Skip to main content

The Chlorophyll Biosynthetic Heterogeneity and Chloroplast Bioengineering

  • Chapter
  • First Online:
  • 1104 Accesses

Abstract

By the year 2030, the world population may increase significantly and top the nine billion benchmark. This is particularly significant since worldwide there has been a decline in cereal yield that is causing the annual rate of increase in yield to fall below the rate of population increase. Furthermore it will be difficult to increase the land area under cultivation without serious environmental complications. As a consequence the increased demand for food and fiber will have to be met by higher agricultural plant productivity.

You can have brilliant ideas, but if you can’t get them across, your ideas won’t get you anywhere. (Lee Iacocca)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abd-El-Mageed HA, El Sahhar KF, Robertson KR et al (1997) Chloroplast biogenesis 77. Two novel monovinyl and divinyl light–dark greening groups of plants and their relationship to the chlorophyll a biosynthetic heterogeneity of green plants. Photochem Photobiol 66:89–96

    Article  CAS  Google Scholar 

  • Allen JF, Forsberg J (2001) Molecular recognition in thylakoid structure and function. Trends Plant Sci 6:317–326

    Article  PubMed  CAS  Google Scholar 

  • Anderson JM (2002) Changing concepts about the distribution of photosystem I and II between grana-appressed and stroma-exposed thylakoid membranes. Photosynth Res 73:157–164

    Article  PubMed  CAS  Google Scholar 

  • Bassi R, Rigoni F, Giacometti GM (1990) Chlorophyll binding proteins with antenna function in higher plants and green algae. Photochem Photobiol 52:1187–1206

    Article  CAS  Google Scholar 

  • Bellemare G, Bartlett SG, Chua NH (1982) Biosynthesis of chlorophyll a/b-binding polypeptides in wild type and the Chlorina f2 mutant of barley. J Biol Chem 257(13):7762–7767

    PubMed  CAS  Google Scholar 

  • Calvert JG, Pitts JN (1967) Photochemistry. Wiley, New York

    Google Scholar 

  • Carey EE, Rebeiz CA (1985) Chloroplast biogenesis 49. Difference among angiosperms in the biosynthesis and accumulation of monovinyl and divinyl protochlorophyllide during photoperiodic greening. Plant Physiol 79:1–6

    Article  PubMed  CAS  Google Scholar 

  • Carey EE, Tripathy BC, Rebeiz CA (1985) Chloroplast biogenesis 51. Modulation of monovinyl and divinyl protochlorophyllide biosynthesis by light and darkness in vitro. Plant Physiol 79:1059–1063

    Article  PubMed  CAS  Google Scholar 

  • Cunningham FXJ, Schiff J (1986) Chlorophyll-protein complexes from Euglena gracilis and mutants deficient in chlorophyll b. Plant Physiol 80:231–238

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Rebeiz CA (1982a) Chloroplast culture VIII. A new effect of kinetin in enhancing the synthesis and accumulation of protochlorophyllide in vitro. Biochem Biophys Res Commun 104:837–843

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Rebeiz CA (1982b) Chloroplast culture IX. Chlorophyll(ide) a biosynthesis in vitro at rates higher than in vivo. Biochem Biophys Res Commun 106:466–470

    Article  PubMed  CAS  Google Scholar 

  • Gershoni JM, Shochat S, Malkin S et al (1982) Functional organization of the chlorophyll-containing complexes of Chlamydomonas reinhardi. Plant Physiol 70:637–644

    Article  PubMed  CAS  Google Scholar 

  • Govindjee (2004) Chlorophyll a fluorescence: a bit of basics and history. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence. A signature of photosynthesis, vol 19. Springer, Dordrecht, pp 1–41

    Chapter  Google Scholar 

  • Granick S (1950) Magnesium vinyl pheoporphyrin a 5, another intermediate in the biological synthesis of chlorophyll. J Biol Chem 183:713–730

    CAS  Google Scholar 

  • Henry LEA, Dalgaard mikkelsen J, Lindberg Moller B (1983) Pigment and acyl lipid composition of photosystem I and II vesicles and of photosynthetic mutants in barley. Carlsberg Res Commun 48:131–148

    Article  CAS  Google Scholar 

  • Hiller RG, Lindberg Moller B, Hoyer-Hansen G (1980) Characterization of six putative photosystem I mutants in barley. Carlsberg Res Commun 45:315–328

    Article  Google Scholar 

  • Hoober KJ (1990) Accumulation of chlorophyll a/b-binding polypeptides in Chlamydomonas reinhardi y-1 in the light or dark at 38 C. Evidence for proteolytic control. Plant Physiol 92:419–426

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Adam Z, Hoffman NE (1992) Deletion mutants of chlorophyll a/b binding proteins are efficiently imported into chloroplasts but do not integrate into thylakoid membranes. Plant Physiol 99:247–255

    Article  PubMed  CAS  Google Scholar 

  • Ioannides IM, Fasoula DM, R. RK (1994) An evolutionary study of chlorophyll biosynthetic heterogeneity in green plants. Biochem Syst Ecol 22:211–220

    Article  CAS  Google Scholar 

  • Ish-Shalom D, Ohad I (1983) Organization of chlorophyll-protein complexes of photosystem I in Chlamydomonas reinhardi. Biochem Biophys Acta 722:498–507

    Article  CAS  Google Scholar 

  • Jones OTG (1963) Magnesium 2,4-divinyl phaeoporphyrin a5 monomethyl ester, a protochlorophyll-like pigment produced by Rhodopseudomonas spheroides. Biochem J 89:182–189

    PubMed  CAS  Google Scholar 

  • Kolossov VL, Rebeiz CA (2003) Chloroplast biogenesis 88. Protochlorophyllide b occurs in green but not in etiolated plants. J Biol Chem 278(50):49675–49678

    Article  PubMed  CAS  Google Scholar 

  • Kolossov VL, Ioannides IM, Kulur S et al (1999) Chloroplast biogenesis 82: development of a cell-free system capable of the net synthesis of chlorophyll(ide) b. Photosynthetica 36:253–258

    Google Scholar 

  • Kolossov VL, Kopetz KJ, Rebeiz CA (2003) Chloroplast biogenesis 87: evidence of resonance excitation energy transfer between tetrapyrrole intermediates of the chlorophyll biosynthetic pathway and chlorophyll a. Photochem Photobiol 78:184–196

    Article  PubMed  CAS  Google Scholar 

  • Kopetz KJ, Kolossov VL, Rebeiz CA (2004) Chloroplast biogenesis 89: development of analytical tools for probing the biosynthetic topography of photosynthetic membranes by determination of resonance excitation energy transfer distances separating metabolic tetrapyrrole donors from chlorophyll a acceptors. Anal Biochem 329:207–219

    Article  PubMed  CAS  Google Scholar 

  • Leto KJ, Bell E, McIntosh L (1985) Nuclear mutation leads to an accelerated turnover of chloroplast-encoded 48 kd polypeptides in thylakoids lacking photosystem II. EMBO J 4(7):1645–1653

    PubMed  CAS  Google Scholar 

  • Lien S, San Pietro A (1975) An inquiry into the biophotolysis of water to produce hydrogen. Indiana University, Bloomington, p 50

    Google Scholar 

  • Machold O, Simpson DJ, Lindberg Moller B (1979) Chlorophyll-proteins of thylakoids from wild-type and mutants of barley (Hordeum vulgare L.). Carlsberg Res Commun 44:235–254

    Article  CAS  Google Scholar 

  • Markwell J, Webber AN, Lake B (1985) Mutants of sweetclover (Melilotus alba) lacking chlorophyll b. Plant Physiol 77:948–951

    Article  PubMed  CAS  Google Scholar 

  • Miles D (1994) The role of high chlorophyll fluorescence photosynthesis mutants in the analysis of chloroplast thylakoid membrane assembly and function. Maydica 39:35–45

    Google Scholar 

  • Mullet JE, Burke JJ, Arntzen CJ (1980) A developmental study of photosystem I peripheral chlorophyll proteins. Plant Physiol 65:823–827

    Article  PubMed  CAS  Google Scholar 

  • Paulsen H, Scmid VHR (2002) Analysis and reconstitution of chlorophyll-proteins. In: Smith AG, Witty M (eds) Heme, chlorophyll, and bilins. Methods and protocols. Humana Press, Totowa, pp 235–253

    Google Scholar 

  • Polacco ML (1984) Chl (A/B) light harvesting complex assembly in maize: genetic evidence that it may compete with PSII for Chl. Curr Top Plant Biochem Physiol 3:167

    Google Scholar 

  • Preiss S, Thornber PJ (1995) Stability of the apoproteins of light-harvesting complex I and II during biogenesis of thylakoids in the chlorophyll b-less barely mutant Chlorina f2. Plant Physiol 107:709–717

    PubMed  CAS  Google Scholar 

  • Rebeiz CA (2002) Analysis of intermediates and end products of the chlorophyll biosynthetic pathway. In: Smith A, Witty M (eds) Heme chlorophyll and bilins, methods and protocols. Humana Press, Totowa, pp 111–155

    Google Scholar 

  • Rebeiz CA, Castelfranco P (1971a) Protochlorophyll biosynthesis in a cell-free system from higher plants. Plant Physiol 47:24–32

    Article  PubMed  CAS  Google Scholar 

  • Rebeiz CA, Castelfranco P (1971b) Chlorophyll biosynthesis in a cell-free system from higher plants. Plant Physiol 47:33–37

    Article  PubMed  CAS  Google Scholar 

  • Rebeiz CA, Daniell H, Mattheis JR (1982) Chloroplast bioengineering: the greening of chloroplasts in vitro. In: Scott CD (ed) Biotechnology bioengineering symposium, vol 12. John Wiley, New York, pp 414–439

    Google Scholar 

  • Rebeiz CA, Montazer-Zouhoor A, Daniell H (1984) Chloroplast culture X: thylakoid assembly in vitro. Isr J Bot 33:225–235

    CAS  Google Scholar 

  • Rebeiz CA, Juvik JA, Rebeiz CC (1988) Porphyric insecticides 1. Concept and phenomenology. Pesticide Biochem Physiol 30:11–27

    Article  CAS  Google Scholar 

  • Rebeiz CA, Parham R, Fasoula DA et al (1994) Chlorophyll biosynthetic heterogeneity. In: Chadwick DJ, Ackrill K (eds) The biosynthesis of the tetrapyrrole pigments. Wiley, New York, pp 177–193

    Google Scholar 

  • Rebeiz CA, Ioannides IM, Kolossov V et al (1999) Chloroplast biogenesis 80. Proposal of a unified multibranched chlorophyll a/b biosynthetic pathway. Photosynthetica 36:117–128

    Article  CAS  Google Scholar 

  • Rebeiz CA, Kolossov VI, Briskin D et al (2003a) Chloroplast biogenesis 86: chlorophyll biosynthetic heterogeneity, multiple biosynthetic routes and biotechnological spin-offs. In: Nalwa N (ed) Handbook of photochemistry and photobiology. American Scientific Publishers, Los Angeles, pp 183–248

    Google Scholar 

  • Rebeiz CA, Kolossov VL, Briskin D et al (2003b) Chloroplast biogenesis: chlorophyll biosynthetic heterogeneity, multiple biosynthetic routes and biological spin-offs. In: Nalwa HS (ed) Handbook of photochemistry and photobiology, vol 4. American Scientific Publishers, Los Angeles, pp 183–248

    Google Scholar 

  • Rebeiz CA, Kolossov VL, Kopetz KK (2004) Chloroplast bioengineering: photosynthetic efficiency, modulation of the photosynthetic unit size, and the agriculture of the future. In: Nelson DW (ed) Agricultural applications in green chemistry, vol 887. American Chemical Society, Washington, DC, pp 81–105

    Chapter  Google Scholar 

  • Satoh K, Wydrzynski T, Govindgee (2005) Introduction to photosynthesis. In: Wydrzynyski T, Satoh K (eds) Photosystem II: the light-driven water: plastoquinone oxidoreductase. Springer, Dordrecht, pp 11–22

    Chapter  Google Scholar 

  • Shen G, Vermaas WFJ (1994) Mutation of chlorophyll ligands in the chlorophyll-binding CP47 protein as studied in a synechocystis sp. PCC 6803 photosystem I-less background. Biochemistry 33:7379–7388

    Article  PubMed  CAS  Google Scholar 

  • Smith JHC, French CS (1963) The major accessory pigment in photosynthesis. Annu Rev Plant Physiol 14:181–224

    Article  CAS  Google Scholar 

  • Staehelin LA (2003) Chloroplast structure: from chlorophyll granules to supra-molecular architecture of thylakoid membranes. Photosynth Res 76:185–196

    Article  PubMed  CAS  Google Scholar 

  • Sundqvist C, Ryberg M (eds) (1993) Pigment-protein complexes in plastids: synthesis and assembly. Academic, New York

    Google Scholar 

  • von Wettstein D, Gough S, Kannangara CG (1995) Chlorophyll biosynthesis. Plant Cell 7:1039–1057

    Google Scholar 

  • White MJ, Green BR (1987) Polypeptides belonging to each of the three major chlorophyll a + b protein complexes are present in a chlorophyll-b-less barley mutant. Eur J Biochem 165:531–535

    Article  PubMed  CAS  Google Scholar 

  • Wolff JB, Price L (1957) Terminal steps of chlorophyll a biosynthesis in higher plants. Arch Biochem Biophys 72:293–301

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rebeiz, C.A. (2014). The Chlorophyll Biosynthetic Heterogeneity and Chloroplast Bioengineering. In: Chlorophyll Biosynthesis and Technological Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7134-5_16

Download citation

Publish with us

Policies and ethics