Skip to main content

Apoptosis and Autophagy

  • Chapter
  • First Online:

Abstract

Defects in both apoptotic and non-apoptotic cell-death pathways are strictly associated with tumorigenesis. In particular, resistance to apoptosis is considered to be an hallmark of cancer cells. Defects in apoptosis underlie not only tumorigenesis, but also resistance to cancer treatments.

A better definition of non-apoptotic and apoptotic cell-death pathways interactions is needed. Since the first attempts of cell deaths classification, the caspase-dependent, tolerogenic, programmed and physiological cell death instances have been contrasted to their caspase-independent, immunogenic, accidental and pathological counterparts. However, further investigation of non-apoptotic pathways might provide new therapeutic strategies aimed at inducing the non-apoptotic death of cancer cells.

In the present chapter, apoptotic and non-apoptotic cell death pathways are discussed for what concern neoplastic transformation of prostate gland.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abate-Shen C, Shen MM, Gelmann E (2008) Integrating differentiation and cancer: the Nkx3.1 homeobox gene in prostate organogenesis and carcinogenesis. Differentiation 76:717–727

    PubMed  CAS  Google Scholar 

  • Abreu-Martin MT, Chari A, Palladino AA, Craft NA, Sawyers CL (1999) Mitogen-activated protein kinase kinase kinase 1 activates androgen receptor-dependent transcription and apoptosis in prostate cancer. Mol Cell Biol 19:5143–5154

    PubMed  CAS  Google Scholar 

  • Aihara M, Wheeler TM, Ohori M, Scardino PT (1994) Heterogeneity of prostate cancer in radical prostatectomy specimens. Urology 43:60–66; discussion 6–7

    PubMed  CAS  Google Scholar 

  • Alimonti A, Nardella C, Chen Z, Clohessy JG, Carracedo A, Trotman LC et al (2010) A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. J Clin Invest 120:681–693

    PubMed  CAS  Google Scholar 

  • Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW et al (1996) Human ICE/CED-3 protease nomenclature. Cell 87:171

    PubMed  CAS  Google Scholar 

  • Aprikian AG, Zhang ZF, Fair WR (1994) Prostate adenocarcinoma in men younger than 50 years. A retrospective review of 151 patients. Cancer 74:1768–1777

    PubMed  CAS  Google Scholar 

  • Balasubramani M, Nakao C, Uechi GT, Cardamone J, Kamath K, Leslie KL et al (2011) Characterization and detection of cellular and proteomic alterations in stable stathmin-overexpressing, taxol-resistant BT549 breast cancer cells using offgel IEF/PAGE difference gel electrophoresis. Mutat Res 722:154–164

    PubMed  CAS  Google Scholar 

  • Barinka C, Sacha P, Sklenar J, Man P, Bezouska K, Slusher BS et al (2004) Identification of the N-glycosylation sites on glutamate carboxypeptidase II necessary for proteolytic activity. Protein Sci 13:1627–1635

    PubMed  CAS  Google Scholar 

  • Bauer JJ, Sesterhenn IA, Mostofi FK, McLeod DG, Srivastava S, Moul JW (1996) Elevated levels of apoptosis regulator proteins p53 and bcl-2 are independent prognostic biomarkers in surgically treated clinically localized prostate cancer. J Urol 156:1511–1516

    PubMed  CAS  Google Scholar 

  • Bertram J, Peacock JW, Tan C, Mui AL, Chung SW, Gleave ME et al (2006) Inhibition of the phosphatidylinositol 3′-kinase pathway promotes autocrine Fas-induced death of phosphatase and tensin homologue-deficient prostate cancer cells. Cancer Res 66:4781–4788

    PubMed  CAS  Google Scholar 

  • Bondar VM, McConkey DJ (2002) Anoikis is regulated by BCL-2-independent pathways in human prostate carcinoma cells. Prostate 51:42–49

    PubMed  CAS  Google Scholar 

  • Boormans JL, Hermans KG, van Leenders GJ, Trapman J, Verhagen PC (2008) An activating mutation in AKT1 in human prostate cancer. Int J Cancer 123:2725–2726

    PubMed  CAS  Google Scholar 

  • Bostwick DG (1989) Prostatic intraepithelial neoplasia (PIN). Urology 34:16–22

    PubMed  CAS  Google Scholar 

  • Bostwick DG, Shan A, Qian J, Darson M, Maihle NJ, Jenkins RB et al (1998) Independent origin of multiple foci of prostatic intraepithelial neoplasia: comparison with matched foci of prostate carcinoma. Cancer 83:1995–2002

    PubMed  CAS  Google Scholar 

  • Brewster SF, Oxley JD, Trivella M, Abbott CD, Gillatt DA (1999) Preoperative p53, bcl-2, CD44 and E-cadherin immunohistochemistry as predictors of biochemical relapse after radical prostatectomy. J Urol 161:1238–1243

    PubMed  CAS  Google Scholar 

  • Brooks JD, Bova GS, Ewing CM, Piantadosi S, Carter BS, Robinson JC et al (1996) An uncertain role for p53 gene alterations in human prostate cancers. Cancer Res 56:3814–3822

    PubMed  CAS  Google Scholar 

  • Bubendorf L, Schopfer A, Wagner U, Sauter G, Moch H, Willi N et al (2000) Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol 31:578–583

    PubMed  CAS  Google Scholar 

  • Budanov AV, Karin M (2008) p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134:451–460

    PubMed  CAS  Google Scholar 

  • Carver BS, Tran J, Gopalan A, Chen Z, Shaikh S, Carracedo A et al (2009) Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat Genet 41:619–624

    PubMed  CAS  Google Scholar 

  • Castedo M, Perfettini JL, Roumier T, Andreau K, Medema R, Kroemer G (2004) Cell death by mitotic catastrophe: a molecular definition. Oncogene 23:2825–2837

    PubMed  CAS  Google Scholar 

  • Chen BY, Lin DP, Liu JY, Chang H, Huang PH, Chen YL et al (2006a) A mouse prostate cancer model induced by Hedgehog overexpression. J Biomed Sci 13:373–384

    PubMed  CAS  Google Scholar 

  • Chen ML, Xu PZ, Peng XD, Chen WS, Guzman G, Yang X et al (2006b) The deficiency of Akt1 is sufficient to suppress tumor development in Pten+/− mice. Genes Dev 20:1569–1574

    PubMed  CAS  Google Scholar 

  • Cher ML, Carroll PR (1994) Screening for prostate cancer. West J Med 160:250

    PubMed  CAS  Google Scholar 

  • Cher ML, Bova GS, Moore DH, Small EJ, Carroll PR, Pin SS et al (1996) Genetic alterations in untreated metastases and androgen-independent prostate cancer detected by comparative genomic hybridization and allelotyping. Cancer Res 56:3091–3102

    PubMed  CAS  Google Scholar 

  • Chi S, Kitanaka C, Noguchi K, Mochizuki T, Nagashima Y, Shirouzu M et al (1999) Oncogenic Ras triggers cell suicide through the activation of a caspase-independent cell death program in human cancer cells. Oncogene 18:2281–2290

    PubMed  CAS  Google Scholar 

  • Clark J, Attard G, Jhavar S, Flohr P, Reid A, De-Bono J et al (2008) Complex patterns of ETS gene alteration arise during cancer development in the human prostate. Oncogene 27:1993–2003

    PubMed  CAS  Google Scholar 

  • Cleary ML, Smith SD, Sklar J (1986) Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation. Cell 47:19–28

    PubMed  CAS  Google Scholar 

  • Colombel M, Symmans F, Gil S, O’Toole KM, Chopin D, Benson M et al (1993) Detection of the apoptosis-suppressing oncoprotein bc1-2 in hormone-refractory human prostate cancers. Am J Pathol 143:390–400

    PubMed  CAS  Google Scholar 

  • Corcelle E, Nebout M, Bekri S, Gauthier N, Hofman P, Poujeol P et al (2006) Disruption of autophagy at the maturation step by the carcinogen lindane is associated with the sustained mitogen-activated protein kinase/extracellular signal-regulated kinase activity. Cancer Res 66:6861–6870

    PubMed  CAS  Google Scholar 

  • Cryns V, Yuan J (1998) Proteases to die for. Genes Dev 12:1551–1570

    PubMed  CAS  Google Scholar 

  • Dan HC, Cooper MJ, Cogswell PC, Duncan JA, Ting JP, Baldwin AS (2008) Akt-dependent regulation of NF-{kappa}B is controlled by mTOR and Raptor in association with IKK. Genes Dev 22:1490–1500

    PubMed  CAS  Google Scholar 

  • David KK, Andrabi SA, Dawson TM, Dawson VL (2009) Parthanatos, a messenger of death. Front Biosci 14:1116–1128

    CAS  Google Scholar 

  • DeMarzo AM, Nelson WG, Isaacs WB, Epstein JI (2003) Pathological and molecular aspects of prostate cancer. Lancet 361:955–964

    PubMed  CAS  Google Scholar 

  • Desarnaud F, Geck P, Parkin C, Carpinito G, Makarovskiy AN (2011) Gene expression profiling of the androgen independent prostate cancer cells demonstrates complex mechanisms mediating resistance to docetaxel. Cancer Biol Ther 11:204–212

    PubMed  CAS  Google Scholar 

  • Di Cristofano A, Pesce B, Cordon-Cardo C, Pandolfi PP (1998) Pten is essential for embryonic development and tumour suppression. Nat Genet 19:348–355

    PubMed  Google Scholar 

  • Ding P, Helquist P, Miller MJ (2007) Design, synthesis and pharmacological activity of novel enantiomerically pure phosphonic acid-based NAALADase inhibitors. Org Biomol Chem 5:826–831

    PubMed  CAS  Google Scholar 

  • DiPaola RS, Aisner J (1999) Overcoming bcl-2- and p53-mediated resistance in prostate cancer. Semin Oncol 26:112–116

    PubMed  CAS  Google Scholar 

  • Dong B, Kim S, Hong S, Das Gupta J, Malathi K, Klein EA et al (2007) An infectious retrovirus susceptible to an IFN antiviral pathway from human prostate tumors. Proc Natl Acad Sci USA 104:1655–1660

    PubMed  CAS  Google Scholar 

  • Eastham JA, Stapleton AM, Gousse AE, Timme TL, Yang G, Slawin KM et al (1995) Association of p53 mutations with metastatic prostate cancer. Clin Cancer Res 1:1111–1118

    PubMed  CAS  Google Scholar 

  • Effert PJ, McCoy RH, Walther PJ, Liu ET (1993) p53 gene alterations in human prostate carcinoma. J Urol 150:257–261

    PubMed  CAS  Google Scholar 

  • Fabbri F, Amadori D, Carloni S, Brigliadori G, Tesei A, Ulivi P et al (2008) Mitotic catastrophe and apoptosis induced by docetaxel in hormone-refractory prostate cancer cells. J Cell Physiol 217:494–501

    PubMed  CAS  Google Scholar 

  • Feng Z, Levine AJ (2010) The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein. Trends Cell Biol 20:427–434

    PubMed  CAS  Google Scholar 

  • Fradet V, Lessard L, Begin LR, Karakiewicz P, Masson AM, Saad F (2004) Nuclear factor-kappaB nuclear localization is predictive of biochemical recurrence in patients with positive margin prostate cancer. Clin Cancer Res 10:8460–8464

    PubMed  CAS  Google Scholar 

  • Frisch SM, Screaton RA (2001) Anoikis mechanisms. Curr Opin Cell Biol 13:555–562

    PubMed  CAS  Google Scholar 

  • Gao H, Ouyang X, Banach-Petrosky W, Borowsky AD, Lin Y, Kim M et al (2004) A critical role for p27kip1 gene dosage in a mouse model of prostate carcinogenesis. Proc Natl Acad Sci USA 101:17204–17209

    PubMed  CAS  Google Scholar 

  • Gao H, Ouyang X, Banach-Petrosky WA, Shen MM, Abate-Shen C (2006) Emergence of androgen independence at early stages of prostate cancer progression in Nkx3.1; Pten mice. Cancer Res 66:7929–7933

    PubMed  CAS  Google Scholar 

  • Garrison JB, Kyprianou N (2004) Novel targeting of apoptosis pathways for prostate cancer therapy. Curr Cancer Drug Targets 4:85–95

    PubMed  CAS  Google Scholar 

  • Gilloteaux J, Jamison JM, Neal DR, Summers JL (2005) Cell death by autoschizis in TRAMP prostate carcinoma cells as a result of treatment by ascorbate: menadione combination. Ultrastruct Pathol 29:221–235

    PubMed  Google Scholar 

  • Gioeli D (2005) Signal transduction in prostate cancer progression. Clin Sci (Lond) 108:293–308

    CAS  Google Scholar 

  • Gioeli D, Mandell JW, Petroni GR, Frierson HF Jr, Weber MJ (1999) Activation of mitogen-activated protein kinase associated with prostate cancer progression. Cancer Res 59:279–284

    PubMed  CAS  Google Scholar 

  • Guertin DA, Stevens DM, Saitoh M, Kinkel S, Crosby K, Sheen JH et al (2009) mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell 15:148–159

    PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    PubMed  CAS  Google Scholar 

  • Hasanuzzaman M, Kutner R, Agha-Mohammadi S, Reiser J, Sehgal I (2007) A doxycycline-inducible urokinase receptor (uPAR) upregulates uPAR activities including resistance to anoikis in human prostate cancer cell lines. Mol Cancer 6:34

    PubMed  Google Scholar 

  • Heidenberg HB, Sesterhenn IA, Gaddipati JP, Weghorst CM, Buzard GS, Moul JW et al (1995) Alteration of the tumor suppressor gene p53 in a high fraction of hormone refractory prostate cancer. J Urol 154:414–421

    PubMed  CAS  Google Scholar 

  • Henke RP, Kruger E, Ayhan N, Hubner D, Hammerer P, Huland H (1994) Immunohistochemical detection of p53 protein in human prostatic cancer. J Urol 152:1297–1301

    PubMed  CAS  Google Scholar 

  • Hill KM, Kalifa S, Das JR, Bhatti T, Gay M, Williams D et al (2010) The role of PI 3-kinase p110beta in AKT signally, cell survival, and proliferation in human prostate cancer cells. Prostate 70:755–764

    PubMed  CAS  Google Scholar 

  • Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253:49–53

    PubMed  CAS  Google Scholar 

  • Ismail HA, Lessard L, Mes-Masson AM, Saad F (2004) Expression of NF-kappaB in prostate cancer lymph node metastases. Prostate 58:308–313

    PubMed  Google Scholar 

  • Jamison JM, Gilloteaux J, Taper HS, Calderon PB, Summers JL (2002) Autoschizis: a novel cell death. Biochem Pharmacol 63:1773–1783

    PubMed  CAS  Google Scholar 

  • Janssen A, Medema RH (2011) Entosis: aneuploidy by invasion. Nat Cell Biol 13:199–201

    PubMed  CAS  Google Scholar 

  • Jeong JH, Wang Z, Guimaraes AS, Ouyang X, Figueiredo JL, Ding Z et al (2008) BRAF activation initiates but does not maintain invasive prostate adenocarcinoma. PLoS One 3:e3949

    PubMed  Google Scholar 

  • Jia L, Yu W, Wang P, Sanders BG, Kline K (2008) In vivo and in vitro studies of anticancer actions of alpha-TEA for human prostate cancer cells. Prostate 68:849–860

    PubMed  CAS  Google Scholar 

  • Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y et al (2005) AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 18:283–293

    PubMed  CAS  Google Scholar 

  • Kim MJ, Cardiff RD, Desai N, Banach-Petrosky WA, Parsons R, Shen MM et al (2002) Cooperativity of Nkx3.1 and Pten loss of function in a mouse model of prostate carcinogenesis. Proc Natl Acad Sci USA 99:2884–2889

    PubMed  CAS  Google Scholar 

  • Kim J, Eltoum IE, Roh M, Wang J, Abdulkadir SA (2009) Interactions between cells with distinct mutations in c-MYC and Pten in prostate cancer. PLoS Genet 5:e1000542

    PubMed  Google Scholar 

  • King JC, Xu J, Wongvipat J, Hieronymus H, Carver BS, Leung DH et al (2009) Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis. Nat Genet 41:524–526

    PubMed  CAS  Google Scholar 

  • Kinkade CW, Castillo-Martin M, Puzio-Kuter A, Yan J, Foster TH, Gao H et al (2008) Targeting AKT/mTOR and ERK MAPK signaling inhibits hormone-refractory prostate cancer in a preclinical mouse model. J Clin Invest 118:3051–3064

    PubMed  CAS  Google Scholar 

  • Kleihues P, Schauble B, zur Hausen A, Esteve J, Ohgaki H (1997) Tumors associated with p53 germline mutations: a synopsis of 91 families. Am J Pathol 150:1–13

    PubMed  CAS  Google Scholar 

  • Krajcovic M, Johnson NB, Sun Q, Normand G, Hoover N, Yao E et al (2011) A non-genetic route to aneuploidy in human cancers. Nat Cell Biol 13:324–330

    PubMed  CAS  Google Scholar 

  • Lapointe J, Li C, Higgins JP, van de Rijn M, Bair E, Montgomery K et al (2004) Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci USA 101:811–816

    PubMed  CAS  Google Scholar 

  • Lasalvia-Prisco E, Cucchi S, Vazquez J, Lasalvia-Galante E, Golomar W, Gordon W (2003) Serum markers variation consistent with autoschizis induced by ascorbic acid-menadione in patients with prostate cancer. Med Oncol 20:45–52

    PubMed  CAS  Google Scholar 

  • Lee KN, Seo MC, Bae IH, Oh SH, Jang WG, Jeong BC et al (2010) COMP-Ang1, a variant of angiopoietin 1, inhibits serum-deprived apoptosis of mesenchymal cells via PI3K/Akt and mitogen-activated protein kinase pathways. Pharmacology 86:327–335

    PubMed  CAS  Google Scholar 

  • Lessard L, Karakiewicz PI, Bellon-Gagnon P, Alam-Fahmy M, Ismail HA, Mes-Masson AM et al (2006) Nuclear localization of nuclear factor-kappaB p65 in primary prostate tumors is highly predictive of pelvic lymph node metastases. Clin Cancer Res 12:5741–5745

    PubMed  CAS  Google Scholar 

  • Li M, Jiang X, Liu D, Na Y, Gao GF, Xi Z (2008) Autophagy protects LNCaP cells under androgen deprivation conditions. Autophagy 4:54–60

    PubMed  CAS  Google Scholar 

  • Lin HK, Hu YC, Lee DK, Chang C (2004) Regulation of androgen receptor signaling by PTEN (phosphatase and tensin homolog deleted on chromosome 10) tumor suppressor through distinct mechanisms in prostate cancer cells. Mol Endocrinol 18:2409–2423

    PubMed  CAS  Google Scholar 

  • Lin HK, Chen Z, Wang G, Nardella C, Lee SW, Chan CH et al (2010) Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature 464:374–379

    PubMed  CAS  Google Scholar 

  • Liu W, Laitinen S, Khan S, Vihinen M, Kowalski J, Yu G et al (2009) Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nat Med 15:559–565

    PubMed  CAS  Google Scholar 

  • Logothetis CJ, Lin SH (2005) Osteoblasts in prostate cancer metastasis to bone. Nat Rev Cancer 5:21–28

    PubMed  CAS  Google Scholar 

  • Luo JL, Tan W, Ricono JM, Korchynskyi O, Zhang M, Gonias SL et al (2007) Nuclear cytokine-activated IKKalpha controls prostate cancer metastasis by repressing Maspin. Nature 446:690–694

    PubMed  CAS  Google Scholar 

  • Macintosh CA, Stower M, Reid N, Maitland NJ (1998) Precise microdissection of human prostate cancers reveals genotypic heterogeneity. Cancer Res 58:23–28

    PubMed  CAS  Google Scholar 

  • Mackey TJ, Borkowski A, Amin P, Jacobs SC, Kyprianou N (1998) bcl-2/bax ratio as a predictive marker for therapeutic response to radiotherapy in patients with prostate cancer. Urology 52:1085–1090

    PubMed  CAS  Google Scholar 

  • Maiuri MC, Malik SA, Morselli E, Kepp O, Criollo A, Mouchel PL et al (2009a) Stimulation of autophagy by the p53 target gene Sestrin2. Cell Cycle 8:1571–1576

    PubMed  CAS  Google Scholar 

  • Maiuri MC, Tasdemir E, Criollo A, Morselli E, Vicencio JM, Carnuccio R et al (2009b) Control of autophagy by oncogenes and tumor suppressor genes. Cell Death Differ 16:87–93

    PubMed  CAS  Google Scholar 

  • Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146:3–15

    PubMed  CAS  Google Scholar 

  • Majumder PK, Sellers WR (2005) Akt-regulated pathways in prostate cancer. Oncogene 24:7465–7474

    PubMed  CAS  Google Scholar 

  • Majumder PK, Yeh JJ, George DJ, Febbo PG, Kum J, Xue Q et al (2003) Prostate intraepithelial neoplasia induced by prostate restricted Akt activation: the MPAKT model. Proc Natl Acad Sci USA 100:7841–7846

    PubMed  CAS  Google Scholar 

  • Malik SN, Brattain M, Ghosh PM, Troyer DA, Prihoda T, Bedolla R et al (2002) Immunohistochemical demonstration of phospho-Akt in high Gleason grade prostate cancer. Clin Cancer Res 8:1168–1171

    PubMed  Google Scholar 

  • Matsushima H, Kitamura T, Goto T, Hosaka Y, Homma Y, Kawabe K (1997) Combined analysis with Bcl-2 and P53 immunostaining predicts poorer prognosis in prostatic carcinoma. J Urol 158:2278–2283

    PubMed  CAS  Google Scholar 

  • McDonnell TJ, Navone NM, Troncoso P, Pisters LL, Conti C, von Eschenbach AC et al (1997) Expression of bcl-2 oncoprotein and p53 protein accumulation in bone marrow metastases of androgen independent prostate cancer. J Urol 157:569–574

    PubMed  CAS  Google Scholar 

  • McMenamin ME, Soung P, Perera S, Kaplan I, Loda M, Sellers WR (1999) Loss of PTEN expression in paraffin-embedded primary prostate cancer correlates with high Gleason score and advanced stage. Cancer Res 59:4291–4296

    PubMed  CAS  Google Scholar 

  • Mediavilla-Varela M, Pacheco FJ, Almaguel F, Perez J, Sahakian E, Daniels TR et al (2009) Docetaxel-induced prostate cancer cell death involves concomitant activation of caspase and lysosomal pathways and is attenuated by LEDGF/p75. Mol Cancer 8:68

    PubMed  Google Scholar 

  • Mehra R, Han B, Tomlins SA, Wang L, Menon A, Wasco MJ et al (2007) Heterogeneity of TMPRSS2 gene rearrangements in multifocal prostate adenocarcinoma: molecular evidence for an independent group of diseases. Cancer Res 67:7991–7995

    PubMed  CAS  Google Scholar 

  • Mehra R, Tomlins SA, Yu J, Cao X, Wang L, Menon A et al (2008) Characterization of TMPRSS2-ETS gene aberrations in androgen-independent metastatic prostate cancer. Cancer Res 68:3584–3590

    PubMed  CAS  Google Scholar 

  • Meier P, Finch A, Evan G (2000) Apoptosis in development. Nature 407:796–801

    PubMed  CAS  Google Scholar 

  • Miyake H, Hara I, Yamanaka K, Gohji K, Arakawa S, Kamidono S (1999) Overexpression of Bcl-2 enhances metastatic potential of human bladder cancer cells. Br J Cancer 79:1651–1656

    PubMed  CAS  Google Scholar 

  • Moretti L, Cha YI, Niermann KJ, Lu B (2007) Switch between apoptosis and autophagy: radiation-induced endoplasmic reticulum stress? Cell Cycle 6:793–798

    PubMed  CAS  Google Scholar 

  • Moro L, Arbini AA, Yao JL, di Sant’Agnese PA, Marra E, Greco M (2009) Mitochondrial DNA depletion in prostate epithelial cells promotes anoikis resistance and invasion through activation of PI3K/Akt2. Cell Death Differ 16:571–583

    PubMed  CAS  Google Scholar 

  • Moul JW, Bettencourt MC, Sesterhenn IA, Mostofi FK, McLeod DG, Srivastava S et al (1996) Protein expression of p53, bcl-2, and KI-67 (MIB-1) as prognostic biomarkers in patients with surgically treated, clinically localized prostate cancer. Surgery 120:159–166; discussion 66–67

    PubMed  CAS  Google Scholar 

  • Mulholland DJ, Dedhar S, Wu H, Nelson CC (2006) PTEN and GSK3beta: key regulators of progression to androgen-independent prostate cancer. Oncogene 25:329–337

    PubMed  CAS  Google Scholar 

  • Navone NM, Troncoso P, Pisters LL, Goodrow TL, Palmer JL, Nichols WW et al (1993) p53 protein accumulation and gene mutation in the progression of human prostate carcinoma. J Natl Cancer Inst 85:1657–1669

    PubMed  CAS  Google Scholar 

  • Nicholson KM, Anderson NG (2002) The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 14:381–395

    PubMed  CAS  Google Scholar 

  • Overholtzer M, Mailleux AA, Mouneimne G, Normand G, Schnitt SJ, King RW et al (2007) A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell 131:966–979

    PubMed  CAS  Google Scholar 

  • Palanisamy N, Ateeq B, Kalyana-Sundaram S, Pflueger D, Ramnarayanan K, Shankar S et al (2010) Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nat Med 16:793–798

    PubMed  CAS  Google Scholar 

  • Pattingre S, Bauvy C, Codogno P (2003) Amino acids interfere with the ERK1/2-dependent control of macroautophagy by controlling the activation of Raf-1 in human colon cancer HT-29 cells. J Biol Chem 278:16667–16674

    PubMed  CAS  Google Scholar 

  • Paweletz CP, Liotta LA, Petricoin EF 3rd (2001) New technologies for biomarker analysis of prostate cancer progression: laser capture microdissection and tissue proteomics. Urology 57:160–163

    PubMed  CAS  Google Scholar 

  • Pearson JF, Hughes S, Chambers K, Lang SH (2009) Polarized fluid movement and not cell death, creates luminal spaces in adult prostate epithelium. Cell Death Differ 16:475–482

    PubMed  CAS  Google Scholar 

  • Podsypanina K, Ellenson LH, Nemes A, Gu J, Tamura M, Yamada KM et al (1999) Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci USA 96:1563–1568

    PubMed  CAS  Google Scholar 

  • Prendergast NJ, Atkins MR, Schatte EC, Paulson DF, Walther PJ (1996) p53 immunohistochemical and genetic alterations are associated at high incidence with post-irradiated locally persistent prostate carcinoma. J Urol 155:1685–1692

    PubMed  CAS  Google Scholar 

  • Raffo AJ, Perlman H, Chen MW, Day ML, Streitman JS, Buttyan R (1995) Overexpression of bcl-2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo. Cancer Res 55:4438–4445

    PubMed  CAS  Google Scholar 

  • Sakamoto S, Kyprianou N (2010) Targeting anoikis resistance in prostate cancer metastasis. Mol Aspects Med 31:205–214

    PubMed  CAS  Google Scholar 

  • Salmena L, Carracedo A, Pandolfi PP (2008) Tenets of PTEN tumor suppression. Cell 133:403–414

    PubMed  CAS  Google Scholar 

  • Salvesen GS, Dixit VM (1997) Caspases: intracellular signaling by proteolysis. Cell 91:443–446

    PubMed  CAS  Google Scholar 

  • Saric T, Brkanac Z, Troyer DA, Padalecki SS, Sarosdy M, Williams K et al (1999) Genetic pattern of prostate cancer progression. Int J Cancer 81:219–224

    PubMed  CAS  Google Scholar 

  • Schmitz M, Grignard G, Margue C, Dippel W, Capesius C, Mossong J et al (2007) Complete loss of PTEN expression as a possible early prognostic marker for prostate cancer metastasis. Int J Cancer 120:1284–1292

    PubMed  CAS  Google Scholar 

  • Shappell SB, Thomas GV, Roberts RL, Herbert R, Ittmann MM, Rubin MA et al (2004) Prostate pathology of genetically engineered mice: definitions and classification. The consensus report from the Bar Harbor meeting of the Mouse Models of Human Cancer Consortium Prostate Pathology Committee. Cancer Res 64:2270–2305

    PubMed  CAS  Google Scholar 

  • Shen MM, Abate-Shen C (2007) Pten inactivation and the emergence of androgen-independent prostate cancer. Cancer Res 67:6535–6538

    PubMed  CAS  Google Scholar 

  • Shin SW, Kim SY, Park JW (2012) Autophagy inhibition enhances ursolic acid-induced apoptosis in PC3 cells. Biochim Biophys Acta 1823:451–457

    PubMed  CAS  Google Scholar 

  • Shurbaji MS, Kalbfleisch JH, Thurmond TS (1995) Immunohistochemical detection of p53 protein as a prognostic indicator in prostate cancer. Hum Pathol 26:106–109

    PubMed  CAS  Google Scholar 

  • Singh J, Young L, Handelsman DJ, Dong Q (2002) Prostate epithelial expression of a novel androgen target gene. J Androl 23:652–660

    PubMed  CAS  Google Scholar 

  • Sircar K, Yoshimoto M, Monzon FA, Koumakpayi IH, Katz RL, Khanna A et al (2009) PTEN genomic deletion is associated with p-Akt and AR signalling in poorer outcome, hormone refractory prostate cancer. J Pathol 218:505–513

    PubMed  CAS  Google Scholar 

  • Stackhouse GB, Sesterhenn IA, Bauer JJ, Mostofi FK, Connelly RR, Srivastava SK et al (1999) p53 and bcl-2 immunohistochemistry in pretreatment prostate needle biopsies to predict recurrence of prostate cancer after radical prostatectomy. J Urol 162:2040–2045

    PubMed  CAS  Google Scholar 

  • Suarez Y, Gonzalez L, Cuadrado A, Berciano M, Lafarga M, Munoz A (2003) Kahalalide F, a new marine-derived compound, induces oncosis in human prostate and breast cancer cells. Mol Cancer Ther 2:863–872

    PubMed  CAS  Google Scholar 

  • Taper HS, Jamison JM, Gilloteaux J, Gwin CA, Gordon T, Summers JL (2001) In vivo reactivation of DNases in implanted human prostate tumors after administration of a vitamin C/K(3) combination. J Histochem Cytochem 49:109–120

    PubMed  CAS  Google Scholar 

  • Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS et al (2010) Integrative genomic profiling of human prostate cancer. Cancer Cell 18:11–22

    PubMed  CAS  Google Scholar 

  • Theodorescu D, Broder SR, Boyd JC, Mills SE, Frierson HF Jr (1997) p53, bcl-2 and retinoblastoma proteins as long-term prognostic markers in localized carcinoma of the prostate. J Urol 158:131–137

    PubMed  CAS  Google Scholar 

  • Thomas DJ, Robinson M, King P, Hasan T, Charlton R, Martin J et al (1993) p53 expression and clinical outcome in prostate cancer. Br J Urol 72:778–781

    PubMed  CAS  Google Scholar 

  • Thomas GV, Horvath S, Smith BL, Crosby K, Lebel LA, Schrage M et al (2004) Antibody-based profiling of the phosphoinositide 3-kinase pathway in clinical prostate cancer. Clin Cancer Res 10:8351–8356

    PubMed  CAS  Google Scholar 

  • Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    PubMed  CAS  Google Scholar 

  • Tomasetti M, Strafella E, Staffolani S, Santarelli L, Neuzil J, Guerrieri R (2010) Alpha-Tocopheryl succinate promotes selective cell death induced by vitamin K3 in combination with ascorbate. Br J Cancer 102:1224–1234

    PubMed  CAS  Google Scholar 

  • Tomlins SA, Mehra R, Rhodes DR, Cao X, Wang L, Dhanasekaran SM et al (2007) Integrative molecular concept modeling of prostate cancer progression. Nat Genet 39:41–51

    PubMed  CAS  Google Scholar 

  • Tomlins SA, Laxman B, Varambally S, Cao X, Yu J, Helgeson BE et al (2008) Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia 10:177–188

    PubMed  CAS  Google Scholar 

  • Trotman LC, Niki M, Dotan ZA, Koutcher JA, Di Cristofano A, Xiao A et al (2003) Pten dose dictates cancer progression in the prostate. PLoS Biol 1:E59

    PubMed  Google Scholar 

  • Tsujimoto Y, Finger LR, Yunis J, Nowell PC, Croce CM (1984) Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 226:1097–1099

    PubMed  CAS  Google Scholar 

  • Tu SM, McConnell K, Marin MC, Campbell ML, Fernandez A, von Eschenbach AC et al (1995) Combination adriamycin and suramin induces apoptosis in bcl-2 expressing prostate carcinoma cells. Cancer Lett 93:147–155

    PubMed  CAS  Google Scholar 

  • Uzgare AR, Isaacs JT (2004) Enhanced redundancy in Akt and mitogen-activated protein kinase-induced survival of malignant versus normal prostate epithelial cells. Cancer Res 64:6190–6199

    PubMed  CAS  Google Scholar 

  • Verhagen PC, van Duijn PW, Hermans KG, Looijenga LH, van Gurp RJ, Stoop H et al (2006) The PTEN gene in locally progressive prostate cancer is preferentially inactivated by bi-allelic gene deletion. J Pathol 208:699–707

    PubMed  CAS  Google Scholar 

  • Voeller HJ, Sugars LY, Pretlow T, Gelmann EP (1994) p53 oncogene mutations in human prostate cancer specimens. J Urol 151:492–495

    PubMed  CAS  Google Scholar 

  • Wang J (2008) Beclin 1 bridges autophagy, apoptosis and differentiation. Autophagy 4:947–948

    PubMed  CAS  Google Scholar 

  • Wang SI, Parsons R, Ittmann M (1998) Homozygous deletion of the PTEN tumor suppressor gene in a subset of prostate adenocarcinomas. Clin Cancer Res 4:811–815

    PubMed  CAS  Google Scholar 

  • Wang S, Gao J, Lei Q, Rozengurt N, Pritchard C, Jiao J et al (2003) Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 4:209–221

    PubMed  CAS  Google Scholar 

  • Wang WB, Feng LX, Yue QX, Wu WY, Guan SH, Jiang BH et al (2012) Paraptosis accompanied by autophagy and apoptosis was induced by celastrol, a natural compound with influence on proteasome, ER stress and Hsp90. J Cell Physiol 227:2196–2206

    PubMed  CAS  Google Scholar 

  • Whang YE, Wu X, Suzuki H, Reiter RE, Tran C, Vessella RL et al (1998) Inactivation of the tumor suppressor PTEN/MMAC1 in advanced human prostate cancer through loss of expression. Proc Natl Acad Sci USA 95:5246–5250

    PubMed  CAS  Google Scholar 

  • White E (2007) Entosis: it’s a cell-eat-cell world. Cell 131:840–842

    PubMed  CAS  Google Scholar 

  • Wu Z, Conaway M, Gioeli D, Weber MJ, Theodorescu D (2006) Conditional expression of PTEN alters the androgen responsiveness of prostate cancer cells. Prostate 66:1114–1123

    PubMed  CAS  Google Scholar 

  • Xin L, Teitell MA, Lawson DA, Kwon A, Mellinghoff IK, Witte ON (2006) Progression of prostate cancer by synergy of AKT with genotropic and nongenotropic actions of the androgen receptor. Proc Natl Acad Sci USA 103:7789–7794

    PubMed  CAS  Google Scholar 

  • Zhang L, Altuwaijri S, Deng F, Chen L, Lal P, Bhanot UK et al (2009) NF-kappaB regulates androgen receptor expression and prostate cancer growth. Am J Pathol 175:489–499

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Merolla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Merolla, F. (2013). Apoptosis and Autophagy. In: Staibano, S. (eds) Prostate Cancer: Shifting from Morphology to Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7149-9_3

Download citation

Publish with us

Policies and ethics