Swarm Planning pp 197-219 | Cite as

Beyond the Ordinary: Innovative Spatial Energy Framework Offers Perspectives on Increased Energy and Carbon Objectives

  • Rob RoggemaEmail author
Part of the Springer Theses book series (Springer Theses)


The way energy is supplied, converted and used is very inefficient (Stremke et al. 2010). The Sankey diagram illustrates that, on a global level, only 11.6 % of the energy sources is turned into useful energy (Cullen and Allwood 2010; Van den Dobbelsteen 2010) not only high prices of energy or the fact that burning fossil resources contributes to climate change motivate a transition towards sustainable energy supply. A structural change is also required because fossil resources (Including finite yet non-fossil nuclear energy) will be depleted in a period of less than 100 years (Hoogakker 2006). This is caused by the fact that running out of the first fossil resource subsequently leads to an accelerated depletion of the next. In the BP statistical review the R/P (Reserve to Production) ratio for coal, oil and natural gas is estimated 120, 45 and 60 years respectively (BP 2009), however, this does not take into account that when oil is finished, the depletion of gas and coal will be accelerated. Therefore, the longer term aim is to develop a society that functions without the use of fossil resources. Dril (2010) demonstrates that current policy will not enable to achieve this goal, because existing market powers object transition, implementation of change is too slow and policy cannot enforce a fundamental shift in energy supply. In addition, people seem not to be willing to pay for energy-efficient houses (Van Estrik 2009). The question that can be raised is if a transition towards non-fossil will occur through incremental steps or through discontinuous processes of subsequent breakthroughs. The incremental approach mainly focuses on achieving what is already possible. A certain agreed target, such as to reduce CO2 emissions by 20 % by the year 2020 (European Parliament Council 2009) or the energy agreement for the Northern Netherlands (Samenwerkingsverband Noord-Nederland et al. 2007), determines the maximum achievable level. The transition model as described by De Roo illustrates this continuous process (De Roo 2008). There is no incentive to realise higher targets than the maximum aim; the aim even limits the realisation of a fundamental change towards a complete sustainable energy supply. Several studies (Van den Dobbelsteen et al. 2007a, b; Broersma et al. 2009) illustrate that an approach based on the available potentials of a certain area, enables realising much higher targets. However, these high ambitions are only attainable through the enforcement of breakthroughs, as illustrated by Perez (Perez 2002) or, as complexity theory explores, enforcing a jump to a higher level of complexity (Geldof 2001; Zuijderhoudt 2007; Peeters and Wetzels 1997). This process of subsequent and discontinuous phases and shifts, as described elsewhere (Roggema et al. 2010), places the local energy potentials in a central position.


Energy supply Energy potential mapping Transformation Complexity Non-fossil energy 


  1. Bakas, A., & Creemers, R. (2010). Living without oil, the new energy economy revealed. Oxford: Infinite Ideas Limited.Google Scholar
  2. Bartolomeus, P. & Overdiep, H. (2005). Route: Energy efficiency and green gas. Presentation seminar Transition towards a sustainable energy system. San Francisco: Dutch Ministry of Economic Affairs.Google Scholar
  3. Belin, H. (2008). The Rifkin vision. We are in the twilight of a great energy era. European Energy Review, special edition, June 2008.Google Scholar
  4. Bianconi, G., & Barabási, A. -L. (2001). Competition and multiscaling in evolving networks. Europhysics Letter 54, 436–442. In: M. Newman, A. -L. Barabási, & D. J. Watts (Eds.) (2006) The Structure and Dynamics of Networks. Woodstock, New Jersey: Princeton University Press.Google Scholar
  5. BP (2009). BP Statistical Review of World Energy June 2009. London.Google Scholar
  6. Broder, A., R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, & J. Wiener (2000) Graph structure in the Web. Computer Networks 33 309–320. In: Newman, M., Barabási, A. -L., & Watts, D. J. (Eds.) (2006) The Structure and Dynamics of Networks. Woodstock, New Jersey: Princeton University Press.Google Scholar
  7. Broersma, S., van den Dobbelsteen, A., van der Grinten, B., & Stremke, S. (2009). Energiepotentiestudie De Groene Compagnie. Groningen: TU Delft, Wageningen Universiteit en Research Centrum, Gemeente Hoogezand-Sappemeer and Provincie Groningen.Google Scholar
  8. Campbell, C. J. (1999) The Imminent Peak of World Oil Production. Presentation to a House of Commons All-Party Committee, July 7th 1999.Google Scholar
  9. Campbell, C. J. (2002a) Peak Oil: an Outlook on Crude Oil Depletion. Retrieved May 10 2010 from:
  10. Campbell, C. J. (2002b) Forecasting Global Oil Supply 20002050. M. King Hubbert Center for Petroleum Supply Studies, Newsletter # 2002/3.Google Scholar
  11. Campbell, C. J., & Laherrrère, J. H. (1998). The End of Cheap Oil. Global production of conventional oil will begin to decline sooner than most people think, probably within 10 years. Scientific American 1998–03.Google Scholar
  12. Cullen, J. M., & Hall, C. (2009). Engineering Fundamentals of Energy Efficiency. Dissertation, Cambridge University, Cambridge.Google Scholar
  13. Cullen, J. M., & Allwood, J. M. (2010). The efficient use of energy: Tracing the global flow of energy from fuel to service. Energy Policy, 38(1), 75–81.CrossRefGoogle Scholar
  14. De Bruin, F. (2010). De rol van gas in een duurzame energiehuishouding. Intreerede, 29 juni 2010. Groningen: Rijksuniversiteit Groningen.Google Scholar
  15. De Roo, G. (2008) A theory of transition and its relevance to planning theory and practice. A non-linear understanding of spatial development. Milano: Aesop’s Thematic Group on Complexity and Planning, 7th meeting.Google Scholar
  16. Draief, M., & Masoulié, L. (2010). Epidemics and Rumours in Complex Systems. Cambridge: Cambridge University Press.Google Scholar
  17. Droege, P. (2010). 100% Renewable Energy—and Beyond—for Cities. Hamburg: HafenCity University and World Future Council Foundation.Google Scholar
  18. Erdós, P., & Rényi, A. (1960). On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences 5, 17–61. In: Newman, M., Barabási, A. -L., & Watts, D. J. (Eds.) (2006) The Structure and Dynamics of Networks. Woodstock, New Jersey: Princeton University Press.Google Scholar
  19. van Estrik, G. J. B. (2009). Baat het niet, dan gaat het niet. Een landelijk consumentenonderzoek naar de markt- en prijsacceptatie van energiezuinige nieuwbouwwoningen in Nederland. Hoevelaken: Bouwfonds Ontwikkeling and London: University of Greenwich.Google Scholar
  20. European Parliament Council (2009). Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC Official Journal of the European Union, L140/16.Google Scholar
  21. Geldof, G. (2001). Omgaan met complexiteit bij integraal waterbeheer. Proefschrift Universiteit Twente. Deventer: Tauw.Google Scholar
  22. Gemeente Groningen (2010). ‘Groningen geeft energie!’ Expertmeeting duurzame energie opwekking Groningen. Groningen: gemeente Groningen and Deerns.Google Scholar
  23. Gladwell, M. (2000). The tipping point. New York, Boston: Little, Brown and Company.Google Scholar
  24. Gordijn, H., Verwest, F., & van Hoorn, A. (2003). Energie is ruimte. Rotterdam: NAi Uitgevers; Den Haag: Ruimtelijk Planbureau.Google Scholar
  25. Goudswaard, P., Grift, J., de Jong, A., Koolwijk, E., Schlatmann, S., Steenbergen, P., et al. (2008). Warmte en Kracht, Warmtekrachtkoppeling: een overzicht en leidraad. Groningen: GasTerra/Castel International Publishers.Google Scholar
  26. Hao, H., Wang, X., & Li, X. (2010). Quantification and comparison of adaptation level in spatial planning. Thesis, Van Hall Larenstein, Velp.Google Scholar
  27. Hoogakker, J. (2006). Kernenergie overbodig. Groningen: GasTerra, interne notitie.Google Scholar
  28. H + N+S (2008). Kleine Energieatlas, Ruimtebeslag van Electriciteitsopwekking. Utrecht: Ministerie van VROM.Google Scholar
  29. Innovatieplatform (2010). Duurzame energie, economisch groeigebied voor Nederland met groene potentie. Advies van het innovatieplatform aan het kabinet.Google Scholar
  30. Itoh, S. (Ed.). (2003). Proposals for the International Competition of Sustainable Urban Systems Design, Report of the International Gas Union Special Project. Tokyo: The Institute of Behavioural Sciences.Google Scholar
  31. Kaufmann, R. K. (2006). Planning for the peak in world oil production. World Watch, 19(1), 19–21.Google Scholar
  32. MacKay, D. J. C. (2009). Sustainable energy—without the hot air. Cambridge: UIT Cambridge Ltd.Google Scholar
  33. Nekoveea, M., Morenob, Y., Bianconic, G., & Marsilic, M. (2007). Theory of rumour spreading in complex social networks. Physica A, 374, 457–470.CrossRefGoogle Scholar
  34. Newman, M., Barabási, A.-L., & Watts, D. J. (Eds.). (2006). The structure and dynamics of networks. Woodstock, New Jersey: Princeton University Press.Google Scholar
  35. Noorman, K. J. (2006). €nergiek Noord-Nederland, Zoektocht naar een ruimtelijk concept gebaseerd op een duurzame energiehuishouding. Groningen: Grounds for Change, IGU.Google Scholar
  36. OMA and ECF (2010) Roadmap 2050: A Practical Guide to a Prosperous, Low Carbon Europe. Volume 3: Graphic Narrative. European Climate Foundation,
  37. Pearce, F. (2009). The new climate deal, a pocket guide. Gland: WWF.Google Scholar
  38. Perez, C. (2002). Technological revolutions and financial capital. Cheltenham: Edgar Elgar.Google Scholar
  39. Persson, M. (2010). Lang niet genoeg groene electriciteit. In: Volkskrant, 16 January 2010.Google Scholar
  40. Peters, J., & Wetzels, R. (1997). Niets nieuws onder de zon en andere toevalligheden, Strategie uit Chaos. Amsterdam/Antwerpen: Uitgeverij Business Contact.Google Scholar
  41. Rifkin, J. (2002). The hydrogen economy: The creation of the world-wide energy web and the redistribution of power on earth. New York: Penguin Group (USA) Inc.Google Scholar
  42. Roggema, R. (2005) Hansje Brinker, take your finger away. Proceedings Oxford Futures Forum. Oxford.Google Scholar
  43. Roggema, R. (2008a) The use of spatial planning to increase the resilience for future turbulence in the spatial system of the Groningen region to deal with climate change, Proceedings UKSS-conference, Oxford.Google Scholar
  44. Roggema, R. (2008b) Swarm Planning: A new design paradigm dealing with long term problems associated with turbulence. In: R. Ramirez, J. W. Selsky, & K. van der Heijden (Eds.) Business planning for turbulent times, new methods for applying scenarios, pp. 103–129. London: Earthscan.Google Scholar
  45. Roggema, R. (Ed.). (2009a). INCREASE II, Proceedings of the second international conference on renewable energy approaches for the spatial environment. Groningen: UIBE and Province of Groningen.Google Scholar
  46. Roggema R. (2009b). Adaptation to climate change, does spatial planning help? Swarm planning does! In: C. A. Brebbia, N. Jovanovic, & E. Tiezzi (Eds.), Management of natural resources, sustainable development and ecological hazards, pp. 161–172 Southampton: WIT press.Google Scholar
  47. Roggema, R., & Boneschansker, O. (2010). INCREASE II, Final report of the second international conference on renewable energy approaches for the spatial environment; Towards a zero fossil energy region in 2050. Groningen: UIBE and Province of Groningen.Google Scholar
  48. Roggema, R., & van den Dobbelsteen, A. (2007). About how was becomes: emergence of a sustainable spatial-energy system. In C. A. Brebbia, M. E. Conti, & E. Tiezzi (Eds.), Management of Natural recources, sustainable development and ecological hazards. Southampton: WIT Press.Google Scholar
  49. Roggema, R., & van den Dobbelsteen, A. (2008). Swarm planning: development of a new planning paradigm, which improves the capacity of regional spatial systems to adapt to climate change, Proceedings World Sustainable Building Conference (SB08), Melbourne.Google Scholar
  50. Roggema, R., van den Dobbelsteen, A., & Stegenga, K. (Eds.). (2006). Pallet of possibilities. Groningen: Grounds for Change.Google Scholar
  51. Roggema, R., Mallon, W., Sergeev, V., & Swaving, G. J. (2008). Towards a climate proof energy system in Groningen, Spatial impact of adjustments to the future energy system. Report Expert meetings and INCREASE Conference. Groningen: Province of Groningen and Climate Changes Spatial Planning.Google Scholar
  52. Roggema, R., w/a P. de Plaa (2009); From the Dutch New Spatial Law via Development Planning towards Swarm Planning, first contours of an emerging new planning paradigm. Groningen: Hotspot Climate Proof Groningen. Province of Groningen.Google Scholar
  53. Roggema, R., Kabat, P., & van den Dobbelsteen, A. (2012a). Towards a spatial planning framework for climate adaptation. SASBE, 1(1), 29–58.Google Scholar
  54. Roggema, R., Vermeend, T., & van den Dobbelsteen, A. (2012b). Incremental change, transition or transformation? Optimising change pathways for climate adaptation in spatial planning. Sustainability, 4, 2525–2549.CrossRefGoogle Scholar
  55. Rooijers, F., Wielders, L., Schepers, B., Croezen, H., & de Bruyn, S. (2008). Aardgas als transitiebrandstof, voor een duurzame energiehuishouding. Groningen: GasTerra/Castel International Publishers.Google Scholar
  56. Samenwerkingsverband Noord-Nederland, Ministerie van Economische Zaken, VROM, Provincie Drenthe, Provincie Fryslân, Provincie Groningen en Provincie Noord-Holland (2007) Energie akkoord Noord Nederland.Google Scholar
  57. Scheer, H. (2005). Energieautonomie: Eine Neue Politik für Erneuerbare Energien. München: Verlag Antje Kuntsmann GmbH.Google Scholar
  58. Sergeev, V., Roggema, R., Artrushkin, V., Mallon, W. & Alekseenkova, E. (2009). What is the price to use gasoline in contemporary society? The Groningen experience. In: Roggema, R. (Ed.), INCREASE 2, INternational Conference on Renewable Energy Approaches for the Spatial Environment, conference proceedings. Groningen: Province of Groningen.Google Scholar
  59. Solé, R. V., Pastor-Satorras, R., Smith, E., & Kepler, T. B. (2002). A model of large-scale proteome evolution. Advances in Complex systems 5, 43–54. In: Newman, M., Barabási, A. -L., & Watts, D. J. (Eds.) (2006), The Structure and Dynamics of Networks. Woodstock, New Jersey: Princeton University Press.Google Scholar
  60. Strahan, D. (2009). Green Grid. New Scientist, 14, 42–45.CrossRefGoogle Scholar
  61. Stremke, S., & Koh, J. (2010). Ecological concepts and strategies with relevance to energy-concious spatial planning and design. Environment and Planning B,. doi: 10.1068/b35076.Google Scholar
  62. Stremke, S., van den Dobbelsteen, A., & Koh, J. (2011). Exergy landscapes: exploration of second-law thinking towards sustainable landscape design. International Journal Exergy, 8(2), 148–174.CrossRefGoogle Scholar
  63. Tillie, N., van den Dobbelsteen, A., Doepel, D., de Jager, W., Joubert, M., & Mayenburg, D. (2009). Towards CO2 neutral urban planning—introducing the Rotterdam Energy Approach and Planning (REAP). Journal of Green Building, 4(3), 103–112.CrossRefGoogle Scholar
  64. Van Ansem, I., Cronenberg, C., & Eenkhoorn, R. (2009). Carbon Capture and Storage, Plan van aanpak Noord-Nederland. Groningen: DHV/Kernteam CCS Noord-Nederland.Google Scholar
  65. Van Dam, F., & Noorman, K. J. (Eds.) (2005) Grounds for Change: Bridging Energy Planning and Spatial Design Strategies. Charrette Report, 25–30 May 2005. Groningen: Grounds for Change.Google Scholar
  66. Van de Wiel, H. (2009) Elektrisch tanken terwijl u slaapt. In: P + , September-Oktober 2009, pp. 26–29.Google Scholar
  67. Van den Berg, W., & van der Slot, A. (2009). Clean Economy, Living Planet, Building the Dutch Clean Energy Technology Industry. Zeist: WWF-Netherlands.Google Scholar
  68. Van den Dobbelsteen, A. (2010) Use your potential! Sustainability through local opportunities. Delft: Delft University of Technology, Inaugural speech, 5th of March 2010.Google Scholar
  69. Van den Dobbelsteen, A., Jansen, S. C. & van Timmeren, A., met J. M. A. Leemans en P. Nan (2007a) Naar een energiegestuurd Omgevingsplan Groningen. Groningen: TU Delft, met ADECS en Planmaat & Provincie Groningen.Google Scholar
  70. Van den Dobbelsteen A., Jansen, S., van Timmeren, A., & Roggema, R. (2007b). Energy Potential Mapping—A systematic approach to sustainable regional planning based on climate change, local potentials and exergy. Proceedings of the CIB World Building Congress 2007 Cape Town: CIB/CSIR.Google Scholar
  71. Van den Dobbelsteen, A., van Timmeren, A., Roggema en, R., van der Grinten, B., met Veldhuisen, S. (2008a). Energiepotenties Almere, Basisrapport. Almere: TU Delft, met BuildDesk. Gemeente Almere.Google Scholar
  72. Van den Dobbelsteen, A., van Timmeren, A., Roggema en, R., van der Grinten, B., met Veldhuisen, S. (2008b). Energiepotenties regio en Stad Almere. Almere: TU Delft, met BuildDesk. Gemeente Almere.Google Scholar
  73. Van den Dobbelsteen, A., van Timmeren, A., Roggema en, R., van der Grinten, B., met Veldhuisen, S. (2008c). Energiepotenties Almere, Energiepotentiestudie Almere-Oost. Almere: TU Delft, met BuildDesk. Gemeente Almere.Google Scholar
  74. Van den Dobbelsteen A., van Timmeren, A., van der Grinten, B., & Hellinga, C. (2009a). Energievisie Schiph2olland Delft: TU Delft, Faculteit Bouwkunde.Google Scholar
  75. Van den Dobbelsteen, A., Sergeev, V., Sarukhanyan, S., Mallon, W., & Roggema, R. (2009b). Energy potentials. In: Roggema, R. (Ed.) Adaptation to Climate Change: A Spatial Challenge. Dordrecht: Springer.Google Scholar
  76. Van der Grinten, B. (2008). Drawing of the overlay of energy potentials in Groningen province. Delft: TU Delft.Google Scholar
  77. Van der Hoeven, D., de Boer, Y., & van Soest, J. P. (2009). Nieuw Licht, Inzicht in een duurzame energiehuishouding. Den Haag: NOW i.s.m. SenterNovem.Google Scholar
  78. Van Dril, A. W. N. (coörd.) (2010). Verkenning Schoon en Zuinig. Effecten op energiebesparing, hernieuwbare energie en uitstoot van broeikasgassen. Bilthoven/Den Haag: PBL en ECN.Google Scholar
  79. Van Etteger, R., & Stremke, S. (2007). ReEnergize South Limburg, Designing Sustainable Energy Landscapes. Wageningen: Landscape Architecture Chairgroup, Wageningen University and Research Centre.Google Scholar
  80. Van Hoorn, A., Tennekes, J., & van den Wijgaart, R. (2010). Quickscan energie en ruimte, Raakvlakken tussen energiebeleid en ruimtelijke ordening. Den Haag/Bilthoven: Planbureau voor de Leefomgeving.Google Scholar
  81. Van Timmeren, A. (2006). Autonomie & Heteronomie, Integratie en verduurzaming van essentiële stromen in de gebouwde omgeving. Proefschrift. Delft: Technische Universiteit.Google Scholar
  82. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature 393: 440–442. In: Newman, M., Barabási, A. -L., & Watts, D. J. (Eds.) (2006), The Structure and Dynamics of Networks. Woodstock, New Jersey: Princeton University Press.Google Scholar
  83. Zuijderhoudt, R. (2007). Op zoek naar Synergie, omgaan met onoplosbare problemen. Academisch Proefschrift, UvA. Amsterdam: Rob Zuijderhoudt Organisatieadviseur.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Faculty of ArchitectureDelft University of TechnologyDelftThe Netherlands

Personalised recommendations