Skip to main content

Life Cycles, Development and Size

  • Chapter
  • First Online:
Book cover Mites: Ecology, Evolution & Behaviour

Abstract

As mammals, we receive a lot of help from mom in the form of milk and protection during our early postpartum years, and of course many months of room and board inside the womb before then. Maternal care is likewise widespread among arachnids and mothers often carry eggs and developing young. Some horseshoe crab females also carry their eggs until they hatch (Shipley 1909). On land, arachnid mothers often build a burrow, a silk-lined chamber or a silken egg sac (spiders) in which eggs or hatchlings are protected. Many scorpions, whipscorpions, sun scorpions, spiders and pseudoscorpion females guard their young after hatching until they are fully active and ready to begin hunting. In contrast, paternal care appears to be much rarer among arachnids, but is known from five families of harvestmen in the superfamily Gonyleptoidea (Proud et al.2011). For example, males in the neotropical genus Zygopachylus construct a nest into which females place their eggs after mating. The males clean the eggs of fungal parasites and ward off potential predators, especially other opilionids (Mora 1990). Other cases of paternal care have been reported (Martens 1993) and some female opilionids also guard their eggs and young juveniles (Mitchell 1971; Ramires and Giaretta 1994; Proud et al. 2011); however, most opilionids limit maternal care to the use of ovipositors to hide eggs in crevices or in the soil (Preston-Mafham and Preston-Mafham 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aeschlimann, A. (1984). What is our current knowledge of acarine embryology? In D. A. Griffiths & C. E. Bowman (Eds.), Acarology VI (Vol. 1, pp. 90–99). Chichester: Ellis Horwood.

    Google Scholar 

  • André, H. M., & van Impe, G. (2012). The missing stase in spider mites (Acari: Tetranychidae): When the adult is not the imago. Acarologia, 52, 3–16.

    Google Scholar 

  • Athias-Binche, F. (1987). Signification adaptives des différents types de développements postembryonnaires chez les Gamasides (Acariens: Anactinotriches). Canadian Journal of Zoology, 65, 1299–1310.

    Google Scholar 

  • Athias-Binche, F. (1991). Evolutionary ecology of dispersal in mites. In F. Dusbabek & V. Bukva (Eds.), Modern acarology 1 (pp. 27–41). Prague: SPB Academic.

    Google Scholar 

  • Athias-Binche, F., & Morand, S. (1993). From phoresy to parasitism: The example of mites and nematodes. Research and Reviews in Parasitology, 53, 73–79.

    Google Scholar 

  • Atyeo, W. T., Kethley, J. B., & Perez, T. M. (1984). Paedomorphosis in Metacheyletia (Acari: Cheyletidae), with the Description of a New Species. Journal of Medical Entomology, 21, 125–131.

    Google Scholar 

  • Bader, C. (1980). Some biological and ecological data on water mites, mainly some significant data on the life-duration. International Journal of Acarology, 6, 239–243.

    Google Scholar 

  • Baker, E. W. (1979). A note on paedogenesis in Brevipalpus sp. (Acari: Tenuipalpidae), the first such record for a mite. International Journal of Acarology, 5, 355–379.

    Google Scholar 

  • Barnett, A. A., & Thomas, R. H. (2012). The delineation of the fourth walking leg segment is temporally linked to posterior segmentation in the mite Archegozetes longisetosus (Acari: Oribatida, Trhypochthoniidae). Evolution & Development, 14, 383–392. doi:10.1111/j.1525-142X.2012.00556.x.

    CAS  Google Scholar 

  • Bergmann, P., & Heethoff, M. (2012). The oviduct is a brood chamber for facultative egg retention in the parthenogenetic oribatid mite Archegozetes longisetosus Aoki (Acari, Oribatida). Tissue & Cell, 44, 342–350.

    CAS  Google Scholar 

  • Block, W. (1979). Nanorchestes antarcticus Strandtmann (Prostigmata) from Antarctic ice. Acarologia, 21, 173–176.

    Google Scholar 

  • Böttger, K. (1972). Vergleichend biologisch-ökologische Studien sum Entwicklungszyklus Süsswassermilben (Hydrachnellae, Acari) I. Der Entwicklungszyklus von Hydrachna globosa und Limnochares aquatica. Int Rev Ges Hydrobiol, 57, 109–152.

    Google Scholar 

  • Brown, J. H. (1995). Macroecology. Chicago: University of Chicago Press.

    Google Scholar 

  • Bruce, W. A., & Wrensch, D. L. (1990). Reproductive potential, sex ratio, and mating efficiency of the straw itch mite (Acari: Pyemotidae). Journal of Economic Entomology, 83, 384–391.

    Google Scholar 

  • Canard, A., & Stockmann, R. (1993). Comparative postembryonic development of arachnids. Memoirs of the Queensland Museum, 33, 461–468.

    Google Scholar 

  • Cancela da Fonseca, J. P. (1975). Notes Oribatologiques. Acarologia, 17, 320–330.

    Google Scholar 

  • Chant, D. A. (1993). Paedomorphosis in the Family Phytoseiidae (Acari: Gamasina). Canadian Journal of Zoology, 71, 1334–1349.

    Google Scholar 

  • Cicolani, B. (1979). The intrinsic rate of natural increase in dung Macrochelid mites, predators of Musca domestica eggs. Bollettino di Zoologia, 46, 171–178.

    Google Scholar 

  • Cloudsley-Thompson, J. L. (1992). Solifugae – and keeping them in captivity. Arachnida: Proceedings of a Symposium on Spiders and Their Allies. London.

    Google Scholar 

  • Coineau, Y. (1976). Les pariades sexuelles des Saxidrominae Coineau 1974 (Acariens Prostigmates, Adamystidae). Acarologia, 28, 234–240.

    Google Scholar 

  • Coineau, Y., & van der Hammen, L. (1979). The postembryonic development of Opilioacarida, with notes on new taxa and on a general model for the evolution. Proceedings of the 4th International Congress of Acarology. Budapest: Akadémiai Kiadó.

    Google Scholar 

  • Cook, W. J., Smith, B. P., & Brooks, R. J. (1989). Allocation of reproductive effort in female Arrenurus spp. water mites (Acari: Hydrachnidia; Arrenuridae). Oecologia, 79, 184–188.

    Google Scholar 

  • Costa, M. (1969). The association between mesostigmatic mites and coprid beetles. Acarologia, 11, 411–428.

    Google Scholar 

  • Crawford, C. S. (1990). Scorpiones, Solifugae, and associated desert taxa. In D. L. Dindal (Ed.), Soil biology guide (pp. 421–475). New York: Wiley.

    Google Scholar 

  • Dingle, H. (1996). Migration: The biology of life on the move. New York: Oxford University Press.

    Google Scholar 

  • Dunlop, J. A., Wirth, S., Penney, D., McNeil, A., Bradley, R. S., Withers, P. J., & Preziosi, R. F. (2012). A minute fossil phoretic mite recovered by phase-contrast X-ray computed tomography. Biology Letters, 8, 457–460.

    PubMed  Google Scholar 

  • Eickwort, G. C. (1994). Evolution and life-history patterns of mites associated with bees. In M. A. Houck (Ed.), Mites: Ecological and evolutionary analyses of life-history patterns (pp. 218–251). New York: Chapman & Hall.

    Google Scholar 

  • Elzinga, R. J., & Broce, A. B. (1988). Hypopi (Acari: Histiostomatidae) on house flies (Diptera: Muscidae): A case of detrimental phoresy. Journal of the Kansas Entomological Society, 61, 203–208.

    Google Scholar 

  • Evans, G. O. (1992). Principles of acarology. Wallingford: CAB International.

    Google Scholar 

  • Ewbank, J. J., Barnes, T., Lakowski, B., Lussier, M., Bussey, H., & Hekimi, S. (1997). Structural and functional conservation of Caenorhabditis elegans timing gene clk -l. Science, 275, 980–983.

    PubMed  CAS  Google Scholar 

  • Foelix, R. F. (1982). Biology of spiders. Cambridge: Harvard University Press.

    Google Scholar 

  • Geden, C. J., Stinner, R. E., et al. (1990). MACMOD: A simulation model for Macrocheles muscaedomesticae (Acari: Macrochelidae) population dynamics and rates of predation on immature house flies (Diptera: Muscidae). Environmental Entomology, 19, 578–586.

    Google Scholar 

  • Goodnight, M., & Goodnight, C. J. (1976). Observations on the systematics, development and habits of Erginulus clavotibialis (Opiliones: Cosmetidae). Transactions of the American Microscopical Society, 95, 654–664.

    Google Scholar 

  • Gould, S. (1977). Ontogeny and phylogeny. Cambridge: Harvard University Press.

    Google Scholar 

  • Grandjean, F. (1938). Sur l’ontogénie des Acariens. Comptes Rendus de l’Académie des Sciences, 206, 146–150.

    Google Scholar 

  • Grandjean, F. (1970). Stases – Actinopiline – Rappel de ma classification des Acariens en trois groupes majeurs. Terminologie en soma. Acarologia, 11, 796–827.

    Google Scholar 

  • Guarante, L. (1997). What makes us tick? Science, 257, 943–944.

    Google Scholar 

  • Hambleton, E. J. (1938). A ocorrencia do acaro tropical Tarsonemus latus Banks (Acar., Tarsonemidae) causador da rasgadura das folhas nos algodoais de S. Paulo (Vol. 9, pp. 201–209). Sao Paulo: Arquivos do Instituto Biologico.

    Google Scholar 

  • Hevers, J. (1980). Biologisch-ökologische Untersuchungen zum Entwicklungszyklus der in Deutschland auftretenden Unionicola-Arten (Hydrachnellae, Acari). Archiv für Hydrobiologie Supplementband, 57, 324–373.

    Google Scholar 

  • Ho, C. -C. (1985). Mass production of the predaceous mite, Macrocheles muscaedomesticae (Scopoli) (Acarina: Macrochelidae) and its potential use as a biological agent of house fly, Musca domestica L. (Diptera: Muscidae). Ph.D. Dissertation, p. 186. University of Florida, Gainesville.

    Google Scholar 

  • Ho, C.-C. (1989). Studies on the Biology of Macrocheles muscaedomesticae (Scopoli) (Acarina: Macrochelidae). Chinese Journal of Entomology, 3, 181–187.

    Google Scholar 

  • Hodgkin, L. A., Elgar, M. A., & Symonds, M. R. E. (2010) Positive and negative effects of phoretic mites on the reproductive output of an invasive bark beetle. Australian Journal of Zoology, 58, 198–204. http://www.publish.csiro.au/paper/ZO10034.

    Google Scholar 

  • Honciuc, V. (1996). Laboratory studies of the behaviour and life cycle of Archegozetes longisetosis Aoki 1965 (Oribatida). In R. Mitchell, D. J. Horn, G. R. Needham, & W. C. Welbourn (Eds.), Acarology IX: Vol. 1. Proceedings (pp. 637–640). Columbus: Ohio Biological Survey.

    Google Scholar 

  • Houck, M. A. (1994). Adaptation and transition into parasitism from commensalism: A phoretic model. In M. A. Houck (Ed.), Mites: Ecological and evolutionary analyses of life-history patterns (pp. 252–281). New York: Chapman & Hall.

    Google Scholar 

  • Jeppson, L. R., Keifer, H. H., & Baker, E. W. (1975). Mites injurious to economic plants. Berkeley: University of California Press.

    Google Scholar 

  • Johnston, D. E., & Wacker, R. R. (1967). Observations on postembryonic development in Eutrombicula splendens (Acari – Acariformes). Journal of Medical Entomology, 4, 306–310.

    PubMed  CAS  Google Scholar 

  • Kaestner, A. (1968). Invertebrate Zoology, Volume II. New York: John Wiley & Sons Interscience Publishers.

    Google Scholar 

  • Kaliszewski, M., Athias-Binche, F., & Lindquist, E. E. (1995). Parasitism and parasitoidism in Tarsonemina (Acari: Heterostigmata) and evolutionary considerations. Advances in Parasitology, 35, 335–367.

    PubMed  CAS  Google Scholar 

  • Kennedy, G. G., & Smitley, D. R. (1985). Dispersal. In W. Helle & M. W. Sabelis (Eds.), Spider mites, their biology, natural enemies and control (Vol. 1A, pp. 233–242). New York: Elsevier.

    Google Scholar 

  • Kethley, J. (1974). Developmental chaetotaxy of a paedomorphic celaenopsoid, Neotenogynium malkini n.g., n.sp. (Acari: Parasitiformes: Neotenogyniidae n. fam.) associated with millipedes. Annals of the Entomological Society of America, 67, 571–579.

    Google Scholar 

  • Kethley, J. (1990). Acarina: Prostigmata (Actinedida). In D. L. Dindal (Ed.), Soil biology guide (pp. 667–756). New York: Wiley.

    Google Scholar 

  • Kethley, J. (1992). The prelarva of Alycus roseus Koch (Bimichaeliidae: Acariformes: Acari). Canadian Journal of Zoology, 68, 1058–1061.

    Google Scholar 

  • Kinn, D. N., & Witcosky, J. J. (1977). The life cycle and behaviour of Macrocheles boudreauxi Krantz. Zeitschrift fuer Angewandte Entomologie, 84, 136–144.

    Google Scholar 

  • Klompen, J. S. H. (2000). Prelarva and larva of Opilioacarus (Neocarus) texanus (Chamberlin and Mulaik) (Acari : Opilioacarida) with notes on the patterns of setae and lyrifissures. Journal of Natural History, 34, 1977–1992.

    Google Scholar 

  • Klompen, H. (2011). Holothyrids and ticks: New insights from larval morphology and dna sequencing, with the description of a new species of Diplothyrus (Parasitiformes: Neothyridae). Acarologia, 50, 269–285. doi:10.1051/acarologia/20101970.

    Google Scholar 

  • Krantz, G. W. (1983). Mites as biological control agents of dung-breeding flies, with special reference to the Macrochelidae. In M. A. Hoy, G. L. Cunningham, & L. Knutson (Eds.), Biological control of pests by mites (pp. 91–98). Berkeley: University of California Agriculture Experiment Station Special Publication 3304.

    Google Scholar 

  • Krantz, G. W., & Walter, D. E. (Eds.). (2009). A manual of acarology (3rd ed.). Texas Tech University Press. 807 p, 338 b/w illustrations; 60 figures ISBN 978-0-89672-620-8. http://www.ttup.ttu.edu/BookPages/9780896726208.html.

  • Labruna, M. B., Nava, S., Guzmán-Cornejo, C., & Venzal, J. M. (2012). Maternal care in the soft tick Antricola marginatus. Journal of Parasitology, 98, 876–877.

    PubMed  CAS  Google Scholar 

  • Lange, A. B., & Tolstikov, A. V. (1999). Ovoviviparity, prelarva and the peculiarities of eclosion in fresh-water oribatid mites Thrypochthoniellus setosus (Will.) and Hydrozetes lemnae (Coggi). Acarina, 7, 13–21.

    Google Scholar 

  • Lindquist, E. E. (1986). The world genera of Tarsonemidae (Acari: Heterostigmata): A morphological, phylogenetic, and systematic revision, with a reclassification of the family-group taxa in the Heterostigmata. Memoirs of the Entomological Society of Canada, 136, 1–517.

    Google Scholar 

  • Lindquist, E. E. (1996). 1.5.2 Phylogenetic relationships. In E. E. Lindquist, M. W. Sabelis, & J. Bruin (Eds.), Eriophyid mites. Their biology, natural enemies and control (Vol. 6, pp. 301–327). Amsterdam: Elsevier.

    Google Scholar 

  • Lindquist, E. E., & Oldfield, G. N. (1996). Evolution of eriophyoid mites in relation to their host plants. In E. E. Lindquist, M. W. Sabelis, & J. Bruin (Eds.), Eriophyid mites – their biology, natural enemies and control (Vol. 6, pp. 277–300). Amsterdam: Elsevier.

    Google Scholar 

  • Lindquist, E. E., Sabelis, M. W., & Bruin, J. (1996). Eriophyoid mites, their biology, natural enemies and control. Amsterdam: Elsevier.

    Google Scholar 

  • Martens, J. (1993). Further cases of paternal care in Opiliones (Arachnida). Tropical Zoology, 6, 97–107.

    Google Scholar 

  • Meyer, E. (1985). Der Entwicklungszyklus von Hydrodroma despiciens (O.F. Müller 1776) (Acari: Hydrodromidae). Archiv für Hydrobiologie Supplementband, 66, 321–453.

    Google Scholar 

  • Michener, C. D. (1946). The taxonomy and bionomics of some Panamanian trombidiid mites. Annals of the Entomological Society of America, 39, 349–380.

    Google Scholar 

  • Mitchell, R. W. (1971). Egg and young guarding by a Mexican cave-dwelling harvestman, Hoplobunus boneti (Arachnida). The Southwestern Naturalist, 15, 392–395.

    Google Scholar 

  • Mora, G. (1990). Paternal care in a neotropical harvestman, Zygopachylus albomarginis (Arachnida, Opiliones: Gonyleptidae). Animal Behaviour, 39, 582–593.

    Google Scholar 

  • Mori, H., Saito, Y., & Tho, Y. (1999). Co-operative group predation in a sit-and-wait cheyletid mite. Experimental and Applied Acarology, 23, 643–651.

    Google Scholar 

  • Moser, J. C., & Cross, E. A. (1975). Phoretomorph: A new phoretic phase unique to the Pyemotidae (Acarina: Tarsonemoidea). Annals of the Entomological Society of America, 68, 820–822.

    Google Scholar 

  • Newell, I. M., & Tevis, L., Jr. (1960). Angelothrombium pandorae n.g., n. sp. (Acari, Trombidiidae) and notes on the biology of the giant red velvet mites. Annals of the Entomological Society of America, 53, 293–305.

    Google Scholar 

  • Norton, R. A. (1994). Evolutionary aspects of oribatid mite life histories and consequences for the origin of the Astigmata. In M. A. Houck (Ed.), Mites: Ecological and evolutionary studies of life-history patterns (pp. 99–135). New York: Chapman & Hall.

    Google Scholar 

  • Ochoa, R. (1989). A note on paedogenesis in Tetranychoidea. International Journal of Acarology, 2, 117–118.

    Google Scholar 

  • OConnor, B. M. (1984). Phylogenetic relationships among higher taxa in the acariformes, with particular reference to the Astigmata. In D. A. Griffiths & C. E. Bowman (Eds.), Acarology VI (Vol. I, pp. 19–27). Chichester: Ellis Horwood Ltd.

    Google Scholar 

  • OConnor, B. M. (1994). Life-history modifications in astigmatid mites. In M. A. Houck (Ed.), Mites: ecological and evolutionary analyses of life-history patterns (pp. 136–159). New York: Chapman & Hall.

    Google Scholar 

  • Otto, J. (1996). Observations on prelarvae in Anystidae and Tenerifiidae. In R. Mitchell, D. J. Horn, G. R. Needham, & W. C. Welbourn (Eds.), Acarology 9: Volume 1, proceedings (pp. 343–354). Columbus: Ohio Biological Survey.

    Google Scholar 

  • Otto, J. (1997). In R. Mitchell, D. J. Horn, G. R. Needham, & W. C. Welbourn (Eds.), Observations on prelarvae in Anystidae and Tenerifiidae (pp. 343–354). Columbus: Ohio Biological Survey.

    Google Scholar 

  • Otto, J. (1999). Systematics and natural history of the genus Chaussieria Oudemans (Acarina: Prostigmata: Anystidae). Zoological Journal of the Linnean Society, 126, 251–306.

    Google Scholar 

  • Pérez, T. M. (1996). The eggs of seven species of Fainalges Gaud and Berla (Xolalgidae) from the green conure (Aves, Psittacidae). In R. Mitchell, D. J. Horn, G. R. Needham, & W. C. Welbourn (Eds.), Acarology IX: Volume 1, proceedings (pp. 297–300). Columbus: Ohio Biological Survey.

    Google Scholar 

  • Polis, G. A., & Sissom, W. D. (1990). Life history. In G. A. Polis (Ed.), The biology of scorpions (pp. 161–223). Stanford: Stanford University Press.

    Google Scholar 

  • Preston-Mafham, R. A., & Preston-Mafham, K. G. (1993). The encyclopedia of land invertebrate behaviour. Cambridge: The MIT Press.

    Google Scholar 

  • Proud, D. N., Víquez, C., & Townsend, V. R., Jr. (2011). Paternal care in a Neotropical harvestman (Opiliones: Cosmetidae) from Brazil. Journal of Arachnology, 39, 497–499.

    Google Scholar 

  • Rack, G. (1972). Pyemotiden an Gramineen in schwedischen landwirtschaftlichen Betreiben. Ein Beitrag zur Entwicklung von Siteroptes graminum (Reuter, 1900) (Acarina: Pyemotidae). Zoologisches Anzeiger, 188, 157–174.

    Google Scholar 

  • Radovsky, F. J. (1994). The evolution of parasitism and the distribution of some dermanyssoid mites (Mesostigmata) on vertebrate hosts. In M. A. Houck (Ed.), Mites, ecological and evolutionary analyses of life-history patterns (pp. 186–217). New York: Chapman & Hall.

    Google Scholar 

  • Raff, R. A. (1996). The shape of life: genes, development and the evolution of animal form. Chicago: University of Chicago Press.

    Google Scholar 

  • Ramires, E. N., & Giaretta, A. A. (1994). Maternal care in a neotropical harvestman Acutisoma proximum (Opiliones, Gonyleptidae). Journal of Arachnology, 22, 179–180.

    Google Scholar 

  • Rapp, A. (1959). Zur Biologie und Ethologie der Kafermilbe Parasitus coleoptratorum L. 1758 (Ein Beitrag zum Phoresie Problem). Zoologische Jahrbücher. Abteilung für Systematik, Ökologie und Geographie der Tiere, 86, 303–366.

    Google Scholar 

  • Ruf, A. (1996). Life-history patterns in soil-inhabiting mesostigmatid mites (Dermanyssina, Parasitina). In R. Mitchell, D. J. Horn, G. R. Needham, & W. C. Welbourn (Eds.), Acarology IX: Volume 1, proceedings (pp. 621–628). Columbus: Ohio Biological Survey.

    Google Scholar 

  • Sabelis, M. W. (1985). Reproductive strategies. In W. Helle & M. W. Sabelis (Eds.), Spider mites, their biology, natural enemies and control (Vol. 1A, pp. 265–278). New York: Elsevier.

    Google Scholar 

  • Sabelis, M. W., & Bruin, J. (1996). Evolutionary ecology: life history patterns, food plant choice and dispersal. In E. E. Lindquist, M. W. Sabelis, & J. Bruin (Eds.), Eriophyid mites – their biology, natural enemies and control (pp. 329–366). Amsterdam: Elsevier.

    Google Scholar 

  • Sabelis, M. W., & Janssen, A. (1994). Evolution of life history patterns in the Phytoseiidae. In M. A. Houck (Ed.), Mites, ecological and evolutionary analyses of life-history patterns (pp. 70–98). New York: Chapman & Hall.

    Google Scholar 

  • Saito, Y. (1986a). Prey kills predator: Counter-attack success of a spider mite against its specific phytoseiid predator. Experimental and Applied Acarology, 2, 47–62.

    Google Scholar 

  • Saito, Y. (1986b). Biparental defence in a spider mite (Acari: Tetranychidae) infesting Sasa bamboo. Behavioural Ecology and Sociobiology, 18, 377–386.

    Google Scholar 

  • Saito, Y. (1997). Sociality and kin selection in Acari. In J. C. Choe & B. Crespi (Eds.), Evolution of social behaviour in insects and arachnids (pp. 443–457). Cambridge: Cambridge University Press.

    Google Scholar 

  • Saito, Y. (2010). Plant mite and sociality – diversity and evolution (p. 187). Tokyo: Springer.

    Google Scholar 

  • Schmidt, A. R., Jancke, S., Lindquist, E. E., Ragazzi, E., Roghi, G., Nascimbene, P. C., Schmidt, K, Wappler, T., & Grimaldi, D. A. (2012). Arthropods in amber from the Triassic Period. PNAS, 109, 14796–14801. www.pnas.org/cgi/doi/10.1073/pnas.1208464109.

  • Schmidt-Nielsen, K. (1984). Scaling – Why is animal size so important? Sydney: Cambridge University Press.

    Google Scholar 

  • Schuster, R., & Pötsch, H. (1989). Another record of an active prelarva in mites. In G. P. Channabasavanna (Ed.), Acarology (Vol. 1, pp. 261–265). New Delhi: Oxford and IBH Publishing.

    Google Scholar 

  • Shatrov, A. B. (1999a). External morphology of the quiescent instars of trombiculid mites (Acariformes: Trombiculidae) with notes on their moulting processes. Acta Zoologica (Stockholm), 80, 85–95.

    Google Scholar 

  • Shatrov, A. B. (1999b). Contribution to the prelarva status: The moulting cycle of the calyptostasic prelarva of the trombiculid mite Leptotrombidium orientale (Acariformes : Trombiculidae). Acarologia, 40, 265–274.

    Google Scholar 

  • Shipley, A. E. (1909). Introduction to Arachnida and king crabs. In S. F. Harmer & A. E. Shipley (Eds.), The Cambridge natural history (Vol. IV, pp. 255–279). Melbourne: The Macmillan Company.

    Google Scholar 

  • Smith, I. M., & Cook, D. R. (1991). Water mites. In J. H. Thorp & A. P. Covich (Eds.), Ecology and classification of North American freshwater invertebrates (pp. 523–592). San Diego: Academic.

    Google Scholar 

  • Steinkraus, D. C., & Cross, E. A. (1993). Description and life history of Acarophenax mahunkai, n.sp. (Acari, Tarsonemina: Acarophenacidae), an egg parasite of the lesser mealworm (Coleoptera: Tenebrionidae). Annals of the Entomological Society of America, 86, 239–249.

    Google Scholar 

  • Summers, F. M., & Witt, R. L. (1972). Nesting behavior of Cheyletus eruditus (Acarina: Cheyletidae). Pan Pacific Entomologist, 48, 261–269.

    Google Scholar 

  • Takahashi, F., & Chant, D. A. (1992). Adaptive strategies in the genus Phytoseiulus Evans (Acari: Phytoseiidae): I. Developmental Times. International Journal of Acarology, 18, 171–176.

    Google Scholar 

  • Thor, S., & Willmann, C. (1947). Acarina Trombidiidae. Das Tierreich, 71b, 187–541.

    Google Scholar 

  • Treat, A. E. (1975). Mites of moths and butterflies. Ithaca: Cornell University Press.

    Google Scholar 

  • Wallace, M. M. H. (1970). Diapause in the aestivating egg of Halotydeus destructor (Acari: Eupodidae). Australian Journal of Zoology, 18, 295–313.

    Google Scholar 

  • Walter, D. E. (1987). Life history, trophic behavior and description of Gamasellodes vermivorax n. sp. (Mesostigmata: Ascidae) a predator of nematodes and arthropods in semiarid grasslands. Canadian Journal of Zoology, 65, 1689–1695.

    Google Scholar 

  • Walter, D. E. (1988a). Predation and mycophagy by endeostigmatid mites (Acariformes: Prostigmata). Experimental and Applied Acarology, 4, 159–166.

    Google Scholar 

  • Walter, D. E. (1988b). Macrocheles schaeferi (Acari: Mesostigmata: Macrochelidae), a new species in the subbadius group from grassland soils in the central United States. Annals of the Entomological Society of America, 81, 386–394.

    Google Scholar 

  • Walter, D. E., & Ikonen, E. K. (1989). Species, guilds and functional groups: Taxonomy and behavior in nematophagous arthropods. Journal of Nematology, 21, 315–327.

    PubMed  CAS  Google Scholar 

  • Walter, D. E., & Lindquist, E. E. (1989). Life history and behavior of ascid mites in the genus Lasioseius (Acari: Mesostigmata) from grassland soils in Colorado with taxonomic notes and a description of new species. Canadian Journal of Zoology, 67, 2797–2813.

    Google Scholar 

  • Walter, D. E., & O’Dowd, D. J. (1995). Beneath biodiversity: Factors influencing the diversity and abundance of canopy mites. Selbyana, 16, 12–20.

    Google Scholar 

  • Walter, D. E., & Proctor, H. C. (1998). Feeding behaviour and phylogeny: Observations on early derivative Acari. Experimental and Applied Acarology, 22, 39–50.

    Google Scholar 

  • Walter, D. E., & Proctor, H. C. (1999). Mites: Ecology, evolution and behaviour (p. 322). Sydney: University of NSW Press. ISBN 0 86840 529 9.

    Google Scholar 

  • Walter, D. E., Hunt, H. W., & Elliott, E. T. (1987). The influence of prey type on the development and reproduction of some predatory soil mites. Pedobiologia, 30, 419–424.

    Google Scholar 

  • West, G. B., Brown, J. H., & Enquist, B. J. (1997). A general model for the origin of allometric scaling laws in biology. Science, 276, 122–124.

    PubMed  CAS  Google Scholar 

  • Wheeler, W. M. (1919). The phoresy of Antherophagus. Psyche, 26, 145–152.

    Google Scholar 

  • White, C. R., Cassey, T., & Blackburn, T. M. (2007). Allometric exponents do not support a universal metabolic allometry. Ecology, 88, 315–323.

    PubMed  Google Scholar 

  • Whitford, W. G., Freckman, D. W., Elkins, N. Z., Parker, L. W., Parmalee, R., Phillips, J., & Tucker, S. (1981). Diurnal migration and responses to simulated rainfall in desert soil microarthropods and nematodes. Soil Biology and Biochemistry, 13, 417–425.

    Google Scholar 

  • Wirth, S. (2006). Development of the prelarva and larval behaviour to open the eggshell in the Histiostomatidae (Astigmata). Abhandlungen und Berichte des Naturkundemuseums Goerlitz, 78, 93–104.

    Google Scholar 

  • Zhang, Z.-Q., & Croft, B. A. (1994). A Comparative Life History Study of Immature Amblyseius fallacis, Amblyseius andersoni, Typhlodromus occidentalis and Typhlodromus pyri (Acari: Phytoseiidae) with a Review of Larval Feeding Patterns. Experimental and Applied Acarology, 18, 631–657.

    Google Scholar 

  • Zhang, Z.-Q., & Sanderson, J. P. (1993). Association of Ereynetes tritonymphs (Acari: Ereynetidae) with the Fungus Gnat, Bradysia impatiens (Diptera: Sciaridae). International Journal of Acarology, 19, 179–183.

    Google Scholar 

  • Zhao, S., & Amrine, J. W., Jr. (1997). Investigation of snowborne mites (Acari) and relevancy to dispersal. International Journal of Acarology, 23, 209–213.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Walter, D.E., Proctor, H.C. (2013). Life Cycles, Development and Size. In: Mites: Ecology, Evolution & Behaviour. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7164-2_4

Download citation

Publish with us

Policies and ethics