Skip to main content

Development of Cell-Free Systems

  • Chapter
  • First Online:
Chlorophyll Biosynthesis and Technological Applications
  • 1095 Accesses

Abstract

Originally, work on the biosynthesis of protochlorophyll(ide) [Pchl(ide)] and chlorophyll (Chl) in organello, started in 1967 in my laboratory at the National Research Institute in Tel-el-Amara, Lebanon (see Chap. 2) (Rebeiz 1967, 1968). At the time spectrophotometric instrumentation was used. Since I was aware that excised etiolated cucumber cotyledons greened very rapidly, within hours, in the light, I conjectured that if greening cotyledons were homogenized, I should be able to observe Pchl(ide) and Chl formation in the homogenate for a few minutes before the system fell apart. The first evidence of Chl biosynthesis in organello was observed in 1967 (Rebeiz 1967). However I soon realized that spectrophotometric techniques were not sensitive enough to observe consistent and reliable Pchl(ide) and Chl biosynthesis in organello. I therefore shifted to the use of 14C-δ-aminolevulinic acid (14C-ALA) as a precursor of 14C-Chl. At the time ALA was known as a tetrapyrrole precursor (Granick 1961). We observed the first incorporation of 14C-ALA into 14C-Chl in my laboratory in 1969. The work was perfected in California at UC Davis in 196–1970 when I joined Paul’s Castelfranco Laboratory (Rebeiz and Castelfranco 1971a, b).

All truths are easy to understand once they are discovered. The point is to discover them (Galileo Galilei).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-El-Mageed HA, El Sahhar KF, Robertson KR et al (1997) Chloroplast biogenesis 77. Two novel monovinyl and divinyl light–dark greening groups of plants and their relationship to the chlorophyll a biosynthetic heterogeneity of green plants. Photochem Photobiol 66:89–96

    Article  CAS  Google Scholar 

  • Bazzaz MB, Rebeiz CA (1979) Chloroplast culture V. Spectrofluorometric determination of chlorophyll(ide) a and b and pheophytin (or pheophorbide) a and b in unsegregated pigment mixtures. Photochem Photobiol 30:709–721

    Article  CAS  Google Scholar 

  • Beale SI, Castelfranco PA (1974) The biosynthesis of δ-aminolevulinic acid in higher plants. II. Formation of 14C-δ-aminolevulinic acid from labelled precursors in greening plant tissues. Plant Physiol 53:291–296

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Rebeiz CA (1982a) Chloroplast culture VIII. A new effect of kinetin in enhancing the synthesis and accumulation of protochlorophyllide in vitro. Biochem Biophys Res Commun 104:837–843

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Rebeiz CA (1982b) Chloroplast culture IX. Chlorophyll(ide) a biosynthesis in vitro at rates higher than in vivo. Biochem Biophys Res Commun 106:466–470

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Rebeiz CA (1984) Bioengineering of photosynthetic membranes: requirement of magnesium for the conversion of chlorophyllide a to chlorophyll a during the greening of etiochloroplasts in vitro. Biotechnol Bioeng 26:481–487

    Article  PubMed  CAS  Google Scholar 

  • Duggan JX, Rebeiz CA (1982a) Chloroplast biogenesis 37: induction of chlorophyllide a (E459F675) accumulation in higher plants. Plant Sci Lett 24:27–37

    Article  CAS  Google Scholar 

  • Duggan JX, Rebeiz CA (1982b) Chloroplast biogenesis 42. Conversion of DV chlorophyllide a to monovinyl chlorophyllide a in vivo and in vitro. Plant Sci Lett 27:137–145

    Article  CAS  Google Scholar 

  • Ellsworth RK, Aronoff S (1968) Investigations on the biogenesis of chlorophyll a. III. Biosynthesis of Mg-vinylporphine a 5 methylester from Mg-protoporphine IX monomethyl ester as observed in Chlorella mutants. Arch Biochem Biophys 125:269–277

    Google Scholar 

  • Ellsworth RK, Hsing AS (1973) The reduction of vinyl-side chains of Mg-protoporphyrin IX monomethyl ester in vitro. Photosynthetica 313:119–129

    CAS  Google Scholar 

  • Fuesler TP, Wright LA, Castelfranco PA (1981) Properties of magnesium chelatase in greening etioplasts. Metal ion specificity and effect of substrate concentration. Plant Physiol 67:246–249

    Google Scholar 

  • Fuesler TP, Castelfranco PA, Wong YS (1984a) Formation of Mg-containing chlorophyll precursors from protoporphyrin IX, d-aminolevulinic acid, and glutamate in isolated, photo synthetically competent, developing chloroplasts. Plant Physiol 74:928–933

    Article  CAS  Google Scholar 

  • Fuesler TP, Wong YS, Castelfranco PA (1984b) Localization of Mg-chelatase and Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase activities within isolated, developing chloroplasts. Plant Physiol 75:662–664

    Article  PubMed  CAS  Google Scholar 

  • Granick S (1961) Magnesium protoporphyrin monoester and protoporphyrin monomethyl ester in chlorophyll biosynthesis. J Biol Chem 236:1168–1172

    PubMed  CAS  Google Scholar 

  • Ioannides IM, Fasoula DM, Robertson KR et al (1994) An evolutionary study of chlorophyll biosynthetic heterogeneity in green plants. Biochem Syst Ecol 22:211–220

    Article  CAS  Google Scholar 

  • Jeffrey SW, Wright SW (1987) A new spectrally distinct component in preparations of chlorophyll c from micro-alga (Prymnesiophyceae). Biochim Biophys Acta 894:180–188

    Article  CAS  Google Scholar 

  • Kim JS, Kolossov V, Rebeiz CA (1997) Chloroplast biogenesis 76: regulation of 4-vinyl reduction during conversion of divinyl Mg-protoporphyrin IX to monovinyl protochlorophyllide a is controlled by plastid membrane and stromal factors. Photosynthetica 34:569–581

    Article  Google Scholar 

  • Kolossov VL, Rebeiz CA (2001) Chloroplast biogenesis 84. Solubilization and partial purification of membrane-bound [4-vinyl] chlorophyllide a reductase from etiolated barley leaves. Anal Biochem 295:214–219

    Article  PubMed  CAS  Google Scholar 

  • Kolossov VL, Rebeiz CA (2010) Evidence for Various 4-vinyl reductase activities in higher plants. In: Rebeiz CA, Benning C, Bohnert HJ et al (eds) The chloroplast: basics and applications. Springer, Netherlands, pp 25–38

    Chapter  Google Scholar 

  • Lee HJ, Ball M, Rebeiz CA (1991) Intraplastidic localization of the enzymes that convert delta-aminolevulinic acid to protoporphyrin IX in etiolated cucumber cotyledons. Plant Physiol 96:910–915

    Article  PubMed  CAS  Google Scholar 

  • Lee HJ, Ball MD, Parham R et al (1992) Chloroplast biogenesis 65. Enzymic conversion of protoporphyrin IX to Mg-protoporphyrin IX in a subplastidic membrane fraction of cucumber etiochloroplasts. Plant Physiol 99:1134–1140

    Article  PubMed  CAS  Google Scholar 

  • Mattheis JR, Rebeiz CA (1977a) Chloroplast biogenesis. Net synthesis of protochlorophyllide from protoporphyrin IX by developing chloroplasts. J Biol Chem 252:8347–8349

    PubMed  CAS  Google Scholar 

  • Mattheis JR, Rebeiz CA (1977b) Chloroplast biogenesis. Net synthesis of protochlorophyllide from magnesium protoporphyrin monoester by developing chloroplasts. J Biol Chem 252:4022–4024

    PubMed  CAS  Google Scholar 

  • Mauzerall D, Granick S (1956) The occurrence and determination of delta-aminolevulinic acid and porphobilinogen in urine. J Biol Chem 219:435–446

    PubMed  CAS  Google Scholar 

  • Pardo AD, Chereskin BM, Castelfranco PA et al (1980) ATP requirement for Mg chelatase in developing chloroplasts. Plant Physiol 65:956–960

    Article  PubMed  CAS  Google Scholar 

  • Parham R, Rebeiz CA (1992) Chloroplast biogenesis: [4-vinyl] chlorophyllide a reductase is a divinyl chlorophyllide a-specific NADPH-dependent enzyme. Biochemistry 31:8460–8464

    Article  PubMed  CAS  Google Scholar 

  • Parham R, Rebeiz CA (1995) Chloroplast biogenesis 72: a [4-vinyl] chlorophyllide a reductase assay using divinyl chlorophyllide a as an exogenous substrate. Anal Biochem 231:164–169

    Article  PubMed  CAS  Google Scholar 

  • Perkins HJ, Roberts DWA (1960) Chlorophyll biosynthesis in wheat leaves. Biochem Biophys Acta 45:613–620

    Article  PubMed  CAS  Google Scholar 

  • Perkins EJ, Roberts DWA (1962) Purification of chlorophylls, pheophytins, an pheophorbides for specific activity determinations. Biochim Biophys Acta 58:486–498

    Article  PubMed  CAS  Google Scholar 

  • Rebeiz CA (1967) Studies on chlorophyll biosynthesis in etiolated excised cotyledons of germinating cucumber at different stages of seedling development. Magon Serie Scientifique 13:1–21

    Google Scholar 

  • Rebeiz CA (1968) The chloroplast pigments of etiolated and greening cucumber cotyledons. Magon Serie Scientifique 21:1–25

    Google Scholar 

  • Rebeiz CA, Castelfranco P (1971a) Protochlorophyll biosynthesis in a cell-free system from higher plants. Plant Physiol 47:24–32

    Article  PubMed  CAS  Google Scholar 

  • Rebeiz CA, Castelfranco P (1971b) Chlorophyll biosynthesis in a cell-free system from higher plants. Plant Physiol 47:33–37

    Article  PubMed  CAS  Google Scholar 

  • Rebeiz CA, Yaghi M, Abou Haidar M et al (1970) Protochlorophyll biosynthesis in cucumber (Cucumis sativus, L.) cotyledons. Plant Physiol 46:57–63

    Article  PubMed  CAS  Google Scholar 

  • Rebeiz CA, Larson S, Weier TE et al (1973) Chloroplast maintenance and partial differentiation in vitro. Plant Physiol 51:651–659

    Article  PubMed  CAS  Google Scholar 

  • Rebeiz CA, Mattheis JR, Smith BB et al (1975a) Chloroplast biogenesis. Biosynthesis and accumulation of protochlorophyll by isolated etioplasts and developing chloroplasts. Arch Biochem Biophys 171:549–567

    Article  PubMed  CAS  Google Scholar 

  • Rebeiz CA, Mattheis JR, Smith BB et al (1975b) Chloroplast biogenesis. Biosynthesis and accumulation of Mg-protoporphyrin IX monoester and longer wavelength metalloporphyrins by greening cotyledons. Arch Biochem Biophys, 166:446–465

    Article  PubMed  CAS  Google Scholar 

  • Rebeiz CA, Daniell H, Mattheis JR (1982) Chloroplast bioengineering: the greening of chloroplasts in vitro. In: Scott CD (ed) Biotechnology bioengineering symposium, vol 12, John Wiley, New York, pp 414–439

    Google Scholar 

  • Rebeiz CA, Montazer-Zouhoor A, Daniell H (1984) Chloroplast culture X: thylakoid assembly in vitro. Isr J Bot 33:225–235

    CAS  Google Scholar 

  • Rebeiz CA, Kolossov VL, Briskin D et al (2003) Chloroplast biogenesis: chlorophyll biosynthetic heterogeneity, multiple biosynthetic routes and biological spin-offs. In: Nalwa HS (ed) Handbook of photochemistry and photobiology, vol 4. American Scientific Publishers, Los Angeles, pp 183–248

    Google Scholar 

  • Scopes RK (1982) Protein purification; principles and practice. Springer, New York, pp 185–200

    Google Scholar 

  • Shedbalkar VP, Rebeiz CA (1992) Chloroplast biogenesis: determination of the molar extinction coefficients of divinyl chlorophyll a and b and their pheophytins. Anal Biochem 207:261–266

    Article  PubMed  CAS  Google Scholar 

  • Sisler EC, Klein W (1963) The effect of age and various chemicals on the lag phase of chlorophyll synthesis in dark grown bean seedlings. Physiol Plant 16:315–322

    Article  CAS  Google Scholar 

  • Smith BB, Rebeiz CA (1977a) Chloroplast biogenesis: detection of Mg-protoporphyrin chelatase in vitro. Arch Biochem Biophys 180:178–185

    Article  PubMed  CAS  Google Scholar 

  • Smith BB, Rebeiz CA (1977b) Spectrofluorometric determination of Mg-protoporphyrin monoester and longer wavelength metalloporphyrins in the presence of Zn-protoporphyrin. Photochem Photobiol 26:527–532

    Article  CAS  Google Scholar 

  • Smith BB, Rebeiz CA (1979) Chloroplst biogenesis XXIV. Intrachloroplastic localization of the biosynthesis and accumulation of protoporphyrin IX, magnesium protoporphyrin IX, Magnesium-protoporphyrin monoester and longer wavelength metalloporphyrins during greening. Plant Physiol 63:227–231

    Article  PubMed  CAS  Google Scholar 

  • Stetler DA, Laetsch WM (1965) Kinetin-induced chloroplast maturation in cultures of tobacco tissue. Science 149:1387–1388

    Article  PubMed  CAS  Google Scholar 

  • Tripathy BC, Rebeiz CA (1988) Chloroplast biogenesis 60. Conversion of divinyl protochlorophyllide to monovinyl protochlorophyllide in green(ing) barley, a dark monovinyl/light divinyl plant species. Plant Physiol 87:89–94

    Article  PubMed  CAS  Google Scholar 

  • Walker CJ, Weinstein JD (1991a) In vitro assay of the chlorophyll biosynthetic enzyme Mg- chelatase: resolution of the activity into soluble and membrane-bound fractions. Proc Natl Acad Sci U S A 88:5789–5793

    Article  PubMed  CAS  Google Scholar 

  • Walker CJ, Weinstein JD (1991b) Further characterization of the magnesium chelatasein isolated developing cucumber chloroplasts. Plant Physiol 95:1189–1196

    Article  PubMed  CAS  Google Scholar 

  • Wickliff JL, Aronoff S (1963) Turnover of chlorophyll a in mature soybean leaves. Plant and Cell Physiol:441–449

    Google Scholar 

  • Wu SM, Mayasich JM, Rebeiz CA (1989) Chloroplast biogenesis: quantitative determination of monovinyl and divinyl chlorophyll(ide) a and b by spectrofluorometry. Anal Biochem 178:294–300

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rebeiz, C.A. (2014). Development of Cell-Free Systems. In: Chlorophyll Biosynthesis and Technological Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7134-5_4

Download citation

Publish with us

Policies and ethics