Skip to main content

The Application of IR Spectroscopy to the Investigation of Minerals

  • Chapter
  • First Online:

Part of the book series: Springer Geochemistry/Mineralogy ((SPRINGERGEOCHEM))

Abstract

Traditionally, the application of IR spectroscopy in mineralogy is reduced to the determination of wavelengths or frequencies of discrete absorption maxima. These values are brought in correspondence with normal vibrations of different chemical bonds or groups of atoms forming covalent bonds – complex anions (e.g. CO3 2−, C2O4 2−, SO4 2− , PO4 3−, SiO4 4−, and Si2O7 6−), polyatomic cations (H3O+, NH4 +, UO2 2+, etc.), neutral molecules (H2O, NH3), as well as lattice vibrations of infinite chains, layers or frameworks as parts of crystal structures of minerals. Another approach, also based on the use of discrete band maxima, is based on correlations between vibration frequencies and different characteristics of minerals (hydrogen bond strengths, degree of isomorphous substitutions, etc.). In this section, we consider several examples of the application of this approach to the investigation of structural features of minerals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Asmis K, Pivonka NL, Santambrogio G, Brümmer M, Kaposta C, Neumark DM, Wöste L (2003) The gas-phase infrared spectrum of the protonated water dimer. Science 299:1375–1377

    Article  Google Scholar 

  • Atencio D, Matioli PA, Smith JB, Chukanov NV, Coutinho JMV, Rastsvetaeva RK, Möckel S (2008) Footemineite, the Mn-analog of atencioite, from the Foote mine, Kings Mountain, Cleveland County, North Carolina, USA, and its relationship with other roscherite-group minerals. Am Miner 93:1–6

    Article  Google Scholar 

  • Basciano LC (2008) Crystal chemistry of the jarosite group of minerals. Solid-solution and atomic structures. PhD thesis. Queen’s University, Kingston, ON, Canada

    Google Scholar 

  • Basciano LC, Peterson RC (2008) Crystal chemistry of the natrojarosite-jarosite and natrojarosite-hydronium jarosite solid-solution series: a synthetic study with full Fe site occupancy. Am Miner 93:853–862

    Article  Google Scholar 

  • Baur WH (1972) Prediction of hydrogen bonds and hydrogen atom positions in crystalline solids. Acta Crystallogr B28:1456–1465

    Google Scholar 

  • Berlyand LV, Chukanov NV, Dubovitsky VA (1991) Exactly solvable random model and IR spectroscopy of a strained defective lattice. Chem Phys Lett 181(5):450–454

    Article  Google Scholar 

  • Bonaccorsi E, Merlino S (2005) Modular microporous minerals: cancrinite-davyne group and C-S-H phases. Rev Miner Geochem 57:241–290, Micro-and mesoporous mineral phases

    Google Scholar 

  • Braithwaite RSW, Pritchard RG, Paar WH, Pattrick RAD (2005) A new mineral, zincolibethenite, CuZnPO4OH, a stoichiometric species of specific site occupancy. Miner Mag 69(2):145–153

    Article  Google Scholar 

  • Cámara F, Garvie LAJ, Devouard B, Groy TL, Buseck PR (2002) The structure of Mn-rich tuperssuatsiaite: a palygorskite-related mineral. Am Miner 87:1458–1463

    Google Scholar 

  • Chisholm JE (1984) Cation segregation and the O-H stretching vibration in the olivenite-adamite series. Phys Chem Miner 12(3):185–190

    Article  Google Scholar 

  • Christie RA (2004) Theoretical studies of hydronium-bonded clusters. PhD thesis. University of Pittsburgh Press, Pittsburgh

    Google Scholar 

  • Chukanov NV (1980) Vibrational dynamics of defect linear polymers and its relationship with the chain structure and the end-group reactivity. PhD thesis (physics and mathematics). Physical-Technical Institute, Moscow, 219 pp (in Russian)

    Google Scholar 

  • Chukanov NV (1995) On infrared spectra of silicates and aluminosilicates. Zap Vseross Miner Obs 124(3):80–85 (in Russian)

    Google Scholar 

  • Chukanov NV, Kumpanenko IV (1988) Cluster approach in the vibrational spectroscopy of polymers. Chem Phys Lett 146:211–215

    Article  Google Scholar 

  • Chukanov NV, Pekov IV (2005) Heterosilicates with tetrahedral-octahedral frameworks: mineralogical and crystal-chemical aspects. Rev Miner Geochem 57:105–143, Micro-and mesoporous mineral phases. Editors: Ferraris G and Merlino S

    Google Scholar 

  • Chukanov NV, Pekov IV (2012) Infrared spectroscopy of acid salts: silicate minerals. Zapiski RMO (Proc Russ Miner Soc) 141(3):129–143 (in Russian)

    Google Scholar 

  • Chukanov NV, Stepanov VI (1989) IR spectroscopic method of analysis of some calcite- and dolomite-group minerals. New Data Miner 36:181–186 (in Russian)

    Google Scholar 

  • Chukanov NV, Pekov IV, Zadov AE, Voloshin AV, Subbotin VV, Sorokhtina NV, Rastsvetaeva RK, Krivovichev SV (2003) Labuntsovite-group minerals. Nauka, Moscow (in Russian)

    Google Scholar 

  • Chukanov NV, Moiseev MM, Pekov IV, Lazebnik KA, Rastsvetaeva RK, Zayakina NV, Ferraris G, Ivaldi G (2004) Nabalamprophyllite Ва(Na, Ba){Na3Ti[Ti2O2Si4O14](OH, F)2}, a new layer titanosilicate of the lamprophyllite group from Inagli and Kovdor alkaline-ultramafic massifs, Russia. Zapiski VMO (Proc Russ Miner Soc) 133(1):59–71 (in Russian)

    Google Scholar 

  • Chukanov NV, Moiseev MM, Rastsvetaeva RK, Rozenberg KA, Zadov AE, Pekov IV, Korovushkin VV (2005a) Golyshevite, (Na,Ca)10Ca9(Fe3+,Fe2+)2Zr3NbSi25O72(CO3)(OH)3·H2O, and mogovidite, Na9(Ca,Na)6Ca6(Fe3+,Fe2+)2Zr3□Si25O72(CO3)(OH,H2O)4, the new eudialyte-group minerals from high-calcium agpaitic pegmatites of the Kovdor massif, Kola peninsula. Zapiski RMO (Proc Russ Miner Soc) 134(6):36–47 (in Russian)

    Google Scholar 

  • Chukanov NV, Rastsvetaeva RK, Moeckel S, Zadov AE, Levitskaya LA (2005b) Atencioite, Ca2Fe2+⃞Mg2Fe2+ 2Be4(PO4)6(OH)4·6H2O, a new mineral of the roscherite group. Working papers of the third international symposium “Mineral diversity – research and preservation”, Sofia, 7–10 Oct 2005, pp 303–310

    Google Scholar 

  • Chukanov NV, Pushcharovsky DY, Zubkova NV, Pekov IV, Pasero M, Merlino S, Möckel S, Rabadanov MK, Belakovskiy DI (2007) Zincolivenite CuZn(AsO4)(OH): a new adamite-group mineral with ordered distribution of Cu and Zn. Doklady Earth Sci 415A(6):841–845

    Article  Google Scholar 

  • Chukanov NV, Dubovitskiy VA, Vozchikova SA, Orlova SM (2008) Discrete and functional-geometric methods of infrared spectroscopy of minerals using reference samples. Geol Ore Depos 50(8):815–826

    Article  Google Scholar 

  • Chukanov NV, Rastsvetaeva RK, Pekov IV, Zadov AE, Allori R, Zubkova NV, Giester G, Pushcharovsky DY, Van KV (2009) Biachellaite, (Na, Ca, K)8(Si6Al6O24)(SO4)2(OH)0.5·H2O, a new mineral species of the cancrinite group. Geol Ore Depos 51(7):588–594

    Article  Google Scholar 

  • Chukanov NV, Pekov IV, Olysych LV, Zubkova NV, Vigasina MF (2011) Crystal chemistry of cancrinite-group minerals with AB-type frameworks. II. IR spectroscopy and its crystal chemical implications: review and new data. Can Miner 49:1151–1164

    Article  Google Scholar 

  • Chukanov NV, Britvin SN, Blass G, Belakovskiy DI, Van KV (2012) Windhoekite, Ca2Fe3+ 3-x (Si8O20)(OH)4·10H2O, a new palygorskite-group mineral from the Aris phonolite, Namibia. Eur J Miner 24:171–179

    Article  Google Scholar 

  • DeAngelis B, Newnham RE, White WB (1972) Factor group analysis of the vibrational spectra of crystals, a review and consolidation. Am Miner 57:255–268

    Google Scholar 

  • Dubovitskiy VA, Chukanov NV (2004) Complex diagnostics of inorganic compounds by the IR absorption curve. Khimicheskaya Fizika 23(5):90–100 (in Russian)

    Google Scholar 

  • Ferraris G, Gula A (2005) Polysomatic aspects in microporous minerals – heterophyllosilicates, palysepioles and rhodesite-related structures. Rev Mineral Geochem 57:69–104, Micro-and mesoporous mineral phases. Editors: Ferraris G and Merlino S

    Google Scholar 

  • Hammer NI, Diken EG, Roscioli JR, Johnson MA, Myshakin EM, Jordan KD, McCoy AB, Huang X, Bowman JM, Carter S (2005) The vibrational predissociation spectra of the H5O2 +·RGN (RG = Ar, Ne) clusters: correlation of the solvent perturbations in the free OH and shared proton transitions of the Zundel ion. J Chem Phys 122(24):244301

    Article  Google Scholar 

  • Headrick JM, Bopp JC, Johnson MA (2004) Predissociation spectroscopy of the argon-solvated H5O2 + “Zundel” cation in the 1000–1900 cm−1 region. J Chem Phys 121(23):11523–11526

    Article  Google Scholar 

  • Hendricks SB (1937) The crystal structure of alunite and jarosites. Am Miner 22:773–784

    Google Scholar 

  • Jianqing Xu, Zhang Yong, Voth GA (2011) Infrared spectrum of the hydrated proton in water. J Phys Chem Lett 2(2):81–86

    Article  Google Scholar 

  • Johnsen O, Ferraris G, Gault RA, Grice JD, Kampf AR, Pekov IV (2003) The nomenclature of eudialyte-group minerals. Can Mineral 41:785–794

    Article  Google Scholar 

  • Kim J, Schmitt UW, Gruetzmacher JA, Voth GA, Scherer NE (2002) The vibrational spectrum of the hydrated proton: comparison of experiment, simulation, and normal mode analysis. J Chem Phys 116:737–746

    Article  Google Scholar 

  • Libowitzky E (1999) Correlation of O–H stretching frequencies and O–H···O hydrogen bond lengths in minerals. Monatshefte für Chemie 130:1047–1059

    Article  Google Scholar 

  • Libowitzky E, Beran A (2004) IR spectroscopic characterisation of hydrous species in minerals. Spectrosc Method Miner 6:227–280

    Google Scholar 

  • Loghinov AP, Kozyrenko VN, Mikhailov ID, Chukanov NV, Kumpanenko IV (1979) Generalized coupled oscillator model for defect polymers. I. Calculation of frequency brandes of n-paraffins, fatty acids and glymes. Chem Phys 36(2):187–196

    Article  Google Scholar 

  • Ma Z, Shi N, Mou G, Liao L (1999) Crystal structure refinement of suolunite and its significance to the cement techniques. Chin Sci Bull 44:2125–2130

    Article  Google Scholar 

  • Majzlan J, Stevens R, Boerio-Goates J, Woodfield BF, Navrotsky A, Burns PC, Crawford MK, Amos TG (2004) Thermodynamic properties, low-temperature heat-capacity anomalies, and single-crystal X-ray refinement of hydronium jarosite, (H3O)Fe3(SO4)2(OH)6. Phys Chem Miner 31:518–531

    Article  Google Scholar 

  • Miller FA, Wilkins CH (1952) Infrared spectra and characteristic frequencies of inorganic ions. Anal Chem 24:1253–1294

    Article  Google Scholar 

  • Muguet FFJ (1996) MCSCF vibrational spectra of the symmetric and asymmetric dihydronium cations. Mol Struc (Theochem) 368:173–184

    Article  Google Scholar 

  • Nyfeler D, Armbruster T (1998) Silanol groups in minerals and inorganic compounds. Am Miner 83:119–125

    Google Scholar 

  • Ortega IK, Escribano R, Herrero VJ, Maté B, Moreno MA (2005) The structure and vibrational frequencies of crystalline HCl trihydrate. J Mol Struct 742:147–152

    Article  Google Scholar 

  • Park M, Shin I, Singh NJ, Kim KS (2007) Eigen and Zundel forms of small protonated water clusters: structures and infrared spectra. J Phys Chem A 111:10692–10702

    Article  Google Scholar 

  • Pekov IV, Chukanov NV, Tarassoff P, Yamnova NA, Zadov AE (2007) Gjerdingenite-Na and gjerdingenite-Ca, two new minerals of the labuntsovite group. Can Miner 45:529–539

    Article  Google Scholar 

  • Pekov IV, Olysych LV, Chukanov NV, Zubkova NV, Pushcharovsky DY, Van KV, Giester G, Tillmanns E (2011) Crystal chemistry of cancrinite-group minerals with AB-type frameworks. I. Chemical and structural variations: review and new data. Can Miner 49:1129–1150

    Article  Google Scholar 

  • Pimentel GC, Sederholm CH (1956) Correlation of infrared stretching frequencies and hydrogen bond distances in crystals. J Chem Phys 24:639–641

    Article  Google Scholar 

  • Potter RM, Rossman GR (1979) The tetravalent manganese oxides: identification, hydration, and structural relationships by infrared spectroscopy. Am Miner 64:1199–1218

    Google Scholar 

  • Povarennykh AS (1978) The use of infrared spectra for the determination of minerals. Am Miner 63:956–959

    Google Scholar 

  • Rastsvetaeva RK, Chukanov NV (2003) Crystal structure and microtwinning of the new mineral clinobarylite BaBe2Si2O7. Doklady Chem 388(1–3):23–25

    Article  Google Scholar 

  • Rastsvetaeva RK, Chukanov NV, Zadov AE (2009) Refined structure of afwillite from the northern Baikal region. Crystallogr Rep 54(3):418–422

    Article  Google Scholar 

  • Saburi S, Kawahara A, Henmi C, Kusachi I, Kihara K (1977) The refinement of the crystal structure of cuspidine. Miner J 8(5):286–298

    Article  Google Scholar 

  • Sidorenko GA, Chukanov NV, Chistyakova NI, Bebeshko GA, Zadov AE, Naumova IS (2007) Uramarsite (NH4, H3O)2(UO2)2(AsO4, PO4)2·6H2O: a new mineral of the metaautunite group. Doklady Earth Sci 415A(6):965–969

    Article  Google Scholar 

  • Sobolewski AL, Domcke W (2002) Ab initio investigation of the structure and spectroscopy of hydronium-water clusters. J Phys Chem A 106:4158–4167

    Article  Google Scholar 

  • Stoyanov ES, Stoyanova IV, Reed CA (2010) The structure of the hydrogen ion (Haq +) in water. J Am Chem Soc 132:1484–1485

    Article  Google Scholar 

  • Taylor HFW (1971) The crystal structure of kilchoanite. Miner Mag 38:26–31

    Article  Google Scholar 

  • Toman K (1978) Ordering in olivenite-adamite solid solutions. Acta Cryst B34:715–721

    Google Scholar 

  • Wilkins RW, Mateen A, West GW (1974) The spectroscopic study of oxonium ions in minerals. Amer Miner 59:811–819

    Google Scholar 

  • Yukhnevich GV (1973) Infrared spectroscopy of water. Nauka, Moscow (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chukanov, N.V. (2014). The Application of IR Spectroscopy to the Investigation of Minerals. In: Infrared spectra of mineral species. Springer Geochemistry/Mineralogy. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7128-4_1

Download citation

Publish with us

Policies and ethics