, 74, 859–861.

    Google Scholar 

  • Raspotnig, G. (2006). Chemical alarm and defence in the oribatid mite Collohmannia gigantea (Acari: Oribatida). Experimental & Applied Acarology, 39, 177–194.

    CAS  Google Scholar 

  • Raspotnig, G., Norton, R. A., & Heethoff, M. (2011). Oribatid mites and skin alkaloids in poison frogs. Biology Letters, 7, 555–556.

    PubMed  Google Scholar 

  • Remen, C., Kruger, M., & Cassel-Lundhagen, A. (2010). Successful analysis of gut contents in fungal-feeding oribatid mites by combining body-surface washing and PCR. Soil Biology and Biochemistry, 42, 1952–1957.

    CAS  Google Scholar 

  • Reynolds, J. W. (2010). The earthworms (Oligochaeta: Lumbricidae) of Nova Scotia, Canada, revisted. Megadrilogica, 14, 77–100.

    Google Scholar 

  • Riha, G. (1951). Zur Oekologie der Oribatiden in Kalksteinboeden. Zoologische Jahrbuecher, 80, 407–450.

    Google Scholar 

  • Rockett, C. L. (1980). Nematode predation by oribatid mites (Acari: Oribatida). International Journal of Acarology, 6, 219–224.

    Google Scholar 

  • Rockett, C. L., & Woodring, J. P. (1966). Oribatid mites as predators of soil nematodes. Annals of the Entomological Society of America, 59, 669–671.

    Google Scholar 

  • Root, R. B. (1967). The niche exploitation pattern of the blue-gray gnatcatcher. Ecological Monographs, 37, 317–350.

    Google Scholar 

  • Ruess, L., Häggblom, M. M., Zapata, E. J. G., & Dighton, J. (2002). Fatty acids of fungi and nematodes – possible biomarkers in the soil food chain? Soil Biology and Biochemistry, 34, 745–756.

    CAS  Google Scholar 

  • Rusek, J. (1985). Soil microstructures – Contributions on specific soil organisms. Quaestiones Entomologicae, 21, 497–514.

    Google Scholar 

  • Saito, Y. (1997). Sociality and kin selection in Acari. In J. C. Choe & B. Crespi (Eds.), Evolution of social behaviour in insects and arachnids (pp. 443–457). Cambridge: Cambridge University Press.

    Google Scholar 

  • Salmane, I., & Brumelis, G. (2008). The importance of the moss layer in sustaining biological diversity of Gamasina mites in coniferous forest soil. Pedobiologia, 52, 69–76.

    Google Scholar 

  • Salminen, J., & Haimi, J. (1996). Effects of pentachlorophenol in forest soil: A microcosm experiment for testing ecosystem responses to anthropogenic stress. Biology and Fertility of Soils, 23, 182–188.

    CAS  Google Scholar 

  • Samuel, B. (2004). White as a ghost: Winter ticks & moose. Federation of Alberta Naturalists. New York: Springer

    Google Scholar 

  • Santos, P. F., & Whitford, W. G. (1981). The effects of microarthropods on litter decomposition in a Chihuahuan Desert Ecosystem. Ecology, 62, 664–669.

    Google Scholar 

  • Santos, P. F., Philips, J., & Whitford, W. G. (1981). The role of mites and nematodes in early stages of buried litter decomposition in a desert. Ecology, 62, 654–663.

    Google Scholar 

  • Santos, J. C., Coloma, L. A., & Cannatella, D. C. (2003). Multiple, recurring origins of aposematism and diet specialization in poison frogs. Proceedings of the National Academy of Sciences of USA, 100, 12792–12797.

    CAS  Google Scholar 

  • Sanyal, A. K., Basak, S., & Barman, R. P. (2002). Three new species of oribatid mites (Acarina, Oribatida: Haplochthoniidae) from the Antarctic continent. Acarina, 10, 57–63.

    Google Scholar 

  • Saporito, R. A., Spande, T. F., Garraffo, M. H., & Donnelly, M. A. (2009). Arthropod alkaloids in poison frogs: A review of the ‘dietary hypothesis’. Heterocycles, 79, 277–297.

    CAS  Google Scholar 

  • Saporito, R. A., Norton, R. A., Andriamaharavo, N. R., Garraffo, H. M., & Spande, T. F. (2011). Alkaloids in the mite Scheloribates laevigatus: Further alkaloids common to oribatid mites and poison frogs. Journal of Chemical Ecology, 37, 213–218.

    CAS  PubMed  Google Scholar 

  • Savage, A. L., Moorman, C. E., Gerwin, J. A., et al. (2010). Prey selection by Swainson's Warblers on the breeding grounds. Condor, 112, 605–614. doi:10.1525/cond.2010.

    Google Scholar 

  • Sayre, R. M., & Walter, D. E. (1991). Factors influencing the efficacy of natural enemies of plant-parasitic nematodes. Annual Review of Phytopathology, 29, 149–166.

    Google Scholar 

  • Schausberger, P. (2003). Cannibalism among phytoseiid mites: A review. Experimental & Applied Acarology, 29, 173–191.

    Google Scholar 

  • Schausberger, P., Peneder, S., Jürschik, S., & Hoffmann, D. (2012). Mycorrhiza changes plant volatiles to attract spider mite enemies. Functional Ecology, 26, 441–449.

    Google Scholar 

  • Schelvis, J. (1990). The reconstruction of local environments on the basis of remains of oribatid mites (Acari; Oribatida). Journal of Archaeological Science, 17, 559–571.

    Google Scholar 

  • Schelvis, J. (1992). Mites and archaeozoology, general methods: Applications to Dutch sites. Ph.D. Thesis, Rijksunversiteit, Groningen, 116 p.

    Google Scholar 

  • Scheu, S., & Schulz, E. (1996). Secondary succession, soil formation and development of a diverse community of oribatids and saprophagous soil macro-invertebrates. Biodiversity and Conservation, 5, 235–250.

    Google Scholar 

  • Schmelzle, S., Helfen, L., Norton, R. A., & Heethoff, M. (2009). The ptychoid defensive mechanism in Euphthiracaroidea (Acari: Oribatida): A comparison of muscular elements with functional considerations. Arthropod Structure & Development, 38, 461–472.

    Google Scholar 

  • Schmid, R. (1988). Morphologische Anpassungen in einem Räuber-Beute-System: Ameisenkäfer (Scydmaenidae, Staphylinoidea) und gepanzerte Milben (Acari). Zoologische Jahrbuecher Abteilung fuer Systematik Oekologie und Geographie der Tiere, 115, 207–228.

    Google Scholar 

  • Schneider, K., & Maraun, M. (2005). Feeding preferences among dark pigmented fungi (“Dematiacea”) indicate trophic niche differentiation of oribatid mites. Pedobiologia, 49, 61–67.

    Google Scholar 

  • Schneider, K., Migge, S., Norton, R. A., Scheu, S., Langel, R., Reineking, A., & Maraun, M. (2004). Trophic niche differentiation in oribatid mites (Oribatida, Acari): Evidence from stable isotope ratios (15N/14N). Soil Biology and Biochemistry, 36, 1769–1774.

    CAS  Google Scholar 

  • Schneider, K., Renker, C., & Maraun, M. (2005). Oribatid mite (Acari, Oribatida) feeding on ectomycorrhizal fungi. Mycorrhiza, 16, 67–72.

    PubMed  Google Scholar 

  • Schubart, H. O. R. (1967). Observations préliminaires sur la biologie d’Indotritia acanthophora Märkel, 1964 (Acari, Oribatei). Revista Brasileira de Biologia, 27, 165–176.

    Google Scholar 

  • Schubart, H. O. R. (1973). The occurrence of Nematalycidae (Acari, Prostigmata) in Central Amazonia with a description of a new genus and species. Acta Amazonica, 3, 53–57.

    Google Scholar 

  • Schuster, R. (1956). Der Anteil der Oribatiden an den Zersetzungsvorgangen in Boden. Zeitschrift fur Morphologie und Okologie de Tiere, 45, 1–33.

    Google Scholar 

  • Schuster, R. (1966). Über den Beutefang des Amiesenkäfers Cephennium austiacum Reiter. Naturwissenschaften, 53, 113.

    Google Scholar 

  • Schuster, R. K., & Cootzee, L. (2012). Cysticercoids of Anoplocephala magna (Eucestoda: Anoplocephalidae) experimentally grown in oribatid mites (Acari: Oribatida. Veterinary Parasitology, 190, 285–288. doi:10.1016/j.vetpar.2012.05.

    PubMed  Google Scholar 

  • Seastedt, T. R. (1984). The role of microarthropods in decomposition and mineralization processes. Annual Review of Entomology, 29, 25–46.

    Google Scholar 

  • Seastedt, T. R., Ramundo, R. A., & Hayes, D. C. (1988). Maximization of densities of soil animals by foliage herbivory: Empirical evidence, graphical and conceptual models. Oikos, 51, 243–248.

    Google Scholar 

  • Seeman, O. D., & Walter, D. E. (1997). A new species of Triplogyniidae (Mesostigmata: Celaenopsoidea) from Australian rainforests. International Journal of Acarology, 23, 49–59.

    Google Scholar 

  • Seyd, E. L., & Seaward, M. R. D. (1984). The association of oribatid mites with lichens. Zoological Journal of the Linnean Society, 80, 369–420.

    Google Scholar 

  • Sharma, R. D. (1971). Studies on the plant-parasitic nematode Tylenchorhynchus dubius. Meded. Landbouwhogesch. Wageningen, 71, 98–104.

    Google Scholar 

  • Sharma, G. D., Farrier, M. H., & Drooz, A. T. (1983). Food, life-history, and sexual differences of Callidosoma metzi Sharma, Drooz, and Treat (Acarina: Erythraeidae). International Journal of Acarology, 9, 149–155.

    Google Scholar 

  • Shimano, S. (2011). Aoki’s oribatid-based bioindicator systems. Zoosymposia, 6, 200–209.

    Google Scholar 

  • Shimano, S., Sakata, T., Mizutani, Y., & Kuwahara, Y. (2002). Geranial: The alarm pheromone in the nymphal stage of the oribatid mite, Nothrus palustris. Journal of Chemical Ecology, 28, 1831–1837.

    CAS  PubMed  Google Scholar 

  • Shimizu, N., Noge, K., Mori, N., Nishida, R., & Kuwahara, Y. (2004). Chemical ecology of astigmatid mites LXXIII. Neral as an alarm pheromone of the acarid mite, Oulenzia sp. (Astigmata: Winterschmidtiidae). Journal of the Acarological Society of Japan, 13, 57–64.

    Google Scholar 

  • Siepel, H. (1990). Niche relationships between two panphytophagous soil mites, Nothrus silvestris Nicolet (Acari, Oribatida, Nothridae) and Platynothrus peltifer (Koch) (Acari, Oribatida, Camisiidae). Biology and Fertility of Soils, 9, 139–144.

    Google Scholar 

  • Siepel, H. (1994). Life-history tactics of soil microarthropods. Biology and Fertility of Soils, 18, 263–278.

    Google Scholar 

  • Siepel, H. (1995). Applications of microarthropod life-history tactics in nature management and ecotoxicology. Biology and Fertility of Soils, 19, 75–83.

    Google Scholar 

  • Siepel, H. (1996). The importance of unpredictable and short-term environmental extremes for biodiversity in oribatid mites. Biodiversity Letters, 3, 26–34.

    Google Scholar 

  • Siepel, H., & De Ruiter-Dijkman, E. M. (1993). Feeding guilds of oribatid mites based on their carbohydrase activities. Soil Biology and Biochemistry, 25, 1491–1497.

    Google Scholar 

  • Siepel, H., & Maaskamp, F. (1994). Mites of different feeding guilds affect decomposition of organic matter. Soil Biology and Biochemistry, 26, 1389–1394.

    Google Scholar 

  • Simberloff, D. S., & Boecklen, W. (1981). Santa Rosalia reconsidered: Size and competition. Evolution, 35, 1206–1228.

    Google Scholar 

  • Simberloff, D., & Dayan, T. (1991). The guild concept and the structure of ecological communities. Annual Review of Ecology and Systematics, 22, 115–143.

    Google Scholar 

  • Simon, M. P., & Toft, C. A. (1991). Diet specialization in small vertebrates: Mite-eating in frogs. Oikos, 61, 263–278.

    Google Scholar 

  • Skubała, P., & Maslak, M. (2010). Succession of oribatid fauna (Acari, Oribatida) in fallen spruce trees: Deadwood promotes species and functional diversity. In M. W. Sabelis & J. Bruin (Eds.), Trends in acarology (pp. 123–128). Proceedings of the 12th International Congress. New York: Springer

    Google Scholar 

  • Skubała, P., & Zaleski, T. (2012). Heavy metal sensitivity and bioconcentration in oribatid mites (Acari, Oribatida): Gradient study in meadow ecosystems. Science of the Total Environment, 414, 364–372.

    PubMed  Google Scholar 

  • Skubała, P., Marzec, A., & Sokołowska, M. (2006). Accidental acarophagy: Mites found on fruits, vegetables and mushrooms. Biological Letters, 43, 249–255.

    Google Scholar 

  • Smit, C. E., Moser, T., & Roebke, J. (2012). A new OECD test guideline for the predatory soil mite Hypoaspis aculeifer: Results of an international ring test. Ecotoxicology & Environmental Safety, 82, 56–62. doi:10.1016/j.ecoenv.2012.05.009.

    CAS  Google Scholar 

  • Smith-Meyer, M. K. P., & Ueckermann, E. A. (1997). A review of some species of the families Allochaetophoridae, Linotetranidae and Tuckerellidae (Acari: Tetranychoidea). International Journal of Acarology, 23, 67–92.

    Google Scholar 

  • Solhøy, I. W., & Solhøy, T. (2000). The fossil oribatid mite fauna (Acari, Oribatida) in late glacial and early holocene sediments in Krakenes Lake, Western Norway. Journal of Paleolimnology, 23, 35–47.

    Google Scholar 

  • Spaull, V. W. (1973). Distribution of nematode feeding groups at Signy Island, South Orkney Islands, with an estimate of their biomass and oxygen consumption. British Antarctic Survey Bulletin, 37, 21–32.

    Google Scholar 

  • Sprules, W. G., & Bowerman, J. E. (1988). Omnivory and food chain length in zooplankton food webs. Ecology, 69, 418–426.

    Google Scholar 

  • Stamou, G. P., & Argyropoulou, M. D. (1995). A preliminary study on the effect of Cu, Pb and Zn contamination of soils on community structure and certain life-history traits of oribatids from urban areas. Experimental & Applied Acarology, 19, 381–390.

    CAS  Google Scholar 

  • Stanton, N. L. (1979). Patterns of species diversity in temperate and tropical litter mites. Ecology, 60, 295–304.

    Google Scholar 

  • Steiner, W. A. (1995). Influence of air pollution on moss-dwelling animals: 3. Terrestrial fauna, with emphasis on Oribatida and Collembola. Acarologia, 36, 149–173.

    Google Scholar 

  • Stephen, J. A., & Schweizer, H. (2009). Biological control of Lycoriella ingenua (Diptera: Sciaridae) in commercial mushroom (Agaricus bisporus) cultivation: A comparison between Hypoaspis miles and Steinernema feltiae. Pest Management Science, 65, 1195–1200.

    Google Scholar 

  • Stewart, M. M., & Woolbright, L. L. (1996). Amphibians. In D. P. Reagan & R. B. Waide (Eds.), The food web of a tropical rain forest (pp. 273–320). Chicago: University of Chicago Press.

    Google Scholar 

  • Stirling, G. R. (1991). Biological control of plant parasitic nematodes, progress, problems and prospects. Wallingford: CAB International.

    Google Scholar 

  • Strandtmann, R. W. (1967). Terrestrial Prostigmata (trombidiform mites). In J. L. Gressitt (Ed.), Entomology of Antarctica (pp, Vol. 10, pp. 51–80). Washington, DC: American Geophysical Union.

    Google Scholar 

  • Swift, M. J., Heal, D. W., & Anderson, J. M. (1979). Decomposition in terrestrial ecosystems. Berkeley: University of California Press.

    Google Scholar 

  • Szlendak, E., & Lewandowski, M. (2009). Development and reproductive capacity of the predatory mite Parasitus consanguineus (Acari: Parasitidae) reared on the larval stages of Megaselia halterata and Lycoriella ingenue. Experimental & Applied Acarology, 47, 285–292. doi:10.1007/s10493-008-9218-y.

    Google Scholar 

  • Tevis, L. J., & Newell, I. M. (1962). Studies on the biology and seasonal cycle of the giant red velvet mite, Dinothrombium pandorae (Acari, Trombidiidae). Ecology, 43, 497–505.

    Google Scholar 

  • Toft, C. A. (1995). Evolution of diet specialization in poison-dart frogs (Dendrobatidae). Herpetologica, 51, 202–216.

    Google Scholar 

  • Usher, M. B. (1975). Some aspects of the aggregations of soil arthropods: Cryptostigmata. Pedobiologia, 15, 364–374.

    Google Scholar 

  • Usher, M. B. (1976). Aggregation response of soil arthropods in relation to the soil environment. In J. M. Anderson & A. Macfadyen (Eds.), The role of terrestrial and aquatic organisms in decomposition processes (pp. 61–94). Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Usher, M. B., & Booth, R. G. (1986). Arthropod communities in Antarctic moss-turf habitat: Life history strategies of the prostigmatid mites. Pedobiologia, 29, 209–218.

    Google Scholar 

  • Usher, M. B., & Bowring, M. F. B. (1984). Laboratory studies of predation by the Antarctic mite Gamasellus racovitzai (Acari: Mesostigmata). Oecologia, 62, 245–249.

    Google Scholar 

  • Usher, M. B., & Davis, P. R. (1983). The biology of Hypoaspis aculeifer (Canestrini) (Mesostigmata) – Is there a tendency towards social-behavior? Acarologia, 24, 243–253.

    Google Scholar 

  • Usher, M. B., Block, W., & Jumeau, P. J. A. M. (1989). Predation by arthropods in an Antarctic terrestrial community. In R. B. Heywood (Ed.), University Research in Antarctica. Proceedings of British Antarctic Survey Antarctic Special Topic Award Scheme Symposium 9–10 November 1988 (pp. 123–129). Cambridge: British Antarctic Survey, Natural Environment Research Council.

    Google Scholar 

  • Usher, M. B., Booth, R. G., & Sparkes, K. E. (1982). A review of progress in understanding the organisation of communities of soil arthropods. Pedobiologia, 23, 126–144.

    Google Scholar 

  • Utzeri, C., Antonelli, D., & Angelini, C. (2004). A note on terrestrial activity and feeding in the spectacled salamander, Salamandrina terdigitata (Urodela, Salamandridae). Herpetological Bulletin, 90, 27–31.

    Google Scholar 

  • Valdecantos, M. S., Arias, F., & Espinoza, R. E. (2012). Herbivory in Liolaemus poecilochromus, a small, cold-climate lizard from the Andes of Argentina. Copeia, 2, 203–210. doi:10.1643/CE-12-001.

    Google Scholar 

  • van de Bund, C. F. (1972). Some observations on predatory action of mites on nematodes. Zeszyty Problemowe Postepow Nauk Rolniczych, 129, 103–110.

    Google Scholar 

  • van Straalen, N. M. (1997). Community structure of soil arthropods as a bioindicator of soil health. In C. Pankhurst, B. M. Doube, & V. V. S. R. Gupta (Eds.), Biological indicators of soil health. Wallingford: CAB International.

    Google Scholar 

  • van Straalen, M., & Verhoef, H. A. (1992). The development of a bioindicator system for soil acidity based on arthropod pH preferences. Journal of Applied Ecology, 34, 217–232.

    Google Scholar 

  • Vänninen, I., & Walter, D. E. (2003). Acceptance of thrips pupae as prey by soil-living predatory mites. 1st international symposium on biological control of arthropods. USDA-Forest Service FHTET-03-05 (Poster).

    Google Scholar 

  • Vincent, W. F. (1988). Microbial ecosystems of Antarctica. Melbourne: Cambridge University Press.

    Google Scholar 

  • Visser, S. (1985). Role of the soil invertebrates in determining the composition of soil microbial communities. In A. H. Fitter, D. Atkinson, D. J. Read, & M. B. Usher (Eds.), Ecological interactions in soil (pp. 297–317). Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Wallwork, J. A. (1976). The distribution and diversity of the soil fauna. London: Academic.

    Google Scholar 

  • Wallwork, J. A. (1983). Oribatids in forest ecosystems. Annual Review of Entomology, 28, 109–130.

    Google Scholar 

  • Walter, D. E. (1985). The effects of litter type and elevation on colonization of mixed coniferous litterbags by oribatid mites. Pedobiologia, 28, 383–387.

    Google Scholar 

  • Walter, D. E. (1987a). Life history, trophic behavior and description of Gamasellodes vermivorax n. sp. (Mesostigmata: Ascidae) a predator of nematodes and arthropods in semiarid grasslands. Canadian Journal of Zoology, 65, 1689–1695.

    Google Scholar 

  • Walter, D. E. (1987b). Trophic behavior of "mycophagous" microarthropods. Ecology, 68, 226–229.

    Google Scholar 

  • Walter, D. E. (1988a). Predation and mycophagy by endeostigmatid mites (Acariformes: Prostigmata). Experimental & Applied Acarology, 4, 159–166.

    Google Scholar 

  • Walter, D. E. (1988b). Macrocheles schaeferi (Acari: Mesostigmata: Macrochelidae), a new species in the subbadius group from grassland soils in the central United States. Annals of the Entomological Society of America, 81, 386–394.

    Google Scholar 

  • Walter, D. E. (2000). A jumping mesostigmatan: Saltiseius hunteri, n.g., n. sp. (Acari: Mesostigmata: Trigynaspida: Saltiseiidae, n. fam.). International Journal of Acarology, 26, 25–31.

    Google Scholar 

  • Walter, D. E., & Behan-Pelletier, V. (1999). Mites in forest canopies: Filling the size distribution shortfall? Annual Review of Entomology, 44, 1–19.

    CAS  PubMed  Google Scholar 

  • Walter, D. E., & Ikonen, E. K. (1989). Species, guilds and functional groups: taxonomy and behavior in nematophagous arthropods. Journal of Nematology, 21, 315–327.

    CAS  PubMed  Google Scholar 

  • Walter, D. E., & Kaplan, D. T. (1990a). Feeding observations on two astigmatic mites, Schwiebea rocketti Woodring (Acaridae) and Histiostoma bakeri Hughes & Jackson, associated with citrus feeder roots. Pedobiologia, 34, 281–286.

    Google Scholar 

  • Walter, D. E., & Kaplan, D. T. (1990b). A guild of thelytokous mites associated with citrus roots in Florida. Environmental Entomology, 19, 1338–1343.

    Google Scholar 

  • Walter, D. E., & Kaplan, D. T. (1991). Observations on Coleoscirus simplex (Acarina: Prostigmata), a predatory mite that colonizes greenhouse cultures of rootknot nematode (Meloidogyne spp.), and a review of feeding behavior in the Cunaxidae. Experimental & Applied Acarology, 12, 47–59.

    Google Scholar 

  • Walter, D. E., & Lindquist, E. E. (1995). The distributions of parthenogenetic ascid mites (Acari: Parasitiformes) do not support the biotic uncertainty hypothesis. Experimental and Applied Acarology, 19, 423–442.

    Google Scholar 

  • Walter, D. E., & Norton, R. A. (1984). Body size distribution in sympatric oribatid mites (Acari: Sarcoptiformes) from California pine litter. Pedobiologia, 27, 99–106.

    Google Scholar 

  • Walter, D. E., & Oliver, J. H. (1990). Geolaelaps oreithyiae, n. sp. (Acari: Laelapidae), a thelytokous predator of arthropods and nematodes, and a discussion of clonal reproduction in the Mesostigmata. Acarologia, 30, 293–303.

    Google Scholar 

  • Walter, D. E., & Proctor, H. C. (1998a). Feeding behaviour and phylogeny: Observations on early derivative Acari. Experimental & Applied Acarology, 22, 39–50.

    Google Scholar 

  • Walter, D. E., & Proctor, H. C. (1998b). Predatory mites in tropical Australia: Local species richness and complementarity. Biotropica, 30, 72–81.

    Google Scholar 

  • Walter, D. E., & Proctor, H. C. (1999). Mites: Ecology, evolution and behaviour (p. 322). Sydney/Wallingford: University of NSW Press/CABI. ISBN 0 86840 529 9.

    Google Scholar 

  • Walter, D. E., Hudgens, R. A., & Freckman, D. W. (1986). Consumption of nematodes by fungivorous mites Tyrophagus spp. (Acarina: Astigmata: Acaridae). Oecologia, 70, 357–361.

    Google Scholar 

  • Walter, D. E., Hunt, H. W., & Elliott, E. T. (1987a). The influence of prey type on the development and reproduction of some predatory soil mites. Pedobiologia, 30, 419–424.

    Google Scholar 

  • Walter, D. E., Kethley, J., & Moore, J. C. (1987b). A heptane flotation method for recovering microarthropods from arid grassland soils, with comparisons to the Merchant–Crossley high-gradient extraction method and estimates of microarthropod biomass. Pedobiologia, 30, 221–232.

    Google Scholar 

  • Walter, D. E., Hunt, H. W., & Elliott, E. T. (1988). Guilds or functional groups? An analysis of predatory arthropods from a shortgrass prairie soil. Pedobiologia, 31, 247–260.

    Google Scholar 

  • Walter, D. E., Moore, J. C., & Loring, S. J. (1989). Symphylella sp. (Symphyla: Scolopendrellidae) predators of arthropods and nematodes in grassland soils. Pedobiologia, 33, 113–116.

    Google Scholar 

  • Walter, D. E., Halliday, R. B., & Lindquist, E. E. (1993). A review of the genus Asca (Acarina: Ascidae) in Australia, with the description of three new leaf-inhabiting species. Invertebrate Taxonomy, 7, 1327–1347.

    Google Scholar 

  • Walter, D. E., Seeman, O., Rodgers, D., & Kitching, R. L. (1998). Mites in the mist: How unique is a rainforest canopy knockdown fauna? Australian Journal of Ecology, 23, 501–508.

    Google Scholar 

  • Walton, B. M., & Steckler, S. (2005). Contrasting effects of salamanders on forest-floor macro- and mesofauna in laboratory microcosms. Pedobiologia, 49, 51–60.

    Google Scholar 

  • Walton, B. M., Tsatiris, D., & Rivera-Sostre, M. (2006). Salamanders in forest-floor food webs: Invertebrate species composition influences top–down effects. Pedobiologia, 50, 313–321.

    Google Scholar 

  • Wardle, D. A. (2006). The influence of biotic interactions on soil biodiversity. Ecology Letters, 9, 870–886. doi:10.1111/j.1461-0248.2006.00931.x.

    PubMed  Google Scholar 

  • Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Setala, H., van der Putten, W. H., & Wall, D. H. (2004). Ecological linkages between aboveground and belowground biota. Science, 304, 1629–1633.

    CAS  PubMed  Google Scholar 

  • Wauthy, G., Leponce, M., Banai, N., Sylin, G., & Lions, J. C. (1997). Un acarien qui saute et qui se met en boule. Comptes rendus de l'Academie des Sciences, 320, 315–317.

    Google Scholar 

  • Weeks, P. (2000). Red-billed oxpeckers: Vampires or tickbirds? Behavioral Ecology, 11, 154–160. doi:10.1093/beheco/11.2.154.

    Google Scholar 

  • Whitford, W. G. (1996). The importance of the biodiversity of soil biota in arid ecosystems. Biodiversity and Conservation, 5, 185–195.

    Google Scholar 

  • Wiggins, E. A., & Curl, E. A. (1979). Interactions of collembola and microflora of the cotton rhizosphere. Phytopathology, 69, 244–249.

    Google Scholar 

  • Wilkinson, P. P. (1970). Factors affecting the distribution and abundance of the cattle tick in Australia: observations and hypotheses. Acarologia, 12, 492–508.

    Google Scholar 

  • Wilson, D. S. (1983). The effect of population structure on the evolution of mutualism: A field test involving burying beetles and their phoretic mites. American Naturalist, 121, 851–870.

    Google Scholar 

  • Wilson, E. O. (2005). Oribatid mite predation by small ants of the genus Pheidole. Insectes Sociaux, 52, 263–265.

    Google Scholar 

  • Wohltmann, A., Wendt, F.-E., & Waubke, M. (1996). The life cycle and parasitism of the European grasshopper mite Eutrombidium trigonum (Hermann 1804) (Prostigmata: Parasitengonae: Microtrombidiidae), a potential agent for biological control of grasshoppers (Saltatoria). Experimental & Applied Acarology, 20, 545–561.

    Google Scholar 

  • Wolters, V. (1991). Soil invertebrates – Effects on nutrient turnover and soil structure – A review. Zeitschrift für Pflanzenernahrung, Dungung und Bodenkunde, 154, 389–402.

    Google Scholar 

  • Woodring, J. P. (1963). The nutrition and biology of saprophytic Sarcoptiformes. Advances in Acarology, 1, 89–111.

    Google Scholar 

  • Woodring, J. P., & Galbraith, C. A. (1976). The anatomy of the adult uropodid Fuscouropoda agitans (Arachnida; Acari) with comparative observations on other Acari. Journal of Morphology, 150, 19–58.

    Google Scholar 

  • Wright, E. M., & Chambers, R. J. (1994). The biology of the predatory mite Hypoaspis miles (Acari: Laelapidae), a potential biological control agent of Bradysia paupera (Dipt.: Sciardiae). Entomophaga, 39, 225–235.

    Google Scholar 

  • Yamanaka, T., White, P. C. L., Spencer, M., & Raffaelli, D. (2012). Patterns and processes in abundance-body size relationships for marine benthic invertebrates. Journal of Animal Ecology, 81, 463–471.

    PubMed  Google Scholar 

  • Yeates, G. W., & Lee, W. G. (1997). Burning in a New Zealand snow-tussock grassland: Effects on vegetation and soil fauna. New Zealand Journal of Ecology, 21, 73–79.

    Google Scholar 

  • Yoder, J. A. (1993). An ant-diversionary secretion of ticks – 1st demonstration of an acarine allomone. Journal of Insect Physiology, 39, 429–435.

    CAS  Google Scholar 

  • Young, O. P., & Welbourn, W. C. (1987). Biology of Lasioerythraeus johnstoni (Acari: Erythraeidae), ectoparasitic and predacious on the tarnished plant bug, Lygus lineolaris (Hemiptera: Miridae), and other arthropods. Annuals of the Entomological Society of America, 80, 243–250.

    Google Scholar 

  • Young, M. R., Behan-Pelletier, V. M., & Hebert, P. D. N. (2012). Revealing the hyperdiverse mite fauna of subarctic Canada through DNA barcoding. PLoS One, 7, e48755. doi:10.1371/journal.pone.0048755.

    CAS  PubMed  Google Scholar 

  • Zacharda, M. (1980). Soil mites of the family Rhagidiidae (Actinedida: Eupodoidea), Morphology, systematics, ecology. Acta Universitatis Carolinae-Biologica, 1978, 489–785.

    Google Scholar 

  • Zhang, Z.-Q., & Sanderson, J. P. (1993). Association of Ereynetes tritonymphs (Acari: Ereynetidae) with the Fungus Gnat, Bradysia impatiens (Diptera: Sciaridae). International Journal of Acarology, 19, 179–183.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Walter, D.E., Proctor, H.C. (2013). Mites in Soil and Litter Systems. In: Mites: Ecology, Evolution & Behaviour. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7164-2_6

Download citation

Publish with us

Policies and ethics