Skip to main content

Neuroendocrine Differentiation in Prostate Cancer

  • Chapter
  • First Online:
Book cover Prostate Cancer: Shifting from Morphology to Biology

Abstract

Neuroendocrine differentiation (ND) is widely observed in prostate cancer (PC). Its role in clinical practice is controversial, but preclinical and clinical evidences underline the association of ND with poor prognosis in PC patients. Neuroendocrine (NE) cells could condition the PC progression, mainly stimulating the PC exocrine neoplastic cells proliferation through the production of paracrine growth factors. Thus, the castrated adapted neoplastic cells are favored to outgrowth through an androgen receptor independent mechanism. Moreover proportion of NE cells in PC increases because of tumor treatment, mainly androgen deprivation therapy, enormously amplifying the promotion of the PC exocrine component growth stimulated by neuroendocrine paracrine growth factors.

This chapter provides an overview of the most relevant clinical studies demonstrating a significant correlation between ND and PC behavior, indicating that ND could represent a prognostic parameter in PC, and strongly suggesting that NE cells in a castrate resistant patients could be targeted through specific treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ND:

Neuroendocrine differentiation

NE:

Neuroendocrine

PC:

Prostate cancer

PSA:

The prostate specific antigen

CGA:

ChromograninA

NSE:

Neuron-specific enolase

VIP:

Vasoactive intestinal peptide

GRP:

Bombesin/gastrin releasing peptide

aHCG:

Alpha-human chorionic gonadotropin

PTHrP:

Parathyroid hormonerelated protein

VEGF:

Vascular endothelial growth factor

SCC:

Small cell carcinomas

PIN:

Prostatic intraepithelial neoplasia

AMACR:

Alpha-methylacyl-CoA racemase

ADT:

Androgen deprivation therapy

uPA:

Urokinase-type plasminogen activator

PAI-1:

Plasminogen activator inhibitor-1

MMP:

Metalloprotease

MDV:

Microvascular density

MAPKs:

Mitogen activated protein kinases

PKA:

Cyclic AMP-dependent protein kinase

PI3K:

Phosphatidylinositol 3-kinase

CDK:

Cyclin-dependent kinase

CGB:

Chromogranin B

CGC:

Chromogranin C

ProGRP:

Progastrin-releasing peptide

BPH:

Prostatic hyperplasia

PS:

Performance status

PET:

Positron emission tomography

FDG:

F18-fluorodeoxyglucose

DTPA:

Diethylenetriaminepentaacetic acid

DTX:

Docetaxel

OS:

Overall survival

TTP:

Time to progression

DOTA:

1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid

PTP:

Protein tyrosine phosphatase

References

  • Abdul M, Anezinis PE, Logothetis CJ et al (1994) Growth inhibition of human prostatic carcinoma cell lines by serotonin antagonists. Anticancer Res 14:1215–1220

    CAS  PubMed  Google Scholar 

  • Abrahamsson PA, Wadstrom LB, Alumets J et al (1986) Peptide hormone- and serotonin-immunoreactive cells in normal and hyperplastic prostate glands. Pathol Res Prac 181:675–683

    CAS  Google Scholar 

  • Abrahamsson PA, Wadstrom LB, Alumets J et al (1987) Peptide-hormone and serotonin-immunoreactive tumour cells in carcinoma of the prostate. Pathol Res Pract 182:298–307

    CAS  PubMed  Google Scholar 

  • Ahlgren G, Pedersen K, Lundberg S et al (2000) Regressive changes and neuroendocrine differentiation in prostate cancer after neoadjuvant hormonal treatment. Prostate 42:274–279

    CAS  PubMed  Google Scholar 

  • Albrecht M, Doroszewicz J, Gillen S et al (2004) Proliferation of prostate cancer cells and activity of neutral endopeptidase is regulated by bombesin and IL-1beta with IL-1beta acting as a modulator of cellular differentiation. Prostate 58:82–94

    CAS  PubMed  Google Scholar 

  • Allen FJ, Van Velden DJ, Heyns CF (1995) Are neuroendocrine cells of practical value as an independent prognostic parameter in prostate cancer? Br J Urol 75:751–754

    CAS  PubMed  Google Scholar 

  • Angelsen A, Syversen U, Stridsberg M et al (1997) Use of neuroendocrine serum markers in the follow-up of patients with cancer of the prostate. Prostate 31:110–117

    CAS  PubMed  Google Scholar 

  • Aprikian AG, Cordon-Cardo C, Fair WR et al (1993) Characterization of neuroendocrine differentiation in human benign prostate and prostatic adenocarcinoma. Cancer 71:3952–3965

    CAS  PubMed  Google Scholar 

  • Berruti A, Dogliotti L, Mosca A et al (2000) Circulating neuroendocrine markers in patients with prostate carcinoma. Cancer 88:2590–2597

    CAS  PubMed  Google Scholar 

  • Berruti A, Mosca A, Tucci M et al (2005) Independent prognostic role of circulating chromogranin a in prostate cancer patients with hormonerefractory disease. Endocr Relat Cancer 12:109–117

    CAS  PubMed  Google Scholar 

  • Berruti A, Bollito E, Cracco CM et al (2010) The prognostic role of immunohistochemical chromogranin a expression in prostate cancer patients is significantly modified by androgen-deprivation therapy. Prostate 70:718–726

    PubMed  Google Scholar 

  • Bonkhoff H (1996) Role of the basal cells in premalignant changes of the human prostate: a stem cell concept for the development of prostate cancer. Eur Urol 30:201–205

    CAS  PubMed  Google Scholar 

  • Bonkhoff H, Stein U, Remberger K (1994) Multidirectional differentiation in the normal, hyperplastic, and neoplastic human prostate: simultaneous demonstration of cell-specific epithelial markers. Hum Pathol 25:42–46

    CAS  PubMed  Google Scholar 

  • Bonkhoff H, Stein U, Remberger K (1995) Endocrine-paracrine cell types in the prostate and prostatic adenocarcinoma are postmitotic cells. Hum Pathol 26:167–170

    CAS  PubMed  Google Scholar 

  • Borre M, Nerstrom B, Overgaard J (2000) Association between immunohistochemical expression of vascular endothelial growth factor (VEGF), VEGF-expressing neuroendocrine-differentiated tumor cells, and outcome in prostate cancer patients subjected to watchful waiting. Clin Cancer Res 6:1882–1890

    CAS  PubMed  Google Scholar 

  • Bostwick DG, Dousa MK, Crawford BG et al (1994) Neuroendocrine differentiation in prostatic intraepithelial neoplasia and adenocarcinoma. Am J Surg Pathol 18:1240–1246

    CAS  PubMed  Google Scholar 

  • Bostwick DG, Qian J, Pacelli A et al (2002) Neuroendocrine expression in node positive prostate cancer: correlation with systemic progression and patient survival. J Urol 168:1204–1211

    PubMed  Google Scholar 

  • Buchanan G, Greenberg NM, Scher HI et al (2001) Collocation of androgen receptor gene mutations in prostate cancer. Clin Cancer Res 7:1273–1281

    CAS  PubMed  Google Scholar 

  • Cescato R, Maina T, Nock B et al (2008) Bombesin receptor antagonists may be preferable to agonists for tumor targeting. J Nucl Med 49:318–326

    CAS  PubMed  Google Scholar 

  • Chevalier S, Defoy I, Lacoste J et al (2002) Vascular endothelial growth factor and signaling in the prostate: more than angiogenesis. Mol Cell Endocrinol 189:169–179

    CAS  PubMed  Google Scholar 

  • Chung TD, Yu JJ, Kong TA et al (2000) Interleukin-6 activates phosphatidylinositol-3 kinase, which inhibits apoptosis in human prostate cancer cell lines. Prostate 42:1–7

    CAS  PubMed  Google Scholar 

  • Cohen MK, Arber DA, Coffield KS et al (1994) Neuroendocrine differentiation in prostatic adenocarcinoma and its relationship to tumor progression. Cancer 74:1899–1903

    CAS  PubMed  Google Scholar 

  • Collado B, Gutierrez-Canas I, Rodriguez-Henche N et al (2004) Vasoactive intestinal peptide increases vascular endothelial growth factor expression and neuroendocrine differentiation in human prostate cancer LNCaP cells. Regul Pept 119:69–75

    CAS  PubMed  Google Scholar 

  • Collado B, Sanchez MG, Diaz-Laviada I et al (2005) Vasoactive intestinal peptide (VIP) induces c-fos expression in LNCaP prostate cancer cells through a mechanism that involves Ca2+ signalling. Implications in angiogenesis and neuroendocrine differentiation. Biochim Biophys Acta 1744:224–233

    CAS  PubMed  Google Scholar 

  • Cox ME, Deeble PD, Bissonette EA et al (2000) Activated 3′,5′-cyclic AMP-dependent protein kinase is sufficient to induce neuroendocrinelike differentiation of the LNCaP prostate tumor cell line. J Biol Chem 275:13812–13818

    CAS  PubMed  Google Scholar 

  • Deeble PD, Murphy DJ, Parsons SJ et al (2001) Interleukin-6-, cyclic AMP-mediated signalling potentiates neuroendocrine differentiation of LNCaP prostate tumor cells. Mol Cell Biol 21:8471–8482

    CAS  PubMed  Google Scholar 

  • Deftos LJ, Nakada S, Burton DW et al (1996) Immunoassay and immunohistology studies of chromogranin a as a neuroendocrine marker in patients with carcinoma of the prostate. Urology 48:58–62

    CAS  PubMed  Google Scholar 

  • Deng X, Liu H, Huang J et al (2008) Ionizing radiation induces prostate cancer neuroendocrine differentiation through interplay of CREB and ATF2: implications for disease progression. Cancer Res 68:9663–9670

    CAS  PubMed  Google Scholar 

  • di Sant’Agnese PA (1992) Neuroendocrine differentiation in carcinoma of the prostate. Diagnostic, prognostic, and therapeutic implications. Cancer 70:254–268

    PubMed  Google Scholar 

  • di Sant’Agnese PA (1998) Neuroendocrine differentiation in prostatic carcinoma: an update. Prostate 36(8):74–79

    Google Scholar 

  • Dizeyi N, Konrad L, Bjartell A et al (2002) Localization and mRNA expression of somatostatin receptor subtypes in human prostatic tissue and prostate cancer cell lines. Urol Oncol 7:91–98

    CAS  PubMed  Google Scholar 

  • Erasmus CE, Verhagen WI, Wauters CA et al (2002) Brain metastasis from prostate small cell carcinoma: not to be neglected. Can J Neurol Sci 29:375–377

    PubMed  Google Scholar 

  • Facchini G, Caraglia M, Morabito A et al (2010) Metronomic administration of zoledronic acid and taxotere combination in castration resistant prostate cancer patients: phase I ZANTE trial. Cancer Biol Ther 10:543–548

    CAS  PubMed  Google Scholar 

  • Festuccia C, Guerra F, D’Ascenzo S (1998) In vitro regulation of pericellular proteolysis in prostatic tumor cells treated with bombesin. Int J Cancer 75:418–431

    CAS  PubMed  Google Scholar 

  • Fizazi K, De Bono JS, Flechon A et al (2012) Randomised phase II study of CNTO328 (CNTO 328), an anti-IL-6 monoclonal antibody, in combination with mitoxantrone/prednisone versus mitoxantrone/prednisone alone in metastatic castration-resistant prostate cancer. Eur J Cancer 48:85–93

    CAS  PubMed  Google Scholar 

  • Ghannoum JE, DeLellis RA, Shin SJ (2004) Primary carcinoid tumor of the prostate with concurrent adenocarcinoma: a case report. Int J Surg Pathol 12:167–170

    PubMed  Google Scholar 

  • Grobholz R, Bohrer MH, Siegsmund M et al (2000) Correlation between neovascularisation and neuroendocrine differentiation in prostatic carcinoma. Pathol Res Pract 196(5):277–284

    CAS  PubMed  Google Scholar 

  • Grobholz R, Griebe M, Sauer CG et al (2005) Influence of neuroendocrine tumor cells on proliferation in prostatic carcinoma. Hum Pathol 36:562–570

    CAS  PubMed  Google Scholar 

  • Guillemot F, Lo LC, Johnson JE et al (1993) Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75:463–476

    CAS  PubMed  Google Scholar 

  • Hansson J, Abrahamsson PA (2003) Neuroendocrine differentiation in prostate carcinoma. Scand J Urol Nephrol 37(Suppl 212):28–36

    Google Scholar 

  • Helpap B (2002) Morphology and therapeutic strategies for neuroendocrine tumors of the genitourinary tract. Cancer 95:1415–1420

    PubMed  Google Scholar 

  • Hofmann M, Machtens S, Stief C et al (2004) Feasibility of Ga-68-DOTABOM PET in prostate carcinoma patients [abstract]. J Nucl Med 45:449P

    Google Scholar 

  • Huang J, di Sant’'Agnese P (2002) Neuroendocrine differentiation in prostate cancer: an overview. In: Lamberts S (ed) Advances in oncology: the expanding role of octreotide. Bioscientifica Ltd, Bristol, pp 243–262

    Google Scholar 

  • Huang J, Yao JL, Zhang L et al (2005) Differential expression of interleukin-8 and its receptors in the neuroendocrine and nonneuroendocrine compartments of prostate cancer. Am J Pathol 166:1807–1815

    CAS  PubMed  Google Scholar 

  • Huang J, Yao JL, Di Sant’agnese PA et al (2006) Immunohistochemical characterization of neuro-endocrine cells in prostate cancer. Prostate 66:1399–1406

    CAS  PubMed  Google Scholar 

  • Huss WJ, Gray DR, Werdin ES et al (2004) Evidence of pluripotent human prostate stem cells in a human prostate primary xenograft model. Prostate 60:77–90

    PubMed  Google Scholar 

  • Isaacs JT (2008) Prostate stem cells and benign prostatic hyperplasia. Prostate 68:1025–1034

    CAS  PubMed  Google Scholar 

  • Isaacs JT, Coffey DS (1989) Etiology and disease process of benign prostatic hyperplasia. Prostate Suppl 2:33–50

    CAS  PubMed  Google Scholar 

  • Ishimaru H, Kageyama Y, Hayashi T et al (2002) Expression of matrix metalloproteinase-9 and bombesin/gastrinreleasing peptide in human prostate cancers and their lymph node metastases. Acta Oncol 41:289–296

    CAS  PubMed  Google Scholar 

  • Jin RJ, Wang Y, Masumori N et al (2004) NE-10 neuroendocrine cancer promotes the LNCaP xenograft growth in castrated mice. Cancer Res 64:5489–5495

    CAS  PubMed  Google Scholar 

  • Jin RJ, Lho Y, Connelly L et al (2008) The nuclear factor-kappaB pathway controls the progression of prostate cancer to androgen-independent growth. Cancer Res 68:6762–6769

    CAS  PubMed  Google Scholar 

  • Jongsma J, Oomen MH, Noordzij MA (2000) Androgen-independent growth is induced by neuropeptides in human prostate cancer cell lines. Prostate 42:34–44

    CAS  PubMed  Google Scholar 

  • Kadmon D, Thompson TC, Lynch GR et al (1991) Elevated plasma chromogranin-a concentrations in prostatic carcinoma. J Urol 146:358–361

    CAS  PubMed  Google Scholar 

  • Kamiya N, Suzuki H, Kawamura K et al (2008) Neuroendocrine differentiation in stage D2 prostate cancers. Int J Urol 15:423–428

    CAS  PubMed  Google Scholar 

  • Kawai S, Hiroshima K, Tsukamoto Y et al (2003) Small cell carcinoma of the prostate expressing prostatespecific antigen and showing syndrome of inappropriate secretion of antidiuretic hormone: an autopsy case report. Pathol Int 53:892–896

    PubMed  Google Scholar 

  • Kim J, Adam RM, Freeman MR (2002) Activation of the Erk mitogen-activated protein kinase pathway stimulates neuroendocrine differentiation in LNCaP cells independently of cell cycle withdrawal and STAT3phosphorylation. Cancer Res 62:1549–1554

    CAS  PubMed  Google Scholar 

  • Kimura N, Hoshi S, Takahaski M et al (1997) Plasma chromogranin a in prostatic carcinoma and neuro-endocrine tumors. J Urol 157:565–568

    CAS  PubMed  Google Scholar 

  • Kokubo H, Yamada Y, Nishio Y et al (2005) Immunohistochemical study of chromogranin a in stage D2 prostate cancer. Urology 66:135–140

    PubMed  Google Scholar 

  • Koutsilieris M, Mitsiades CS, Bogdanos J et al (2004) Combination of somatostatin analog, dexamethasone, and standard androgen ablation therapy in stage D3 prostate cancer patients with bone metastases. Clin Cancer Res 10:4398–4405

    CAS  PubMed  Google Scholar 

  • Lantry LE, Cappelletti E, Maddalena ME et al (2006) 177Lu-AMBA: synthesis and characterization of a selective 177Lu-labeled GRP receptor agonist for systemic radiotherapy of prostate cancer. J Nucl Med 47:1144–1152

    CAS  PubMed  Google Scholar 

  • Lee LF, Louie MC, Desai SJ et al (2004) Interleukin-8 confers androgen-independent growth and migration of LNCaP: differential effects of tyrosine kinases Src and FAK. Oncogene 23:2197–2205

    CAS  PubMed  Google Scholar 

  • Levine L, Lucci JA, Pazdrak B et al (2003) Bombesin stimulates nuclear factor kappa B activation and expression of proangiogenic factors in prostate cancer cells. Cancer Res 63:3495–3502

    CAS  PubMed  Google Scholar 

  • Liu Y (2008) FDG PET-CT demonstration of metastatic neuroendocrine tumor of prostate. World J Surg Oncol 6:64

    PubMed  Google Scholar 

  • Liu IJ, Zafar MB, Lai YH (2001) Fluorodeoxyglucose positron emission tomography studies in diagnosis and staging of clinically organ-confined prostate cancer. Urology 57:108–115

    CAS  PubMed  Google Scholar 

  • Logothetis C, Hoosein N (1992) The inhibition of the paracrine progression of prostatic cancer as an approach to early therapy of prostatic carcinoma. J Cell Biochem Suppl 16H:128–134

    CAS  PubMed  Google Scholar 

  • Markwalder R, Reubi JC (1999) Gastrin-releasing peptide receptors in the human prostate: relation to neoplastic transformation. Cancer Res 59:1152–1159

    CAS  PubMed  Google Scholar 

  • Mazzucchelli R, Lopez-Beltran A, Scarpelli M et al (2002) Predictive factors in prostate needle biopsy. Pathologica 94:331–337

    CAS  PubMed  Google Scholar 

  • McWilliam LJ, Manson C, George NJ (1997) Neuroendocrine differentiation and prognosis in prostatic adenocarcinoma. Br J Urol 80:287–290

    CAS  PubMed  Google Scholar 

  • Meyer-Siegler K (2001) COX-2 specific inhibitor, NS-398, increases macrophage migration inhibitory factor expression and induces neuroendocrine differentiation in C4-2b prostate cancer cells. Mol Med 7:850–860

    CAS  PubMed  Google Scholar 

  • Mitsiades CS, Bogdanos J, Karamanolakis D et al (2006) Randomized controlled clinical trial of a combination of somatostatin analog and dexamethasone plus zoledronate vs. zoledronate in patients with androgen ablation-refractory prostate cancer. Anticancer Res 26:3693–3700

    CAS  PubMed  Google Scholar 

  • Mori S, Murakami-Mori K, Bonavida B (1999) Interleukin-6 induces G1 arrest through induction of p27(Kip1), a cyclin-dependent kinase inhibitor, and neuron-like morphology in LNCaP prostate tumor cells. Biochem Biophys Res Commun 257:609–614

    CAS  PubMed  Google Scholar 

  • Mori R, Xiong S, Wang Q et al (2009) Gene profiling and pathway analysis of neuroendocrine transdifferentiated prostate cancer cells. Prostate 69:12–23

    CAS  PubMed  Google Scholar 

  • Morris MJ, Akhurst T, Larson SM et al (2005) Fluorodeoxyglucose positron emission tomography as an outcome measure for castrate metastatic prostate cancer treated with antimicrotubule chemotherapy. Clin Cancer Res 11:3210–3216

    CAS  PubMed  Google Scholar 

  • Nagakawa O, Murakami K, Ogasawara M et al (1999) Effect of chromogranin a (pancreastatin) fragment on invasion of prostate cancer cells. Cancer Lett 147:207–213

    CAS  PubMed  Google Scholar 

  • Nagakawa O, Ogasawara M, Murata J et al (2001) Effect of prostatic neuropeptides on migration of prostate cancer cell lines. Int J Urol 8:65–70

    CAS  PubMed  Google Scholar 

  • Oyama N, Akino H, Suzuki Y (2001) FDG PET for evaluating the change of glucose metabolism in prostate cancer after androgen ablation. Nucl Med Commun 22:963–968

    CAS  PubMed  Google Scholar 

  • Palapattu GS, Wu C, Silvers CR et al (2009) Selective expression of CD44, a putative prostate cancer stem cell marker, in neuroendocrine tumor cells of human prostate cancer. Prostate 69:787–798

    CAS  PubMed  Google Scholar 

  • Pearse AG, Takor T (1979) Embryology of the diffuse neuroendocrine and its relationship to the common peptides. Fed Proc 38:2288–2294

    CAS  PubMed  Google Scholar 

  • Pinski J, Wang Q, Quek ML et al (2006) Genistein-induced neuroendocrine differentiation of prostate cancer cells. Prostate 66:1136–1143

    CAS  PubMed  Google Scholar 

  • Powles T, Murray I, Brock C (2007) Molecular position emission tomography and PET/CT imaging in urological malignancies. Eur Urol 51:1511–1521

    PubMed  Google Scholar 

  • Reubi JC (2003) Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev 24:389–427

    CAS  PubMed  Google Scholar 

  • Reubi JC, Macke HR, Krenning EP (2005) Candidates for peptide receptor radiotherapy today and in the future. J Nucl Med 46(suppl 1):67S–75S

    CAS  PubMed  Google Scholar 

  • Rufini V, Calcagni ML, Baum RP (2006) Imaging of neuroendocrine tumors. Semin Nucl Med 36:228–247

    PubMed  Google Scholar 

  • Salido M, Vilches J, Lopez A (2000) Neuropeptides bombesin and calcitonin induce resistance to etoposide induced apoptosis in prostate cancer cell lines. Histol Histopathol 15:729–738

    CAS  PubMed  Google Scholar 

  • Salido M, Vilches J, Roomans GM (2004) Changes in elemental concentrations in LNCaP cells are associated with a protective effect of neuropeptides on etoposide-induced apoptosis. Cell Biol Int 28:397–402

    CAS  PubMed  Google Scholar 

  • Sarkar D, Singh SK, Mandal AK et al (2010) Plasma chromogranin a: clinical implications in patients with castrate resistant prostate cancer receiving docetaxel chemotherapy. Cancer Biomark 8:81–87

    CAS  PubMed  Google Scholar 

  • Sauer CG, Roemer A, Grobholz R (2006) Genetic analysis of neuroendocrine tumor cells in prostatic carcinoma. Prostate 66:227–234

    CAS  PubMed  Google Scholar 

  • Scher HI, Sawyers CL (2005) Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen receptor signaling axis. J Clin Oncol 23:8253–8261

    CAS  PubMed  Google Scholar 

  • Schmid KW, Helpap B, Totsch M et al (1994) Immunohisto-chemical localization of chromogranin a and B and secretogranin II in normal, hyperplastic and neoplastic prostate. Histopathology 24:233–239

    CAS  PubMed  Google Scholar 

  • Schoder H, Herrmann K, Gonen M (2005) 2-[18F]fluoro-2-deoxyglucose positron emission tomography for the detection of disease in patients with prostate-specific antigen relapse after radical prostatectomy. Clin Cancer Res 11:4761–4769

    PubMed  Google Scholar 

  • Schottelius M, Poethko T, Herz M et al (2004) First 18F-labeled tracer suitable for routine clinical imaging of sst receptor-expressing tumors using positron emission tomography. Clin Cancer Res 10:3593–3606

    CAS  PubMed  Google Scholar 

  • Schron DS, Gipson T, Mendelsohn G (1984) The histogenesis of small cell carcinoma of the prostate: an immunohistochemical study. Cancer 53:2478–2480

    CAS  PubMed  Google Scholar 

  • Sciarra A, Monti S, Gentile V et al (2003) Variation in chromogranin. A serum levels during intermittent versus continuous androgen deprivation therapy for prostate adenocarcinoma. Prostate 55:168–179

    PubMed  Google Scholar 

  • Seethalakshmi L, Mitra SP, Dobner PR et al (1997) Neurotensin receptor expression in prostate cancer cell line and growth effect of NT at physiological concentrations. Prostate 31:183–192

    CAS  PubMed  Google Scholar 

  • Segal NH, Cohen RJ, Haffejee Z et al (1994) BCL-2 proto-oncogene expression in prostate cancer and its relationship to the prostatic neuroendocrine cell. Arch Pathol Lab Med 118:616–618

    CAS  PubMed  Google Scholar 

  • Sehgal I, Thompson TC (1999) Novel regulation of type IV collagenase (matrix metalloproteinase-9 and −2) activities by transforming growth factor-beta1 in human prostate cancer cell lines. Mol Biol Cell 10:407–416

    CAS  PubMed  Google Scholar 

  • Tanaka M, Suzuki Y, Takaoka K et al (2001) Progression of prostate cancer to neuroendocrine cell tumor. Int J Urol 8:431–436

    CAS  PubMed  Google Scholar 

  • Tang Y, Wang L, Goloubeva O et al (2009) The relationship of neuroendocrine carcinomas to anti-tumor therapies in TRAMP mice. Prostate 69:1763–1773

    CAS  PubMed  Google Scholar 

  • Tarle M, Rados N (1991) Investigation on serum neurone-specific enolase in prostatic cancer diagnosis and monitoring: comparative study of a multiple tumor marker assay. Prostate 19:23–33

    CAS  PubMed  Google Scholar 

  • van Bokhoven A, Varella-Garcia M, Korch C et al (2003) Molecular characterization of human prostate carcinoma cell lines. Prostate 57:205–225

    PubMed  Google Scholar 

  • Van de Wiele C, Phonteyne P, Pauwels P et al (2008) Gastrin-releasing peptide receptor imaging in human breast carcinoma versus immunohistochemistry. J Nucl Med 49:260–264

    PubMed  Google Scholar 

  • Vilches J, Salido M, Fernandez-Segura E et al (2004) Neuropeptides, apoptosis and ion changes in prostate cancer. Methods of study and recent developments. Histol Histopathol 19:951–961

    CAS  PubMed  Google Scholar 

  • Waltregny D, Leav I, Signoretti S et al (2001) Androgen-driven prostate epithelial cell proliferation and differentiation in vivo involve the regulation of p27. Mol Endocrinol 15:765–782

    CAS  PubMed  Google Scholar 

  • Wang Q, Horiatis D, Pinski J (2004) Interleukin-6 inhibits the growth of prostate cancer xenografts in mice by the process of neuroendocrine differentiation. Int J Cancer 111:508–513

    CAS  PubMed  Google Scholar 

  • Weinstein MH, Partin AW, Veltri RW et al (1996) Neuroendocrine differentiation in prostate cancer: enhanced prediction of progression after radical prostatectomy. Hum Pathol 27:683–687

    CAS  PubMed  Google Scholar 

  • Wright ME, Tsai MJ, Aebersold R (2003) Androgen receptor represses the neuroendocrine transdifferentiation process in prostate cancer cells. Mol Endocrinol 17:1726–1737

    CAS  PubMed  Google Scholar 

  • Wu C, Huang J (2007) Phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin pathway is essential for neuroendocrine differentiation of prostate cancer. J Biol Chem 282:3571–3583

    CAS  PubMed  Google Scholar 

  • Wu G, Burzon DT, di Sant’Agnese PA et al (1996) Calcitonin receptor mRNA expression in the human prostate. Urology 47:376–381

    CAS  PubMed  Google Scholar 

  • Wu C, Zhang L, Bourne PA et al (2006) Protein tyrosine phosphatase PTP1B is involved in neuroendocrine differentiation of prostate cancer. Prostate 66:1125–1135

    CAS  PubMed  Google Scholar 

  • Xing N, Qian J, Bostwick D et al (2001) Neuroendocrine cells in human prostate over-express the anti-apoptosis protein survivin. Prostate 48:7–15

    CAS  PubMed  Google Scholar 

  • Yang JC, Ok JH, Busby JE et al (2009) Aberrant activation of androgen receptor in a new neuropeptide-autocrine model of androgen-insensitive prostate cancer. Cancer Res 69:151–160

    CAS  PubMed  Google Scholar 

  • Yao JL, Madeb R, Bourne P et al (2006) Small cell carcinoma of the prostate: an immunohistochemical study. Am J Surg Pathol 30:705–712

    PubMed  Google Scholar 

  • Yashi M, Nukui A, Kurokawa S et al (2003) Elevated serum progastrin-releasing peptide (31–98) level is a predictor of short response duration after hormonal therapy in metastatic prostate cancer. Prostate 56:305–312

    CAS  PubMed  Google Scholar 

  • Yuan TC, Veeramani S, Lin MF (2007) Neuroendocrine-like prostate cancer cells: neuroendocrine transdifferentiation of prostate adenocarcinoma cells. Endocr Relat Cancer 14:531–547

    CAS  PubMed  Google Scholar 

  • Zhang H, Chen J, Waldherr C et al (2004) Synthesis and evaluation of bombesin derivatives on the basis of pan-bombesin peptides labeled with indium-111, lutetium-177, and yttrium-90 for targeting bombesin receptor-expressing tumors. Cancer Res 64:6707–6715

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Franco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Franco, R., Chieffi, P., Perdonà, S., Facchini, G., Caraglia, M. (2013). Neuroendocrine Differentiation in Prostate Cancer. In: Staibano, S. (eds) Prostate Cancer: Shifting from Morphology to Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7149-9_5

Download citation

Publish with us

Policies and ethics