Skip to main content

The Chl a Carboxylic Biosynthetic Routes: Reactions Between Mg-Protoporphyrin IX and Protochlorophyllide a

  • Chapter
  • First Online:
Chlorophyll Biosynthesis and Technological Applications

Abstract

Mg-protoporphyrin (Mg-Proto) (Fig. 7.1) is the immediate precursor of Mg-proto monomethyl ester (Mpe). The proposed role of Mg-Proto as an intermediate in the Chl biosynthetic pathway was based on the detection of Mg-Proto in X-ray Chlorella mutants inhibited in their capacity to form Chl (Granick 1948). It was conjectured that since the mutants had lost the ability to form Chl but accumulated Mg-Proto, the latter was a logical precursor of Chl. On the basis of absorbance spectroscopic determinations the accumulated Mg-Proto was assigned by Granick a divinyl (DV) Chemical structure (Fig. 7.1, I), with vinyl groups at positions 2 and 4 of the tetrapyrrole macrocycle.

A man has to resolve either to put out nothing new or to become a slave to defend it.

Faraday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-El-Mageed HA, El Sahhar KF, Robertson KR et al (1997) Chloroplast biogenesis 77. Two novel monovinyl and divinyl light–dark greening groups of plants and their relationship to the chlorophyll a biosynthetic heterogeneity of green plants. Photochem Photobiol 66:89–96

    Article  CAS  Google Scholar 

  • Adra AN, Rebeiz CA (1998) Chloroplast biogenesis 81. Transient formation of divinyl chlorophyll a following a 2.5 ms light flash treatment of etiolated cucumber cotyledons. Photochem Photobiol 68:852–856

    Article  CAS  Google Scholar 

  • Bauer EC, Bollivar DW, Suzuki TY (1993) Genetic analyses of photopigment biosynthesis in eubacteria: a guiding light for algae and plants. J Bacteriol 175:3919–3925, July

    PubMed  CAS  Google Scholar 

  • Belanger FC, Rebeiz CA (1982) Chloroplast biogenesis: detection of monovinyl magnesium protoporphyrin monoester and other monovinyl magnesium porphyrins in higher plants. J Biol Chem 257:1360–1371

    PubMed  CAS  Google Scholar 

  • Belanger FC, Dugan JX, Rebeiz CA (1982) Chloroplast biogenesis: identification of chlorophyllide a (E458F674) as a divinyl chlorophyllide a. J Biol Chem 257:4849–4858

    PubMed  CAS  Google Scholar 

  • Bollivar DW, Bauer CE (1992) Nucleotide sequence of S-adenosyl-L-methionine:magnesium-protoporphyrin methyltransferase from Rhodobacter capsulatus. Plant Physiol 98:408–410

    Article  PubMed  CAS  Google Scholar 

  • Bollivar DW, Jiang Z-Y, Bauer CE et al (1994) Heterologous expression of the bchM gene product from Rhodobacter capsulatus and demonstration that it encodes S-adenosyl-L-methionine:Mg-protoporphyrin IX methyltransferase. J Bacteriol 176:5290–5296, Sept

    PubMed  CAS  Google Scholar 

  • Ebbon JG, Tait GH (1969) Biochem J 111:573–582

    PubMed  CAS  Google Scholar 

  • Ellsworth RK, Hervish PV (1975) Biosynthesis of protochlorophyllide a from Mg-protoporphyrin IX in vitro. Photosynthetica 9:15–139

    Google Scholar 

  • Ellsworth RK, Dullaghan JP, St. Pierre ME (1974) The reaction mechanism of S-adenosyl-L-methionine:magnesium protoporphyrin IX methyltransferase of wheat. Photosynthetica 8:376–383

    Google Scholar 

  • Gibson KD, Neuberger A, Tait GH (1963) Studies on the biosynthesis of porphyrins and bacteriochlorophyll by Rhodopseudomonas spheroides. S-adenosylmethionine-magnesium protoporphyrin methyltransferase. Biochem J 88:325–334

    PubMed  CAS  Google Scholar 

  • Granick S (1948) Magnesium protoporphyrin as a precursor of chlorophyll in Chlorella. J Biol Chem 175:333–342

    PubMed  CAS  Google Scholar 

  • Granick S (1961) Magnesium protoporphyrin monoester and protoporphyrin monomethyl ester in chlorophyll biosynthesis. J Biol Chem 236:1168–1172

    PubMed  CAS  Google Scholar 

  • Hinchigeri SB, Nelson DW, Richards WR (1984) The purification and reaction mechanism of S-adenosyl-L-methionine:magnesium protoporphyrin methyltransferase from hodopseudomonas spheroides. Photosynthetica 18:168–178

    CAS  Google Scholar 

  • Kim JS, Rebeiz CA (1996) Origin of the chlorophyll a biosynthetic heterogeneity in higher plants. J Biochem Mol Biol 29:327–334

    CAS  Google Scholar 

  • Kolossov VL, Rebeiz CA (2001) Chloroplast biogenesis 84. Solubilization and partial purification of membrane-bound [4-vinyl] chlorophyllide a reductase from etiolated barley leaves. Anal Biochem 295:214–219

    Article  PubMed  CAS  Google Scholar 

  • Kolossov VL, Rebeiz CA (2010) Evidence for various 4-vinyl reductase activities in higher plants. In: Rebeiz CA, Benning C, Bohnert HJ et al (eds) The chloroplast: basics and applications. Springer, Dordrecht, pp 25–38

    Chapter  Google Scholar 

  • Kolossov VL, Kopetz KJ, Rebeiz CA (2003) Chloroplast biogenesis 87: evidence of resonance excitation energy transfer between tetrapyrrole intermediates of the chlorophyll biosynthetic pathway and chlorophyll a. Photochem Photobiol 78:184–196

    Article  PubMed  CAS  Google Scholar 

  • Mattheis JR, Rebeiz CA (1977) Chloroplast biogenesis. Net synthesis of protochlorophyllide from magnesium protoporphyrin monoester by developing chloroplasts. J Biol Chem 252:4022–4024

    PubMed  CAS  Google Scholar 

  • Pardo AD, Chereskin BM, Castelfranco PA et al (1980) ATP requirement for Mg chelatase in developing chloroplasts. Plant Physiol 65:956–960

    Article  PubMed  CAS  Google Scholar 

  • Parham R, Rebeiz CA (1992) Chloroplast biogenesis: [4-vinyl] chlorophyllide a reductase is a divinyl chlorophyllide a-specific NADPH-dependent enzyme. Biochemistry 31:8460–8464

    Article  PubMed  CAS  Google Scholar 

  • Parham R, Rebeiz CA (1995) Chloroplast biogenesis 72: a [4-vinyl] chlorophyllide a reductase assay using divinyl chlorophyllide a as an exogenous substrate. Anal Biochem 231:164–169

    Article  PubMed  CAS  Google Scholar 

  • Radmer R, Bogorad L (1967) (−) S-adenosyl-L-methionine-magnesium protoporphyrin methyltransferase, an enzyme of the biosynthetic pathway of chlorophyll in Zea mays. Plant Physiol 42:463–465

    Article  PubMed  CAS  Google Scholar 

  • Rebeiz CA (1991) Tetrapyrrole-dependent photodynamic herbicides and the chlorophyll biosynthetic pathway. In: Pell E, Steffen K (eds) Active oxygen/oxidative stress and plant metabolism. American Society of Plant Physiology, Rockville, pp 193–203

    Google Scholar 

  • Rebeiz CA (2002) Analysis of intermediates and end products of the chlorophyll biosynthetic pathway. In: Smith A, Witty M (eds) Heme chlorophyll and bilins, methods and protocols. Humana Press, Totowa, pp 111–155

    Google Scholar 

  • Rebeiz CA, Castelfranco P (1971a) Protochlorophyll biosynthesis in a cell-free system from higher plants. Plant Physiol 47:24–32

    Article  PubMed  CAS  Google Scholar 

  • Rebeiz CA, Castelfranco P (1971b) Chlorophyll biosynthesis in a cell-free system from higher plants. Plant Physiol 47:33–37

    Article  PubMed  CAS  Google Scholar 

  • Rebeiz CA, Mattheis JR, Smith BB et al (1975) Chloroplast biogenesis. Biosynthesis and accumulation of protochlorophyll by isolated etioplasts and developing chloroplasts. Arch Biochem Biophys 171:549–567

    Article  PubMed  CAS  Google Scholar 

  • Rebeiz CA, Kolossov VL, Briskin D et al (2003) Chloroplast biogenesis: chlorophyll biosynthetic heterogeneity, multiple biosynthetic routes and biological spin-offs. In: Nalwa HS (ed) Handbook of photochemistry and photobiology, vol 4. American Scientific Publishers, Los Angeles, pp 183–248

    Google Scholar 

  • Suzuki JY, Bauer CE (1995) Altered monovinyl and divinyl protochlorophyllide pools in bchJ mutants of rhodobacter capsulatus. Possible monovinyl substrate discrimination of light-independent protochlorophyllide reductase. J Biol Chem 270:3732–3740

    Article  PubMed  CAS  Google Scholar 

  • Tripathy BC, Rebeiz CA (1986) Chloroplast biogenesis. Demonstration of the monovinyl and divinyl monocarboxylic routes of chlorophyll biosynthesis in higher plants. J Biol Chem 261:13556–13564

    PubMed  CAS  Google Scholar 

  • Tripathy BC, Rebeiz CA (1988) Chloroplast biogenesis 60. Conversion of divinyl protochlorophyllide to monovinyl protochlorophyllide in green(ing) barley, a dark monovinyl/light divinyl plant species. Plant Physiol 87:89–94

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Gao J, Chunmei w et al (2010) Divinyl chlorophyll(ide) a can be converted to monovinyl chlorophyl(lide) a by a divinyl reductase in rice. Plant Physiol 153:994–1003

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rebeiz, C.A. (2014). The Chl a Carboxylic Biosynthetic Routes: Reactions Between Mg-Protoporphyrin IX and Protochlorophyllide a . In: Chlorophyll Biosynthesis and Technological Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7134-5_7

Download citation

Publish with us

Policies and ethics