Skip to main content

Application of Bombyx mori Silk Fibroin as a Biomaterial for Vascular Grafts

  • Chapter
  • First Online:
Biotechnology of Silk

Part of the book series: Biologically-Inspired Systems ((BISY,volume 5))

Abstract

Although silk is known primarily as a textile material, silk fibroin from silkworm (Bombyx mori) has been used as a biomedical suture material for centuries. This review focuses on the application of B. mori silk fibroin to biomaterials, particularly vascular grafts with small diameter (<6 mm). The benefits of silk fibroin for use as a biomaterial are emphasized, especially with respect to the development of silk vascular grafts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altman GH, Horan RL, Lu HH, Moreau J, Martin I, Richmond JC, Kaplan DL (2002) Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 23:4131

    Article  PubMed  CAS  Google Scholar 

  • Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24:401

    Article  PubMed  CAS  Google Scholar 

  • Asakura T, Kaplan DL (1994) Silk production and processing. In: Arutzen CJ (ed) Encyclopedia of agricultural science, vol 4. Academic Press, New York, p 1

    Google Scholar 

  • Asakura T, Yao J (2002) 13C CP/MAS NMR study on structural heterogeneity in Bombyx mori silk fiber and their generation by stretching. Protein Sci 11:2706

    Article  PubMed  CAS  Google Scholar 

  • Asakura T, Watanabe Y, Uchida A, Minagawa H (1984a) NMR of silk fibroin. Carbon-13 NMR study of the chain dynamics and solution structure of Bombyx mori silk fibroin. Macromolecules 17:1075

    Article  CAS  Google Scholar 

  • Asakura T, Watanabe Y, Itoh T (1984b) NMR of silk fibroin. 3. Assignment of carbonyl carbon resonances and their dependence on sequence and conformation in Bombyx mori silk fibroin using selective isotopic labeling. Macromolecules 17:2421

    Article  CAS  Google Scholar 

  • Asakura T, Yoshimizu H, Kakizaki M (1990) An ESR study of spin-labeled silk fibroin membranes and spin-labeled glucose oxidase immobilized in silk fibroin membranes. Biotechnol Bioeng 35:511

    Article  PubMed  CAS  Google Scholar 

  • Aytemiz D, Sakiyama W, Suzuki Y, Nakaizumi N, Tanaka R, Ogawa Y, Takagi Y, Nakazawa Y, Asakura T (2012) Development of small-diameter knitted silk vascular grafts coated with silk fibroin sponge. Adv Healthc Mater 5:2192

    Google Scholar 

  • Ayub ZH, Arai M, Hirabayashi K (1994) Quantitative structural analysis and physical properties of silk fibroin hydrogels. Polymer 35:2197

    Article  CAS  Google Scholar 

  • Ayutsede J, Gandhi M, Sukigara S, Micklus M, Chen H, Ko F (2005) Regeneration of Bombyx mori silk by electrospinning. Part 3: characterization of electrospun nonwoven mat. Polymer 46:1625

    Article  CAS  Google Scholar 

  • Bhat NV, Ahirrao SM (1983) Investigation of the structure of silk film regenerated with lithium thiocyanate solution. J Polym Sci Part A Polym Chem 21:1273

    Article  CAS  Google Scholar 

  • Bondar FS, Motta A, Migliaresi C, Kirkpatrick CJ (2008) Functionality of endothelial cells on silk fibroin nets: comparative study of micro- and nanometric fibre size. Biomaterials 29:561

    Article  PubMed  CAS  Google Scholar 

  • Budd JS, Allen KE, Hartley G, Bell PR (1991) The effect of preformed confluent endothelial cell monolayers on the patency and thrombogenicity of small calibre vascular grafts. Eur J Vasc Surg 5:397

    Article  PubMed  CAS  Google Scholar 

  • Cao Z, Chen X, Yao J, Huang L, Shao Z (2007) The preparation of regenerated silk fibroin microspheres. Soft Matter 3:910

    Article  CAS  Google Scholar 

  • Causin F, Pascarella R, Pavesi G, Marasco R, Zambon G, Battaglia R, Munari M (2011) Acute endovascular treatment (<48 hours) of uncoilable ruptured aneurysms at non-branching sites using silk flow-diverting devices. Interv Neuroradiol 17:357

    PubMed  CAS  Google Scholar 

  • Chao PH, Yodmuang S, Wang X, Sun L, Kaplan DL, Vunjak-Novakovic G (2010) Silk hydrogel for cartilage tissue engineering. J Biomed Mater Res Part B 95B:84

    Article  CAS  Google Scholar 

  • Chen K, Iura K, Aizawa R, Hirabayashi K (1991) The digestion of silk fibroin by rat. J Seric Sci Jpn 60:402

    CAS  Google Scholar 

  • Chen X, Li W, Zhong W, Lu Y, Yu T (1997) pH sensitivity and ion sensitivity of hydrogels based on complex-forming chitosan/silk fibroin interpenetrating polymer network. J Appl Polym Sci 65:2257

    Article  CAS  Google Scholar 

  • Demiri EC, Iordanidis EC, Mantinaos CF (1999) Experimental use of prosthetic grafts in microvascular surgery. Handchir Mikrochir Plast Chir 31:102

    Article  PubMed  CAS  Google Scholar 

  • Demura M, Asakura T (1989) Immobilization of glucose oxidase with Bombyx mori silk fibroin by only stretching treatment and its application to glucose sensor. Biotechnol Bioeng 33:598

    Article  PubMed  CAS  Google Scholar 

  • Demura M, Asakura T (1991) Porous membrane of Bombyx mori silk fibroin: structure characterization, physical properties and application to glucose oxidase- immobilization. J Membr Sci 59:39

    Article  CAS  Google Scholar 

  • Demura M, Asakura T, Kuroo T (1989a) Immobilization of biocatalysts with Bombyx mori silk fibroin by several kinds of physical treatment and its application to glucose sensor. Biosensors 4:361

    Article  CAS  Google Scholar 

  • Demura M, Asakura T, Nakamura E (1989b) Immobilization of peroxidase with Bombyx mori silk fibroin membrane and its application to biophotosensor. J Biotechnol 10:113

    Article  CAS  Google Scholar 

  • Demura M, Komura T, Asakura T (1991) Membrane potential of Bombyx mori silk fibroin membrane induced by an immobilized enzyme reaction. Bioelectrochem Bioenerg 26:167

    Article  CAS  Google Scholar 

  • Enomoto S, Sumi M, Kajimoto K, Nakazawa Y, Takahashi R, Takabayashi C, Asakura T, Sata M (2010) Long-term patency of small-diameter vascular graft made from fibroin, a silk-based biodegradable material. J Vasc Surg 51:155

    Article  PubMed  Google Scholar 

  • Fan H, Liu H, Wong EJW, Toh SL, Goh JCH (2008) In vivo study of anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold. Biomaterials 29:3324

    Article  PubMed  CAS  Google Scholar 

  • Fan H, Liu H, Toh SL, Goh JCH (2009) Anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold in large animal model. Biomaterials 30:4967

    Article  PubMed  CAS  Google Scholar 

  • Goujon N, Wang X, Rajkowa R, Byrne N (2012) Regenerated silk fibroin using protic ionic liquids solvents: towards an all-ionic-liquid process for producing silk with tunable properties. Chem Commun 48:1278

    Article  CAS  Google Scholar 

  • Gupta MK, Khokhar SK, Phillips DM, Sowards LA, Drummy LF, Kadakia MP, Naik RR (2006) Patterned silk films cast from ionic liquid solubilized fibroin as scaffolds for cell growth. Langmuir 23:1315

    Article  Google Scholar 

  • Ha SW, Tonelli AE, Hudson SM (2005) Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning. Biomacromolecules 6:1722

    Article  PubMed  CAS  Google Scholar 

  • Harris JR, Seikaly H (2002) Evaluation of polytetrafluoroethylene micrografts in microvascular surgery. J Otolaryngol 31:89

    Article  PubMed  Google Scholar 

  • Harris LD, Kim BS, Mooney DJ (1998) Open pore biodegradable matrices formed with gas foaming. J Biomed Mater Res 42:396

    Article  PubMed  CAS  Google Scholar 

  • Higuchi A, Yoshida M, Ohno T, Asakura T, Hara M (2000) Production of interferon-β in a culture of fibroblast cells on some polymeric films. Cytotechnology 34:165

    Article  PubMed  CAS  Google Scholar 

  • Hines DJ, Kaplan DL (2011) Mechanisms of controlled release from silk fibroin films. Biomacromolecules 12:804

    Article  PubMed  CAS  Google Scholar 

  • Hino T, Tanimoto M, Shimabayashi S (2003) Change in secondary structure of silk fibroin during preparation of its microspheres by spray-drying and exposure to humid atmosphere. J Colloid Interface Sci 266:68

    Article  PubMed  CAS  Google Scholar 

  • Hino R, Tomita M, Yoshizato K (2006) The generation of germline transgenic silkworms for the production of biologically active recombinant fusion proteins of fibroin and human basic fibroblast growth factor. Biomaterials 27:5715

    Article  PubMed  CAS  Google Scholar 

  • Hu X, Shmelev K, Sun L, Gil ES, Park SH, Cebe P, Kaplan DL (2011) Regulation of silk material structure by temperature-controlled water vapor annealing. Biomacromolecules 12:1686

    Article  PubMed  CAS  Google Scholar 

  • Kambe Y, Yamamoto K, Kojima K, Tamada Y, Tomita N (2010) Effects of RGDS sequence genetically interfused in the silk fibroin light chain protein on chondrocyte adhesion and cartilage synthesis. Biomaterials 31:7503

    Article  PubMed  CAS  Google Scholar 

  • Kim UJ, Park J, Li C, Jin HJ, Valluzzi R, Kaplan DL (2004) Structure and properties of silk hydrogels. Biomacromolecules 5:786

    Article  PubMed  CAS  Google Scholar 

  • Kim UJ, Park J, Kim HJ, Wada M, Kaplan DL (2005) Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials 26:2775

    Article  PubMed  CAS  Google Scholar 

  • Kinahan ME, Filippidi E, Köster S, Hu X, Evans HM, Pfohl T, Kaplan DL, Wong J (2011) Tunable silk: using microfluidics to fabricate silk fibers with controllable properties. Biomacromolecules 12:1504

    Article  PubMed  CAS  Google Scholar 

  • Kojima K, Kuwana Y, Sezutsu H, Kobayashi I, Uchino K, Tamura T, Tamada Y (2007) A new method for the modification of fibroin heavy chain protein in the transgenic silkworm. Biosci Biotechnol Biochem 71:2943

    Article  PubMed  CAS  Google Scholar 

  • Kuzuhara A, Asakura T, Tomoda R, Matsunaga T (1987) Use of silk fibroin for enzyme membrane. J Biotechnol 5:199

    Article  CAS  Google Scholar 

  • Lammel AS, Hu X, Park SH, Kaplan DL, Scheibel TR (2010) Controlling silk fibroin particle features for drug delivery. Biomaterials 31:4583

    Article  PubMed  CAS  Google Scholar 

  • Leonardi M, Cirillo L, Toni F, Dall'olio M, Princiotta C, Stafa A, Simonetti L, Agati R (2011) Treatment of intracranial aneurysms using flow-diverting silk stents (BALT): a single centre experience. Interv Neuroradiol 17:306

    PubMed  CAS  Google Scholar 

  • Li M, Wu Z, Zhang C, Lu S, Yan H, Huang D, Ye H (2001) Study on porous silk fibroin materials. II. Preparation and characteristics of spongy porous silk fibroin materials. J Appl Polym Sci 79:2192

    Article  Google Scholar 

  • Li M, Ogiso M, Minoura N (2003) Enzymatic degradation behavior of porous silk fibroin sheets. Biomaterials 24:357

    Article  PubMed  CAS  Google Scholar 

  • Losi P, Lombardi S, Briganti E, Soldani G (2004) Luminal surface microgeometry affects platelet adhesion in small-diameter synthetic grafts. Biomaterials 25:4447

    Article  PubMed  CAS  Google Scholar 

  • Lovett M, Cannizzaro C, Daheron L, Messmer B, Vunjak-Novakovic G, Kaplan DL (2007) Silk fibroin microtubes for blood vessel engineering. Biomaterials 28:5271

    Article  PubMed  CAS  Google Scholar 

  • Lovett M, Eng G, Kluge JA, Cannizzaro C, Vunjak-Novakovic G, Kaplan DL (2010) Tubular silk scaffolds for small diameter vascular grafts. Organogenesis 6:217

    Article  PubMed  Google Scholar 

  • Lu Q, Hu X, Wang X, Kluge JA, Lu S, Cebe P, Kaplan DL (2010) Water-insoluble silk films with silk I structure. Acta Biomater 6:1380

    Article  PubMed  CAS  Google Scholar 

  • Makaya K, Terada S, Ohgo K, Asakura T (2009) Comparative study of silk fibroin porous scaffolds derived from salt/water and sucrose/hexafluoroisopropanol in cartilage formation. J Biosci Bioeng 108:68

    Article  PubMed  CAS  Google Scholar 

  • Meinel L, Fajardo R, Hofmann S, Langer R, Chen J, Snyder B, Vunjak-Novakovic G, Kaplan DL (2005) Silk implants for the healing of critical size bone defects. Bone 37:688

    Article  PubMed  CAS  Google Scholar 

  • Minoura N, Tsukada M, Nagura M (1990) Physico-chemical properties of silk fibroin membrane as a biomaterial. Biomaterials 11:430

    Article  PubMed  CAS  Google Scholar 

  • Motta A, Migliaresi C, Faccioni F, Torricelli P, Fini M, Giardino R (2004) Fibroin hydrogels for biomedical applications: preparation, characterization and in vitro cell culture studies. J Biomater Sci Polym Ed 15:851

    Article  PubMed  CAS  Google Scholar 

  • Nagano A, Tanioka Y, Sakurai N, Sezutsu H, Kuboyama N, Kiba H, Tanimoto Y, Nishiyama N, Asakura T (2011) Regeneration of the femoral epicondyle on calcium-binding silk scaffolds developed using transgenic silk fibroin produced by transgenic silkworm. Acta Biomater 7:1192

    Article  PubMed  CAS  Google Scholar 

  • Nazarov R, Jin HJ, Kaplan DL (2004) Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules 5:718

    Article  PubMed  CAS  Google Scholar 

  • Nishibe T, Kondo Y, Muto A, Dardik A (2007) Optimal prosthetic graft design for small diameter vascular grafts. Vascular 15:356

    Article  PubMed  Google Scholar 

  • Numata K, Cebe P, Kaplan DL (2010) Mechanism of enzymatic degradation of beta sheet crystals. Biomaterials 31:2926

    Article  PubMed  CAS  Google Scholar 

  • Numata K, Katashima T, Sakai T (2011) The state of water, molecular structure and cytotoxicity of silk hydrogels. Biomacromolecules 12:2137

    Article  PubMed  CAS  Google Scholar 

  • Ohgo K, Zhao C, Kobayashi M, Asakura T (2003) Preparation of non-woven nanofibers of Bombyx mori silk, Samia Cynthia ricini silk and recombinant hybrid silk with electrospinning method. Polymer 44:846

    Article  Google Scholar 

  • Orban JM, Wilson LB, Kofroth JA, El-Kurdi MS, Maul TM, Vorp DA (2004) Crosslinking of collagen gels by transglutaminase. J Biomed Mater Res A 68:756

    Article  PubMed  Google Scholar 

  • Phillips DM, Drummy LF, Naik RR, Long HCD, Fox DM, Trulove PC, Mantz RA (2005) Regenerated silk fiber wet spinning from an ionic liquid solution. J Mater Chem 15:4206

    Article  CAS  Google Scholar 

  • Rajkhowa R, Gil ES, Kluge J, Numata K, Wang L, Wang X, Kaplan DL (2010) Reinforcing silk scaffolds with silk particles. Macromol Biosci 10:599

    Article  PubMed  CAS  Google Scholar 

  • Rockwood DN, Gil ES, Park SH, Kluge JA, Grayson W, Bhumiratana S, Rajkhowa R, Wang X, Kim SJ, Vunjak-Novakovic G, Kaplan DL (2011) Ingrowth of human mesenchymal stem cells into porous silk particle reinforced silk composite scaffolds: an in vitro study. Acta Biomater 7:144

    Article  PubMed  CAS  Google Scholar 

  • Sarkar S, Sales KM, Hamilton G, Seifalian AM (2007) Addressing thrombogenicity in vascular graft construction. J Biomed Mater Res B Appl Biomater 82B:100

    Article  CAS  Google Scholar 

  • Sato M, Nakazawa Y, Takahashi R, Tanaka K, Sata M, Aytemiz D, Asakura T (2010) Small-diameter vascular grafts of Bombyx mori silk fibroin prepared by a combination of electrospinning and sponge coating. Mater Lett 64:1786

    Article  CAS  Google Scholar 

  • Schmedlen RH, Elbjeirami WM, Gobin AS, West JL (2003) Tissue engineered small-diameter vascular grafts. Clin Plast Surg 30:507

    Article  PubMed  Google Scholar 

  • Seal BL, Otero TC, Panitch A (2001) Effects of chitosan on properties of novel human-like collagen/chitosan hybrid vascular scaffold. Mater Sci Eng R Rep 34:147

    Article  Google Scholar 

  • Soffer L, Wang X, Zhang X, Kluge J, Dorfmann L, Kaplan DL, Leisk G (2008) Silk-based electrospun tubular scaffolds for tissue-engineered vascular grafts. J Biomater Sci Polym Ed 19:653

    Article  PubMed  CAS  Google Scholar 

  • Sukigara S, Gandhi M, Ayutsede J, Micklus M, Ko F (2004) Regeneration of Bombyx mori silk by electrospinning-part 1: processing parameters and geometric properties. Polymer 45:3701

    Article  CAS  Google Scholar 

  • Tamada Y (2005) New process to form a silk fibroin porous 3-D structure. Biomacromolecules 6:3100

    Article  PubMed  CAS  Google Scholar 

  • Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M, Komoto N, Thomas JL, Mauchamp B, Chavancy G, Shirk P, Fraser M, Prudhomme JC, Couble P (2000) Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat Biotechnol 18:81

    Article  PubMed  CAS  Google Scholar 

  • Teebken OE, Haverich A (2002) Tissue engineering of small-diameter vascular grafts. Graft 5:14

    Article  Google Scholar 

  • Teebken OE, Pichlmaier AM, Haverich A (2001) Cell seeded decellularised allogeneic matrix grafts and biodegradable polydioxanone-prostheses compared with arterial autografts in a porcine model. Eur J Vasc Endovasc Surg 22:139

    Article  PubMed  CAS  Google Scholar 

  • Tomita M, Munetsuna H, Sato T, Adachi T, Hino R, Hayashi M, Shimizu K, Nakamura N, Tamura T, Yoshizato K (2003) Transgenic silkworms produce recombinant human type III procollagen in cocoons. Nat Biotechnol 21:52

    Article  PubMed  CAS  Google Scholar 

  • Tsukada M, Freddi G, Minoura N, Allara G (1994) Preparation and application of porous silk fibroin materials. J Appl Polym Sci 54:507

    Article  CAS  Google Scholar 

  • Um IC, Kweon H, Park YH, Hudson S (2001) Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid. Int J Biol Macromol 29:91

    Article  PubMed  CAS  Google Scholar 

  • van Det RJ, Vriens BHR, van der Palen J, Geelkerken RH (2009) Dacron or ePTFE for femoro-popliteal above-knee bypass grafting: short- and long-term results of a multicentre randomised trial. Eur J Endovasc Surg 37:457

    Article  Google Scholar 

  • Vepari C, Kaplan DL (2007) Silk as a biomaterial. Prog Polym Sci 32:991

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Kim HJ, Xu P, Matsumoto A, Kaplan DL (2005) Biomaterial coatings by stepwise deposition of silk fibroin. Langmuir 21:11335

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Rudym DD, Walsh A, Abrahamsen L, Kim HJ, Kim HS, Kirker-Head C, Kaplan DL (2008) In vivo degradation of three-dimensional silk fibroin scaffolds. Biomaterials 29:3415

    Article  PubMed  CAS  Google Scholar 

  • Wenk E, Wandrey AJ, Merkle HP, Meinel L (2008) Silk fibroin spheres as a platform for controlled drug delivery. J Control Release 132:26

    Article  PubMed  CAS  Google Scholar 

  • Yagi T, Sato M, Nakazawa Y, Tanaka K, Sata M, Itoh K, Takagi Y, Asakura T (2011) Preparation of double-raschel knitted silk vascular grafts and evaluation of short-term function in a rat abdominal aorta. J Artif Organs 14:89

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa S, Zhu Z, Kobayashi I, Uchino K, Tamada Y, Tamura T, Asakura T (2007) Improving cell-adhesive properties of recombinant Bombyx mori silk by incorporation of collagen or fibronectin derived peptides produced by transgenic silkworms. Biomacromolecules 8:3487

    Article  PubMed  CAS  Google Scholar 

  • Yang C, Bochu W (2009) Biodegradation of silk biomaterials. Int J Mol Sci 10:1514

    Article  Google Scholar 

  • Yao JM, Asakura T (2004) Silks. In: Wnek GE, Bowlin GL (eds) Encyclopedia of biomaterials and biomedical engineering, vol. 2. Marcel Dekker, New York, p 1363

    Google Scholar 

  • Yeo JH, Lee KG, Lee YW, Kim SY (2003) Simple preparation and characteristics of silk fibroin microsphere. Eur Polym J 39:1195

    Article  CAS  Google Scholar 

  • Yoshimizu H, Asakura T (1990a) The structure of Bombyx mori silk fibroin membrane swollen by water studied with ESR, 13C-NMR, and FT-IR spectroscopies. J Appl Polym Sci 40:1745

    Article  CAS  Google Scholar 

  • Yoshimizu H, Asakura T (1990b) Preparation and characterization of silk fibroin powder and its application to enzyme immobilization. J Appl Polym Sci 40:127

    Article  CAS  Google Scholar 

  • Zhang YQ, Wei-De S, Ru-Li X, Zhuge LJ, Gao WJ, Wang WB (2007) Formation of silk nanoparticles in water-miscible organic solvent and their characterization. J Nanopart Res 9:885

    Article  CAS  Google Scholar 

  • Zhang X, Baughman CB, Kaplan DL (2008) In vitro evaluation of electrospun silk fibroin scaffolds for vascular cell growth. Biomaterials 29:2217

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Reagan MR, Kaplan DL (2009a) Electrospun silk biomaterial scaffolds for regenerative medicine. Adv Drug Deliv Rev 61:988

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Wang X, Keshav V, Wang X, Johanas JT, Leisk GG, Kaplan DL (2009b) Dynamic culture conditions to generate silk-based tissue-engineered vascular grafts. Biomaterials 30:3213

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuo Asakura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Aytemiz, D., Asakura, T. (2014). Application of Bombyx mori Silk Fibroin as a Biomaterial for Vascular Grafts. In: Asakura, T., Miller, T. (eds) Biotechnology of Silk. Biologically-Inspired Systems, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7119-2_4

Download citation

Publish with us

Policies and ethics