Incremental Change, Transition or Transformation? Optimising Change Pathways for Climate Adaptation in Spatial Planning

  • Rob RoggemaEmail author
Part of the Springer Theses book series (Springer Theses)


In recent works different scholars characterise the current timeframe as turbulent and instable. The Earth system is being pushed outside its ‘Holocene range’ into the ‘Antropocene’ (Steffen et al. in Global Change and the Earth System: A Planet Under Pressure. Springer, Heidelberg, 2004), there is a looming crisis, which both causes and decreases the solvability of increasing instability (Walker et al. in Science 325:1345–1346, 2009). We live in a timeframe of a rapid change, uncertainty (Chapin et al. in Trends Ecol Evol 25:241–249, 2009) and turbulence (Ramirez et al. in Business Planning for Turbulent Times: New Methods for Applying Scenarios. Earthscan Publications Ltd, London, 2008), defined as: ‘the dynamic properties arise not simply from the interaction of the component organisations, but also from the ground itself. The ‘ground’ is in motion’ (Emery and Trist in Hum Relat 18:21–32, 1965). These kinds of typecasts pose ‘the greatest challenge for research and policy ever to confront humanity’ (Steffen et al. in Ambio 36:614–621, 2007), major changes of current systems are necessary (Olsson, Presented at the NCCARF-Seminar, Melbourne, Australia, Feb 10, 2011) and as a consequence, there is a need for novel and adaptive governance approaches at the global, regional and local scale (Dietz et al. in Science 302:1907–1912, 2003; Folke et al. in Ann Rev Env Resour 30:441–473, 2005; Berkman and Young in Science 324:339–340, 2009). Regarding climate change, and beyond ‘solving’ the climate crisis, adaptation of our societies is necessary and a broad spectrum of adaptation types, such as regulations, financing, adjusted procedures, as well as in spatial planning is required. Adaptation to climate change implies change from the current to an adapted situation. This change can occur in different ways: gradual and incremental, through a transition or in the form of a transformation. This chapter will examine the different possibilities to enhance the required change, develops a preferred pathway and applies this pathway in a case study.


Incremental change Transition Transformation B-minus Turbulence 



This research was made possible by the contribution of the Dutch Ministry of Housing, Spatial Affairs and the Environment and by support of the Dutch ‘Climate Changes Spatial Planning’ programme.


  1. Ainsworth-Land, G. T. (1986). Grow or die. The unifying principle of transformation. New York: Wiley.Google Scholar
  2. Australian Government. (2007). Tackling wicked problems: A public policy perspective. Canberra: Australian Public Service Commission.Google Scholar
  3. Berger, R., & Chambwera, M. (2010). Beyond cost-benefit: Developing a complete toolkit for adaptation decisions. London: IIED.Google Scholar
  4. Berkman, P. A., & Young, O. R. (2009). Governance and environmental change in the Arctic Ocean. Science, 324, 339–340.CrossRefGoogle Scholar
  5. Bianconi, G., & Barabási, A.-L. (2001). Competition and multiscaling in evolving networks. Europhysics Letters, 54, 436–442.CrossRefGoogle Scholar
  6. Blauwhof, G., & Verbaan, W. (2009). Wolk 777, Over Crisis, Krimp en Duurzaamheid. Wageningen: Uitgeverij Blauwdruk.Google Scholar
  7. Boersma, S., Fremouw, M., Stremke, S., van den Dobbelsteen, A., & de Waal, R. (2011). Duurzame Energiestructuurvisie Voor de Veenkoloniën. Delft: TU Delft/WUR.Google Scholar
  8. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., et al. (2000). Graph structure in the web. Computer Networks, 33, 309–320.CrossRefGoogle Scholar
  9. Castells, M. (1996). The rise of the network society. Oxford: Blackwell.Google Scholar
  10. Chapin, F. S., I. I. I., Carpenter, S. R., Kofinas, G. P., Folke, C., Abel, N., Clark, W. C., et al. (2009). Ecosystem stewardship: Sustainability strategies for a rapidly changing planet. Trends in Ecology & Evolution, 25, 241–249.CrossRefGoogle Scholar
  11. Chapin III, F. S., McGuire, A. D., Ruess, R. W., Hollingsworth, T. N., Mack, M. C., Johnstone, J. F., et al. (2010). Resilience of Alaska’s boreal forest to climatic change. Canadian Journal of Forest Research, 40. doi: 10.1139/X10-074.
  12. Conklin, J. (2001). Wicked problems and social complexity. CogNexus Institute: Napa, p. 11. Retrieved Dec 13, 2010 from:
  13. De Roo, G. (2008). A theory of transition and its relevance to planning theory and practice. A non-linear understanding of spatial development. In Proceedings of the VIIth Meeting of Aesop’s Thematic Group on Complexity and Planning, Milano, Italy, 22–23 Feb 2008.Google Scholar
  14. Dietz, T., Ostrom, E., & Stern, P. C. (2003). The struggle to govern the commons. Science, 302, 1907–1912.Google Scholar
  15. Emery, F. E., & Trist, E. L. (1965). The causal texture of organizational environments. Hum. Relat., 18, 21–32.CrossRefGoogle Scholar
  16. Erdós, P., & Rényi, A. (1960). On the evolution of randam graphs. In Publications of the Mathematical Institute of the Hungarian Academy of Sciences. Budapest: Mathematical Institute of the Hungarian Academy of Sciences, pp. 17–61.Google Scholar
  17. Folke, C., Hahn, T., Olsson, P., & Norberg, J. (2005). Adaptive governance of social–ecological systems. Annual Review of Environment and Resources, 30, 441–473.CrossRefGoogle Scholar
  18. Folke, C., Carpenter, S. R., Walker, B., Scheffer, M., Chapin, T., & Rockström, J. (2010). Resilience thinking: Integrating resilience, adaptability and transformability. Ecology and Society, 15, 20. Retrieved Dec 15, 2010, from:
  19. Franzen, G., & Bouwman, M. (1999). De Mentale Wereld van Merken. Alphen aan den Rijn: Samsom.Google Scholar
  20. Geels, F. W. (2002). Technological transitions as evolutionary reconfiguration processes: A multilevel perspective and a case study. Research Policy, 31, 1257–1274.CrossRefGoogle Scholar
  21. Geels, F. W. (2005). Processes and patterns in transitions and system innovations: Refining the co-evolutionary multi-level perspective. Technological Forecasting and Social Change, 72, 681–696.CrossRefGoogle Scholar
  22. Geels, F. W. (2011). The multi-level perspective on sustainability transitions: Responses to seven criticisms. Technological Forecasting and Social Change, 1, 24–40.Google Scholar
  23. Geels, F. W., & Kemp, R. (2006). Transitions, transformations and reproduction: Dynamics of socio-technical systems. In M. McKelvey & M. Holmén (Eds.), Flexibility and stability in economic transformation (pp. 227–256). New York: Oxford University Press.CrossRefGoogle Scholar
  24. Ghodeswar, B. M. (2008). Building brand identity in competitive markets: A conceptual model. Journal of Product & Brand Management, 17, 4–12.CrossRefGoogle Scholar
  25. Gladwell, M. (2000). The tipping point: how little things can make a big difference. New York: Time Warner Book Group.Google Scholar
  26. Gunderson, L., & Holling, C. S. (Eds.). (2002). Panarchy: Understanding transformations in human and natural systems. Washington: Island Press.Google Scholar
  27. Hao, H., & Wang, X. (2010). Spatial planning for climate change adaptationtest and improve spatial planning methodology for the CCA. BSc-Thesis, Van Hall Larenstein, Wageningen.Google Scholar
  28. Homan, T. (2005). Organisatiedynamica. Den Haag: Sdu uitgevers.Google Scholar
  29. Hurst, D. K. (1997). Crisis en Vernieuwing: De Uitdaging van Organisativerandering. Schiedam: Scriptum.Google Scholar
  30. Kemp, R., Rip, A., & Schot, J. W. (2001). Constructing transition paths through the management of niches. In R. Garud & P. Karnoe (Eds.), Path dependence and creation (pp. 269–299). Mahwah: Lawrence Erlbaum.Google Scholar
  31. Lazarus, R. (2009). Super wicked problems and climate change: Restraining the present to liberate the future (pp. 1053–1233). Washington: Cornell Law Review; Georgetown Public Law Research.Google Scholar
  32. Newman, M., Barabási, A.-L., & Watts, D. J. (Eds.). (2006). The structure and dynamics of networks. Princeton: Princeton University Press.Google Scholar
  33. Olsson, P., Gunderson, L. H., Carpenter, S. R., Ryan, P., Lebel, L., Folke C., et al. (2006). Shooting the rapids: Navigating transitions to adaptive governance of social–ecological systems. Ecology and Society, 11, 18. Retrieved Dec 15, 2010 from
  34. Olsson, P. (2011). Navigating transformations in social–ecological systems. Presented at the NCCARF-Seminar, Melbourne, Australia, 10 Feb 2011.Google Scholar
  35. Perez, C. (2002). Technological revolutions and financial capital. Cheltenham: Edgar Elgar.Google Scholar
  36. Peters, J., & Wetzels, R. (1997). Niets Nieuws Onder de Zon en Andere Toevalligheden, Strategie uit Chaos. Amsterdam: Uitgeverij Business Contact.Google Scholar
  37. Provincie Groningen. (2000). Provinciaal Omgevingsplan. Vastgesteld op 14 December 2000. Groningen: Provincie Groningen.Google Scholar
  38. Provincie Groningen. (2006). Provinciaal Omgevingsplan, POP 2 tekst en kaarten. Vastgesteld op 5 Juli 2006. Groningen: Provincie Groningen.Google Scholar
  39. Provincie Groningen. (2009). Provinciaal Omgevingsplan 20092013. Vastgesteld op 17 Juni 2009. Groningen: Provincie Groningen.Google Scholar
  40. Ramirez, R., Selsky, J. W., & van der Heijden, K. (Eds.). (2008). Business planning for turbulent times: New methods for applying scenarios. London: Earthscan Publications Ltd.Google Scholar
  41. Rittel, H., & Webber, M. (1973). Dilemmas in a general theory of planning. Policy Sciences, 4, 155–169.CrossRefGoogle Scholar
  42. Roberts, K. (2006). The lovemarks effect, winning the consumer revolution. New York: PowerHouse Books.Google Scholar
  43. Roggema, R. (2007). Spatial impact of the adaptation to climate change in the province of Groningen, move with time. Groningen: Climate Changes Spatial Planning & Province of Groningen.Google Scholar
  44. Roggema, R., Vermeend, T., & van den Dobbelsteen, A. (2012). Incremental change, transition or transformation? Optimising change pathways for climate adaptation in spatial planning. Sustainability, 4, 2525–2549.CrossRefGoogle Scholar
  45. Rotmans, J., Kemp, R., van Asselt, M., Geels, F., Verbong, G., & Molendijk, K. (2000). Transities en Transitiemanagement: De Casus Van Een Emissiearme Energievoorziening. Maastricht: ICIS.Google Scholar
  46. Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R., Dakos, V., et al. (2009). Early-warning signals for critical transitions. Nature, 461, 53–59.CrossRefGoogle Scholar
  47. Solé, R. V., Pastor-Satorras, R., Smith, E., & Kepler, T. B. (2002). A model of large-scale proteome evolution. Advances in Complex Systems, 5, 43–54.CrossRefGoogle Scholar
  48. Steffen, W., Sanderson, A., Jäger, J., Tyson, P. D., Moore, B., I. I. I., Matson, P. A., et al. (2004). Global change and the earth system: A planet under pressure. Heidelberg: Springer.Google Scholar
  49. Steffen, W., Crutzen, P. J., & McNeill, J. R. (2007). The Anthropocene: Are humans now overwhelming the great forces of nature? Ambio, 36, 614–621.CrossRefGoogle Scholar
  50. VROM-raad. (2007). De Hype Voorbij, Klimaatverandering Als Structureel Ruimtelijk Vraagstuk, Advies 060. Den Haag: VROM-raad.Google Scholar
  51. Walker, B., Barrett, S., Polasky, S., Galaz, V., Folke, C., Engström, G., et al. (2009). Looming global-scale failures and missing institutions. Science, 325, 1345–1346.CrossRefGoogle Scholar
  52. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393, 440–442.CrossRefGoogle Scholar
  53. Zuijderhoudt, R. (2007). Op Zoek Naar Synergie, Omgaan Met Onoplosbare Problemen. Ph.D. Thesis, University of Amsterdam, Amsterdam.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Faculty of ArchitectureDelft University of TechnologyDelftThe Netherlands

Personalised recommendations