Advertisement

Swarm Planning pp 221-251 | Cite as

Swarm Planning for Climate Change: An Alternative Pathway for Resilience

  • Rob RoggemaEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Although there are an increasing number of extreme events (www.emdat.be), humankind has learnt how to deal with their immediate impacts. This is illustrated by the fact that the number of casualties as a result of extreme weather dropped from 240 million (in 1920) to three million (in the last decade). Nonetheless, there is still a need for communities to improve their capacity to adapt to forthcoming climate events, particularly if adaptation pathways substantially reduce carbon footprints. A growing attention for the adaptation to climate change can be witnessed in current spatial planning practice. However, despite this attention, the question is whether spatial planning frameworks and approaches are sufficiently equipped to include strategies that deal with uncertainty and that are capable of anticipating an unpredictable future. In this chapter swarm planning theory (Roggema and Van den Dobbelsteen 2008; Roggema 2012a) is taken as the starting point to be used in two examples of actual regional design. The theory is applied and tested in practice and the results are presented here. This chapter focuses on the potential benefits that a swarm planning approach can offer. This is particularly relevant to designing for both a post-carbon scenario (the period after dominance of use of fossil energy resources, authors’ definition) and a pre-adaptive scenario (the period before preparations to anticipate climate change impacts are taken, authors’ definition) landscapes.

Keywords

Swarm planning theory Adaptive capacity Peat colonies Resilience Eemsdelta 

References

  1. Alterra, DHV BV, KNMI and VU (2008) Klimaateffectschetsboek Drenthe en Groningen. Amsterdam: Klimaat voor Ruimte.Google Scholar
  2. Barabasi, A. (2002). Linked. Cambridge: Perseus.Google Scholar
  3. Bianconi, G. and A-L. Barabási (2001) Competition and multiscaling in evolving networks. Europhysics Letter, 54, 436–442. In Newman, M., A-L. Barabási and D.J. Watts (eds.) (2006) The structure and dynamics of networks. New Jersey/Woodstock: Princeton University Press.Google Scholar
  4. Biggs, C., Ryan, C., & Wiseman, J. (2010a). Localised solutions: Building capacity and resilience with distributed production systems. Victorian Eco-Innovation Lab: University of Melbourne.Google Scholar
  5. Biggs, C., Ryan, C., & Wiseman, J. (2010b). Distributed systems: A design model for sustainable and resilient infrastructure. Parkville: Victorian Eco-Innovation Lab, University of Melbourne.Google Scholar
  6. Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: From natural to artificial systems. New York: Oxford University Press.Google Scholar
  7. Broersma, S., Fremouw, M., Stremke, S., van den Dobbelsteen, A., & de Waal, R. (2011). Duurzame energiestructuurvisie voor de Veenkoloniën. Delft: TU Delft/WUR.Google Scholar
  8. Castells, M. (1996). The rise of the network society. Oxford: Blackwell.Google Scholar
  9. Christensen, K. S. (1985). Coping with uncertainty in planning. Journal of the American Planning Association, 51(1), 63–73.CrossRefGoogle Scholar
  10. Cohen, J., & Stewart, I. (1994). The collapse of chaos, discovering simplicity in a complex world. New York: Viking.Google Scholar
  11. Commonwealth of Australia (2007) Tackling wicked problems; a public policy perspective. Australia: Australian government/Australian public service commission.Google Scholar
  12. Davy, B. (2008). Plan it without a condom! Planning Theory, 7(3), 301–317.CrossRefGoogle Scholar
  13. De Hoog, M., Sijmons en, D.F., & Verschuuren, S. (1998) Laagland. eindrapportage HMD-werkgroep Herontwerp. Amsterdam: Gemeente Amsterdam.Google Scholar
  14. Fisher, L. (2009). The perfect swarm, the science of complexity in everyday life. New York: Basic Books.Google Scholar
  15. Folke, C., Carpenter, S.R., Walker, B., Scheffer, M., Chapin, T., & Rockström, J. (2010) Resilience thinking: Integrating resilience, adaptability and transformability. Ecology and Society, 15(4), 20. Retrieved from: http://www.ecologyandsociety.org/vol15/iss4/art20/
  16. Fraker, H. (2007). Where is the urban design discourse? [To rally discussion]. Places, 19(3), 61–63.Google Scholar
  17. Fraker, H. (2008). The eco block, China sustainable neighbourhood project. Presentation Connected Urban Development Global Conference. Amsterdam, 24 September 2008.Google Scholar
  18. Frieling, D. H., Hofland, H. J. H., Brouwer, J., Salet, W., de Jong, J., de Hoog, M., et al. (1998). Het metropolitane debat. Bussum: Toth uitgeveij.Google Scholar
  19. Gladwell, M. (2000). The tipping point: How little things can make a big difference. New York: Little, Brown and company, Time Warner book group, New York back bay books.Google Scholar
  20. Graham, S., & Marvin, S. (2001). Splintering urbanism: networked infrastructures, technological mobilities and the urban condition. London: Routledge.CrossRefGoogle Scholar
  21. Innes, J., & D. Booher (1999) Consensus building and complex adaptive systems—A framework for evaluating collaborative planning. APA Journal, 65(4, Autumn), 412–423.Google Scholar
  22. Innes, J., & Booher, D. (2004). Reframing public participation: Strategies for the 21st century. Planning Theory, 5(4), 419–436.CrossRefGoogle Scholar
  23. Innes, J. E., & Booher, D. E. (2010). Planning with complexity, an introduction to collaborative rationality for public policy. London and New York: Routledge.Google Scholar
  24. Jones, R. (2010). A risk management approach to climate change adaptation. In R. A. C. Nottage, D. S. Wratt, J. F. Bornman, & K. Jones (Eds.), Climate change adaptation in New Zealand: Future scenarios and some sectoral perspectives (pp. 10–25). Wellington: New Zealand Climate Change Centre.Google Scholar
  25. Jones, R. (2011a). Climate Data. In R. Roggema, J. Martin, R. Horne, R. Jones, S. Hunter, S. Clune, & J. Werner (Eds.), (2011) Design Brief, city of greater Bendigo: Design Charrette I. Melbourne: RMIT-University, internal document.Google Scholar
  26. Jones, R. (2011b). Planning with plasticine. Retrieved November 30, 2011, from: http://2risk.wordpress.com/2011/11/30/planning-with-plasticine/
  27. Miller, P. (2010). The smart swarm. New York: The Penguin Group.Google Scholar
  28. Miraftab, F. (2009). Insurgent planning: situating radical planning in the Global South. Planning Theory, 8(1), 32–50.CrossRefGoogle Scholar
  29. Mitchell Waldrop, M. (1992). Complexity, the emerging science at the edge of order and chaos. London: Penguin Books.Google Scholar
  30. Newman, S. (2011). Postanarchism and space: Revolutionary fantasies and autonomous zones. Planning Theory, 10(4), 344–365.CrossRefGoogle Scholar
  31. Oosterhuis, K. (2006) Swarm Architecture II. In: K Oosterhuis & L. Feireiss (Eds.), Game, set and Match II, On Computer Games, Advanced Geometries and Digital Technologies. Rotterdam: Episode Publishers.Google Scholar
  32. Oosterhuis, K. (2011). Towards a new kind of building, a designer’s guide to nonstandard architecture. Rotterdam: NAi Uitgevers.Google Scholar
  33. Portugali, J. (2000). Self-organisation and the city. Berlin: Springer.CrossRefGoogle Scholar
  34. Provincie Groningen. (2009). Provinciaal Omgevingsplan 2009–2013, accepted: 17 Juni 2009. Groningen: Provincie Groningen.Google Scholar
  35. Rittel, H., & Webber, M. (1973) Dilemmas in a general theory of planning. pp. 155–169, Policy sciences, vol. 4. Amsterdam: Elsevier. (reprinted in N. Cross (Ed.) (1984). Developments in design methodology. Chichester: Wiley, pp. 135–144.).Google Scholar
  36. Roggema, R. (2008a). The use of spatial planning to increase the resilience for future turbulence in the spatial system of the Groningen region to deal with climate change. Proceedings UKSS—conference, Oxford.Google Scholar
  37. Roggema, R. (2008b) Swarm Planning: a new design paradigm dealing with long term problems associated with turbulence. In R. Ramirez, & J.W. Selsky, & K. Van der Heijden (Eds.) Business planning for turbulent times, new methods for applying scenarios. Earthscan, pp. 103–129.Google Scholar
  38. Roggema, R. (2009a) Adaptation to climate change, does spatial planning help? Swarm Planning does! In C.A. Brebbia, N. Jovanovic, E. Tiezzi (Eds.) Management of natural resources, sustainable development and ecological hazards (pp. 161–172) Southampton: WIT press.Google Scholar
  39. Roggema, R. (Ed.) (2009b) INCREASE II (International Conference on Renewable Energy Approaches for the Spatial Environment); Proceedings INCREASE II. Groningen: Province of Groningen and Beijng: UIBE.Google Scholar
  40. Roggema, R. (2011) Swarming landscapes, new pathways for resilient cities. In Proceedings 4th International Urban Design Conference. Resilience in Urban Design, Surfers Paradise.Google Scholar
  41. Roggema, R. (2012a) Developing a planning theory for wicked problems: Swarm planning. In A. Van den Dobbelsteen, & S. Stremke (Eds.) (2012) Design of Sustainable Energy Landscapes. CRC/Taylor and Francis (in print).Google Scholar
  42. Roggema, R. (2012b) Planning for climate change, developing Swarm planning theory. In Proceedings SASBE, June 28–29, 2012. Brazil: Sao Paulo.Google Scholar
  43. Roggema, R. (2012c) Development of a Planning Methodology to Deal with Climate Adaptation. PhD thesis, manuscript. Delft: TU Delft and WUR.Google Scholar
  44. Roggema, R. & van den Dobbelsteen, A. (2007). About how was becomes: emergence of a sustainable spatial-energy system. In C.A. Brebbia, M.E. Conti, E. Tiezzi, (Eds.) Management of natural resources, sustainable development and ecological hazards. Southampton: WIT press.Google Scholar
  45. Roggema, R. & van den Dobbelsteen, A. (2008) Swarm planning: development of a new planning paradigm, which improves the capacity of regional spatial systems to adapt to climate change. In Proceedings World Sustainable Building conference (SB08), Melbourne.Google Scholar
  46. Roggema, R., & Boneschansker, O. (2010). INCREASE II, final report of the second international conference on renewable energy approaches for the spatial environment; towards a zero fossil energy region in 2050. Groningen: UIBE and province of Groningen.Google Scholar
  47. Roggema, R., & Stremke, S. (2012) Networks as the driving force for climate design. Book chapter In R. Roggema, (Ed.) Swarming Landscapes: The Art of Designing for Climate Adaptation. Dordrecht: Springer.Google Scholar
  48. Rothengatter, R. (2011). Verkenning kennis Klimaat voor Ruimte. Deelonderzoek Hotspot Veenkoloniën. Amsterdam/Stadskanaal: Klimaat voor Ruimte/Agenda voor de Veenkoloniën.Google Scholar
  49. Ryan, C., Moy, D., Archdeacon, K., & Trudgeon, M. (2010). Vision broadmeadows 2032: Eco-acupuncture—enabling localised design interventions. Melbourne: The Victorian Eco-Innovation Lab, University of Melbourne.Google Scholar
  50. Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R., Dakos, V., et al. (2009). Early-warning signals for critical transitions. Nature, 461, 53–59.CrossRefGoogle Scholar
  51. Van Eerten, H., Kiers, M., Klaasen, L., Kompier, L., & Munneke, K. (2008). Gebiedsprogramma 2008–2012. Stadskanaal: Agenda voor de Veenkoloniën.Google Scholar
  52. Van Ginneken, J. (2009). De kracht van de zwerm. Amsterdam/Antwerpen: Uitgeverij Business Contact.Google Scholar
  53. Van Schaick, J., & Klaasen, I. (2011). The Dutch layers approach to spatial planning and design: a fruitful planning tool or a temporary phenomenon? European Planning Studies, 19(10), 1775–1796.CrossRefGoogle Scholar
  54. Vos, C.C., van der Veen, M., & Opdam, P.F.M. (2006) Natuur en Klimaatverandering. Wat kan het natuurbeleid doen? Wageningen: Alterra and Klimaat voor Ruimte.Google Scholar
  55. VROM-raad (2007) De hype voorbij, klimaatverandering als structureel ruimtelijk vraagstuk; advies 060; Den Haag: VROM-raad.Google Scholar
  56. Walker, B., Holling, C.S. Carpenter, S.R., & Kinzig, A. (2004) Resilience, adaptability and transformability in social–ecological systems. Ecology and Society, 9(2), 5. Retrieved from: http://www.ecologyandsociety.org/vol9/iss2/art5/

Websites

  1. www.emdat.be/natural-disasters-trends, Accessed 29 March 2011
  2. www.overheidingroningen.nl, Accessed 27 April 2012

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Faculty of ArchitectureDelft University of TechnologyDelftThe Netherlands

Personalised recommendations