Skip to main content

The Origin of Mites: Fossil History and Relationships

  • Chapter
  • First Online:
Mites: Ecology, Evolution & Behaviour

Abstract

Mites are members of the arthropod subphylum Chelicerata, a group with a long fossil history of about 500 million years (Dunlop 2010) (Fig. 2.1). The earliest chelicerate fossils are known from the Cambrian and appear to be related to a group of anomalous arthropods with large, raptorial anterior appendages in place of antennae (Haug et al. 2012). Within the Chelicerata, the mites are placed among the terrestrial lineages known as the Arachnida. Thus, to understand the origin of mites, we must peer back through the mists of time and seek answers to these basic questions: What is an arthropod? Why are chelicerate arthropods different from other arthropods? What does it mean to be an arachnid? Which arachnids are the closest relatives of mites?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberti, G. (2000). Chelicerata. In B. G. M. Jamieson (Ed.), Progress in male gamete ultrastructure. In K. G. Adiyodi & R. G. Adiyodi (Eds.), Reproductive biology of the invertebrates, Vol. 9B (pp. 311–388). New Delhi/New York: Oxford & IBH Publishing/Wiley.

    Google Scholar 

  • Arillo, A., Subias, L. S., & Shtanchaeva, U. (2012). A new species of fossil oribatid mite (Acariformes, Oribatida, Trhypochthoniidae) from the lower Cretaceous amber of San Just (Teruel Province, Spain). Systematic & Applied Acarology, 17, 106–112.

    Google Scholar 

  • Bain, B. A. (2003). Larval types and a summary of postembryonic development within the pycnogonids. Invertebrate Reproduction and Development, 43, 193–222.

    Article  Google Scholar 

  • Barnett, A. A., & Thomas, R. H. (2012). The delineation of the fourth walking leg segment is temporally linked to posterior segmentation in the mite Archegozetes longisetosus (Acari: Oribatida, Trhypochthoniidae). Evolution & Development, 14, 383–392. doi:10.1111/j.1525-142X.2012.00556.x.

    Article  CAS  Google Scholar 

  • Bergström, J. (1979). Morphology of fossil arthropods as a guide to phylogenetic relationships. In A. P. Gupta (Ed.), Arthropod phylogeny (pp. 3–56). New York: Van Nostrand Reinhold Company.

    Google Scholar 

  • Bernini, F. (1991). Fossil Acarida. In A. Simonetta & S. C. Morris (Eds.), The early evolution of metazoa and the significance of problem taxa (pp. 253–262). Cambridge: Cambridge University Press.

    Google Scholar 

  • Bernini, F., Carnevale, G., Bagnoli, G., & Stouge, S. (2002). An early Ordovician mite (Acari: Oribatida) from the island of Öland, Sweden. In F. Bernini, R. Nannelli, G. Nuzzaci, & E. de Lillo (Eds.), Acarid phylogeny and evolution. Adaptations in mites and ticks (pp. 45–47). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Briggs, D. E. G., & Fortey, R. A. (1989). The early radiation and relationships of the major arthropod groups. Science, 246, 241–243.

    Article  PubMed  CAS  Google Scholar 

  • Briggs, D. E. G., Siveter, D. J., Sutton, M. D., Garwood, R. J., & Legg, D. (2012). Silurian horseshoe crab illuminates the evolution of arthropod limbs. Proceeding of the National Academy of Sciences of the USA, 109, 15702–15705. doi:10.1073/pnas.1205875109.

    Article  CAS  Google Scholar 

  • Condé, B. (1996). Les Palpigrades, 1885–1995: Acquisitions et lacunes. Revue Suisse de Zoologie Hors série, 1, 87–106.

    Google Scholar 

  • Dabert, M., Witalinski, W., Kazmierski, A., Olszanowski, Z., & Dabert, J. (2010). Molecular phylogeny of acariform mites (Acari, Arachnida): Strong conflict between phylogenetic signal and long-branch attraction artifacts. Molecular Phylogenetics and Evolution, 56, 222–241.

    Article  PubMed  Google Scholar 

  • Donoghue, P. C. J., & Antcliffe, J. B. (2010). Origins of multicellularity. Nature, 466, 41–42.

    Article  PubMed  CAS  Google Scholar 

  • Dunlop, J. A. (1996). Evidence for a sister group relationship between Ricinulei and Trigonotarbida. Bulletin of the British Arachnological Society, 10, 193–204.

    Google Scholar 

  • Dunlop, J. A. (1997). Palaeozoic arachnids and their significance for arachnid phylogeny. Proceedings 16th European Colloquim of Arachnology (pp. 65–82).

    Google Scholar 

  • Dunlop, J. A. (2006). Evidence for s sister group relationship between Ricinulei and Trigonotarbida. Bulletin of the British Arachnological Society, 10, 193–204.

    Google Scholar 

  • Dunlop, J. A. (2010). Geological history and phylogeny of Chelicerata. Arthropod Structure & Development, 39, 124–142.

    Article  Google Scholar 

  • Dunlop, J. A., & Alberti, G. (2007). The affinities of mites and ticks: A review. Journal of Zoological Systematics and Evolutionary Research, 46, 1–18.

    Google Scholar 

  • Dunlop, J. A., & Arango, C. P. (2005). Pycnogonid affinities: A review. Journal of Zoological Systematics and Evolutionary Research, 43(1), 8–21. doi:10.1111/j.1439-0469.2004.00284.x.

    Article  Google Scholar 

  • Dunlop, J. A., & Selden, P. A. (1998). The early history and phylogeny of chelicerates. Systematics Association Special Volume Series, 55, 221–235.

    Google Scholar 

  • Dunlop, J. A., & Selden, P. A. (2009). Calibrating the chelicerate clock: A paleontological response to Jeyaprakash and Hoy. Experimental & Applied Acarology, 48, 183–197.

    Article  Google Scholar 

  • Dunlop, J. A., Anderson, L. I., & Braddy, S. J. (2004). A redescription of Chasmataspis laurencii Caster & Brooks, 1956 (Chelicerata: Chasmataspidida) from the Middle Ordovician of Tennessee, USA, with remarks on chasmataspid phylogeny. Transactions of the Royal Society of Edinburgh-Earth Sciences, 94, 207–225.

    Google Scholar 

  • Dunlop, J. A., Penn, D., Tetlie, O. E., & Anderson, L. I. (2007). How many arachnid fossils are there? Journal of Arachnology, 36, 267–272.

    Article  Google Scholar 

  • Dunlop, J. A., Kontschán, J., & Zwanzig, M. (2013). Fossil mesostigmatid mites (Mesostigmata: Gamasina, Microgyniina, Uropodina), associated with longhorn beetles (Coleoptera: Cerambycidae) in Baltic amber. Naturwissenschaften, 100, 337–344.

    Article  PubMed  CAS  Google Scholar 

  • Evans, G. O. (1992). Principles of Acarology. Wallingford: CAB International.

    Google Scholar 

  • Feng, Z., Wang, J., & Liu, L.-J. (2010). First report of oribatid mite (arthropod) borings and coprolites in Permian woods from the Helan Mountains of northern China. Palaegeography, Palaeoclimatology, Palaeoecology, 288, 54–61.

    Article  Google Scholar 

  • Fisher, D. (1979). Evidence for subaerial activity of Euproops danae (Merostomata: Xiphsuridae). In M. H. Nitecki (Ed.), Mazon Creek fossils (pp. 379–447). New York: Academic Press.

    Google Scholar 

  • Friend, J. A., & Richardson, A. M. M. (1986). Biology of terrestrial amphipods. Annual Review of Entomology, 31, 25–48.

    Article  Google Scholar 

  • Fürstenberg, M. H. F. (1861). Die Krätzmilben der Menschen und Thiere. Leipzig: Wilhelm Engelmann.

    Google Scholar 

  • Garwood, R. J., & Dunlop, J. A. (2011). Morphology and systematics of Anthracomartidae (Arachnida:Trigonotarbida). Palaeontology, 54, 145–161.

    Article  Google Scholar 

  • Giribet, G., & Edgecomb, G. (2012). Reevaluating the arthropod tree of life. Annual Review of Entomology, 57, 167–186.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, M. S., & Olson, E. C. (1995). Invasions of the land – The transitions of organisms from aquatic to terrestrial life. New York: Columbia University Press.

    Google Scholar 

  • Gould, S. (1989). Wonderful life – The Burgess Shale and the nature of history. New York: Penguin Books.

    Google Scholar 

  • Grandjean, F. (1946). Au sujet de l'organe Claparède, des eupathides multiples et des taenidies mandibulaires chez les acariens actinochitineux. Archives des Science Physiques et Naturelles, Genève, 28, 63–87.

    Google Scholar 

  • Grandjean, F. (1954). Ètude sur les palaeacaroides (Acariens, Oribates). Mém Mus Nat Hist Nat Paris, Sér A Zoologie, 7, 179–274.

    Google Scholar 

  • Hanken, N. M., & Størmer, L. (1975). The trail of a large Silurian eurypterid. Fossils and Strata, 4, 255–270. Oslo.

    Google Scholar 

  • Haug, J. T., Waloszek, D., Maas, A., Liu, Y., & Haug, C. (2012). Functional morphology, ontogeny and evolution of mantis shrimp-like predators in the Cambrian. Paleontology, 55, 369–399.

    Article  Google Scholar 

  • Hjelle, J. T. (1990). Anatomy and morphology. In G. A. Polis (Ed.), The biology of scorpions (pp. 9–63). Stanford: Stanford University Press.

    Google Scholar 

  • Jeram, A. J., Selden, P. A., & Edwards, D. (1990). Land animals in the Silurian – arachnids and myriapods from Shropshire, England. Science, 250, 658–661. doi:10.1126/science.250.4981.658.

    Article  PubMed  CAS  Google Scholar 

  • Jones, D., & Morgan, G. (1994). A field guide to crustaceans of Australian waters. Sydney: Reed Books.

    Google Scholar 

  • Kaestner, A. (1968). Invertebrate zoology (Vol. II). New York: Wiley.

    Google Scholar 

  • Kamenz, C., Staude, A., & Dunlop, J. A. (2011). Sperm carriers in Silurian sea scorpions. Naturwissenschaften, 98, 889–896.

    Article  PubMed  CAS  Google Scholar 

  • Kellogg, D. W., & Taylor, E. L. (2004). Evidence of oribatid mite detritivory in Antarctica during the late Paleozoic and Mesozoic. Journal of Paleontology, 78, 1146–1153.

    Article  Google Scholar 

  • Kenrick, P., Wellman, C. H., Schneider, H., & Edgecomb, G. D. (2012). A timeline for terrestrialization: Consequences for the carbon cycle in the Palaeozoic. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 367, 519–536. doi:10.1098/rstb.2011.0271.

    Article  Google Scholar 

  • Kethley, J. B., Norton, R. A., Bonamo, P. M., & Shear, W. A. (1989). A terrestrial alicorhagiid mite (Acari: Acariformes) from the Devonian of New York. Micropaleontology, 35, 367–373.

    Article  Google Scholar 

  • Krantz, G. W., & Walter, D. E. (Eds.). (2009). A manual of Acarology (3rd ed.). Texas Tech University Press. 807 p, 338 b/w illustrations, 60 figures ISBN 978-0-89672-620-8. http://www.ttup.ttu.edu/BookPages/9780896726208.html.

  • Kühl, G., Bergmann, A., Dunlop, J., Garwood, R. J., & Rust, J. (2012). Redescription and palaeobiology of Palaeoscorpius devonicus Lehmann, 1944 from the Lower Devonian Hunsrück Slate of Germany. Palaeontology, 55, 775–787.

    Article  Google Scholar 

  • Labandeira, C. C. (2005). Invasion of the continents: Cyanobacterial crusts to tree-inhabiting arthropods. Trends in Ecology & Evolution, 20, 253–261.

    Article  Google Scholar 

  • Labandeira, C. C., & Beall, B. S. (1990). Arthropod terrestriality. Short Courses in Paleontology, 3, 214–256.

    Google Scholar 

  • Labandeira, C. C., Phillips, T. L., & Norton, R. A. (1997). Oribatid mites and the decomposition of plant tissues in Paleozoic coal-swamp forests. Palaios, 12, 319–353.

    Article  Google Scholar 

  • Lamsdell, J. C., & Braddy, S. J. (2010). Cope’s Rule and Romer’s theory: Patterns of diversity and gigantism in eurypterids and Palaeozoic vertebrates. Biology Letters, 6, 265–269. doi:10.1098/rsbl.2009.0700.

    Article  PubMed  Google Scholar 

  • Levi-Setti, R. (1975). Trilobites, a photographic atlas. Chicago: University of Chicago Press.

    Google Scholar 

  • Lindquist, E. E. (1984). Current theories on the evolution of major groups of Acari and on their relationships with other groups of Arachnida, with consequent implications for their classification. In D. A. Griffiths & C. E. Bowman (Eds.), Acarology VI (Vol. 1, pp. 28–62). New York: Wiley.

    Google Scholar 

  • Manning, P. L., & Dunlop, J. A. (1995). The respiratory organs of eurypterids. Palaeontology, 38, 287–297.

    Google Scholar 

  • Mans, B. J., de Klerk, D., Pienaar, R., & Latif, A. A. (2011). Nuttalliella namaqua: A living fossil and closest relative to the ancestral tick lineage: Implications for the evolution of blood-feeding in ticks. PLoS One, 6(8), e23675. doi:10.1371/journal.pone.0023675.

    Article  PubMed  CAS  Google Scholar 

  • Maxmen, A., Browne, W. E., Martindale, M. Q., & Giribet, G. (2005). Neuroanatomy of sea spiders implies an appendicular origin of the protocerebral segment. Nature, 437, 1144–1148.

    Article  PubMed  CAS  Google Scholar 

  • McKeller, R. C., & Wolfe, A. P. (2010). Canadian amber. In D. Penney (Ed.), Biodiversity of fossils in amber from the major world deposits (pp. 96–113). Manchester: Siri Scientific. ISBN 978-0-9558636-4-6.

    Google Scholar 

  • McLaughlin, P. A. (1980). Comparative morphology of recent crustacea. San Francisco: W.H. Freeman and Company.

    Google Scholar 

  • Monniot, F. (1966). Un Palpigrade interstitiel: Leptokoeninia scurra n. sp. Revue Ecologie Biologie du Sol, 3, 41–64.

    Google Scholar 

  • Norton, R. A., Bonamo, P. M., Grierson, J. D., & Shear, W. A. (1988). Oribatid mite fossils from a terrestrial Devonian deposit near Gilboa, New York. Journal of Paleontology, 62, 259–269.

    Google Scholar 

  • Paterson, J. R., García-Bellido, D. C., Lee, M. S. Y., Brock, G. A., Jago, J. B., & Edgecombe, G. D. (2011). Acute vision in the giant Cambrian predator Anomalocaris and the origin of compound eyes. Nature, 480, 237–240.

    Article  PubMed  CAS  Google Scholar 

  • Pepato, R., da Rocha, C. E. F., & Dunlop, J. (2010). Phylogenetic position of the acariform mites: Sensitivity to homology assessment under total evidence. BMC Evolutionary Biology, 10, 235. http://www.biomedcentral.com/1471-2148/10/235.

    Article  PubMed  Google Scholar 

  • Plotnick, R. (1996). The scourge of the Silurian seas. American Paleontologist, 4, 2–3.

    Google Scholar 

  • Raff, R. A. (1996). The shape of life: Genes, development and the evolution of animal form. Chicago: University of Chicago Press.

    Google Scholar 

  • Regier, J. C., Shultz, J. W., Zwick, A., Hussey, A., Ball, B., Wetzer, R., Martin, J. W., & Cunningham, C. W. (2010). Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature, 463, 1079–1084.

    Article  PubMed  CAS  Google Scholar 

  • Savory, T. (1977). Arachnida. New York: Academic Press.

    Google Scholar 

  • Schaefer, I., Norton, R. A., Scheu, S., & Maraun, M. (2010). Precambrian mites colonized land and formed parthenogenetic clusters. Molecular Phylogenetics and Evolution, 57, 113–121.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, A. R., Jancke, S., Lindquist, E. E., Ragazzi, E., Roghi, G., Nascimbene, P. C., Schmidt, K., Wappler, T., & Grimaldi, D. A. (2012). Arthropods in amber from the Triassic Period. Proceeding of the National Academy of Sciences of the USA, 109, 14796–14801. doi:10.1073/pnas.1208464109. www.pnas.org/cgi.

    Article  CAS  Google Scholar 

  • Scholtz, G., & Edgecombe, G. D. (2006). The evolution of arthropod heads: Reconciling morphological, developmental and palaeontological evidence. Development Genes and Evolution, 216, 395–415.

    Article  PubMed  Google Scholar 

  • Selden, P. A. (1993). Arthropoda (Aglaspidida, Pycnogonida and Chelicerata). In M. J. Benton (Ed.), The fossil record 2 (pp. 297–320). New York: Chapman & Hall.

    Google Scholar 

  • Selden, P., & Read, H. (2008). The oldest land animals: Silurian millipedes from Scotland. Bulletin of the British Myriapod & Isopod Group, 23, 36–37.

    Google Scholar 

  • Shear, W. A., & Kukalová-Peck, J. (1990). The ecology of Paleozoic terrestrial arthropods: The fossil evidence. Canadian Journal of Zoology, 68, 1807–1834.

    Article  Google Scholar 

  • Shultz, J. W. (1993). Muscular Anatomy of the Giant Whipscorpion Mastigoproctus giganteus (Luca) (Arachnida: Uropygida) and its Evolutionary Significance. Zoological Journal of the Linnean Society, 108, 335–365.

    Article  Google Scholar 

  • Sissom, W. D. (1990). Systematics, biogeography, and paleontology. In G. A. Polis (Ed.), The biology of scorpions (pp. 64–160). Stanford: Stanford University Press.

    Google Scholar 

  • Snodgrass, R. E. (1952). A textbook of arthropod anatomy. Ithaca: Comstock.

    Google Scholar 

  • Stanley, S. M. (1973). An explanation for Cope's rule. Evolution, 27, 1–26.

    Article  Google Scholar 

  • Talarico, G., Lipke, E., & Alberti, G. (2011). Gross morphology, histology, and ultrastructure of the alimentary system of Ricinulei (Arachnida) with emphasis on functional and phylogenetic implications. Journal of Morphology, 272, 89–117.

    Article  PubMed  Google Scholar 

  • Tollerton, V. P. (1989). Morphology, taxonomy, and classification of the order Eurypterida, Burmeister, 1843. Journal of Paleontology, 63, 642–657.

    Google Scholar 

  • van der Hammen, L. (1989). An introduction to comparative arachnology. The Hague: SPB Academic Publishing.

    Google Scholar 

  • Weygoldt, P. (1998). Evolution and systematics of the chelicerata. The Third Symposium of the European Association of Acarologists, Amsterdam. Experimental & Applied Acarology, 22, 63–79.

    Article  Google Scholar 

  • Weygoldt, P., & Paulus, H. F. (1979). Untersuchungen zur Morphologie, Taxonomie und Phylogenie der Chelicerata. 2 Cladogramme und die Entfaltung der Chelicerata. Zeitschrift fur Zoologische Systematik und Evolutionforschung, 17, 177–200.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Walter, D.E., Proctor, H.C. (2013). The Origin of Mites: Fossil History and Relationships. In: Mites: Ecology, Evolution & Behaviour. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7164-2_2

Download citation

Publish with us

Policies and ethics