Skip to main content

Major Anatomical Structures

  • Chapter
  • First Online:
  • 2081 Accesses

Part of the book series: Springer Series in Cognitive and Neural Systems ((SSCNS,volume 8))

Abstract

There are many different types of neuron organized into many different anatomical structures in the mammal brain. Many of these structures are connected together, sometimes by multiple routes, and often indirectly via other structures. Neuron physiology involves large numbers of different chemicals interacting by many complex pathways.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Canli T, Zhao Z, Brewer J, Gabrieli JDE, Cahill L (2000) Event-related activation in the human amygdala associates with later memory for individual emotional experience. J Neurosci 20(RC99):1–5

    Google Scholar 

  2. Addis DA, Wong AT, Schacter DL (2007) Remembering the past and imagining the future: common and distinct neural substrates during event construction and elaboration. Neuropsychologia 45:1363–1377

    Article  PubMed  Google Scholar 

  3. Sagar JH, Cohen NJ, Corkin S, Growden JH (1985) Dissociations among processes in remote memory. Ann N Y Acad Sci 444:533–535

    Article  PubMed  CAS  Google Scholar 

  4. Kensinger EA, Ullman MT, Corkin S (2001) Bilateral medial temporal lobe damage does not affect lexical or grammatical processing: evidence from amnesic patient H.M. Hippocampus 11:347–360

    Article  PubMed  CAS  Google Scholar 

  5. Milner B, Corkin S, Teuber H-L (1968) Further analysis of the hippocampal amnesic syndrome: 14-year follow-up study of H.M. Neuropsychologia 6:215–234

    Article  Google Scholar 

  6. Graham KS, Simons JS, Pratt KH, Patterson K, Hodges JR (2000) Insights from semantic dementia on the relationship between episodic and semantic memory. Neuropsychologia 38(3):313–324

    Article  PubMed  CAS  Google Scholar 

  7. Bukach CM, Gauthier I, Tarr ML (2006) Beyond faces and modularity: the power of an expertise framework. Trends Cogn Sci 10:159–166

    Article  PubMed  Google Scholar 

  8. Adolphs R, Tranel D, Hamann S, Young AW, Calder AJ, Phelps EA, Anderson A, Lee GP, Damasio AR (1999) Recognition of facial emotion in nine individuals with bilateral amygdala damage. Neuropsychologia 37:1111–1117; Heberlein AS, Padon AA, Gillihan SJ, Farah MJ, Fellows LK (2008) Ventromedial frontal lobe plays a critical role in facial emotion recognition. J Cogn Neurosci 20(4):721–733

    Google Scholar 

  9. Tracy JL, Robins RW (2008) The nonverbal expression of pride: evidence for cross-cultural recognition. J Pers Soc Psychol 94:516–530

    Article  PubMed  Google Scholar 

  10. Calabresi P, Picconi B, Tozzi A, Di Filippo M (2007) Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci 30:211–219

    Article  PubMed  CAS  Google Scholar 

  11. Surmeier DJ, Ding J, Day M, Wang Z, Shen W (2007) D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 30:228–235

    Article  PubMed  CAS  Google Scholar 

  12. Caille I, Dumartin B, Bloch B (1996) Ultrastructural localization of D1 dopamine receptor immunoreactivity in rat striatonigral neurons and its relation with dopaminergic innervation. Brain Res 730:17–31

    PubMed  CAS  Google Scholar 

  13. Floresco SB, West AR, Ash B, Moore H, Grace AA (2003) Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat Neurosci 6:968–973

    Article  PubMed  CAS  Google Scholar 

  14. Meiergerd SM, Patterson TA, Schenk JO (1993) D2 receptors may modulate the function of the striatal transporter for dopamine: kinetic evidence from studies in vitro and in vivo. J Neurochem 61:764–767

    Article  PubMed  CAS  Google Scholar 

  15. Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41:1–24

    Article  PubMed  CAS  Google Scholar 

  16. Samuels ER, Szabadi E (2008) Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part I: principles of functional organization. Curr Neuropharmacol 6:235–253

    Article  PubMed  CAS  Google Scholar 

  17. Markram H, Toleo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:793–807

    Article  PubMed  CAS  Google Scholar 

  18. Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6:347–470

    Article  PubMed  CAS  Google Scholar 

  19. Holmgren CD, Zilberter Y (2001) Coincident spiking activity induced long-term changes in inhibition of neocortical pyramidal cells. J Neurosci 21:8270–8277

    PubMed  CAS  Google Scholar 

  20. Barta P, Dazzan P (2003) Hemispheric surface area: sex, laterality and age effects. Cereb Cortex 13(4):364–370

    Article  PubMed  Google Scholar 

  21. Peters A, Morrison JH, Rosene DL, Hyman BT (1998) Are neurons lost from the primate cerebral cortex during normal aging? Cereb Cortex 8:295–300

    Article  PubMed  CAS  Google Scholar 

  22. Gross CG, Rocha-Miranda CE, Bender DB (1972) Visual properties of neurons in inferotemporal cortex of the macaque. J Neurophysiol 35(96–111):1972

    Google Scholar 

  23. Ito M, Tamura H, Fujita I, Tanaka K (1995) Size and position invariance of neuronal responses in monkey inferotemporal cortex. J Neurophysiol 73:218–226

    PubMed  CAS  Google Scholar 

  24. Hubel DH (1995) Eye, brain and vision. Scientific American Library/Scientific American Books, New York

    Google Scholar 

  25. Tanaka K (2003) Columns for complex visual object features in the inferotemporal cortex: clustering of cells with similar but slightly different stimulus selectivities. Cereb Cortex 13:90–99

    Article  PubMed  Google Scholar 

  26. Zhou F-M, Hablitz JJ (1996) Morphological properties of intracellularly labeled layer I neurons in rat neocortex. J Comp Neurol 376:198–213

    Article  PubMed  CAS  Google Scholar 

  27. Glickfeld LL, Roberts JD, Somogyi P, Scanziani M (2009) Interneurons hyperpolarise pyramidal cells along their entire somatodendritic axis. Nat Neurosci 12:21–23

    Article  PubMed  CAS  Google Scholar 

  28. Woodruff A, Xu Q, Anderson SA, Yuste R (2009) Depolarising effect of neocortical chandelier neurons. Front Neural Circuits 3:15

    Article  PubMed  Google Scholar 

  29. Khirug S, Yamada J, Afzalov R, Voipio J, Khiroug L, Kaila K (2008) GABAergic depolarisation of the axon initial segment in cortical principal neurons is caused by the Na–K–2Cl cotransporter NKCC1. J Neurosci 28:4635–4639

    Article  PubMed  CAS  Google Scholar 

  30. Tamas G, Buhl EH, Lorinz A, Somogyi P (2000) Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons. Nat Neurosci 3:366–371

    Article  PubMed  CAS  Google Scholar 

  31. Komatsu Y (1996) GABAB receptors, monoamine receptors, and postsynaptic inositol trisphosphate-induced Ca2+ release are involved in the induction of long-term potentiation at visual cortical inhibitory synapses. J Neurosci 16:6342–6352

    PubMed  CAS  Google Scholar 

  32. Hilgetag C-C, Burns GAPC, O’Neill MA, Scannell JW, Malcolm P, Young MP (2000) Anatomical connectivity defines the organization of clusters of cortical areas in the macaque and the cat. Philos Trans R Soc Lond B 355:91–110

    Article  CAS  Google Scholar 

  33. Risold PY, Thompson RH, Swanson LW (1997) The structural organization of connections between hypothalamus and cerebral cortex. Brain Res Rev 24:197–254

    Article  PubMed  CAS  Google Scholar 

  34. Sah P, Faber ESL, De Armentia ML, Power J (2003) The amygdaloid complex: anatomy and physiology. Physiol Rev 83:803–834

    PubMed  CAS  Google Scholar 

  35. Bacon SJ, Headlam AJN, Gabbott PLA, Smith AD (1996) Amygdala input to medial prefrontal cortex (mPFC) in the rat: a light and electron microscope study. Brain Res 720:211–219

    Article  PubMed  CAS  Google Scholar 

  36. Willins DL, Deutch AY, Roth BL (1997) Serotonin 5-HT2A receptors are expressed on pyramidal cells and interneurons in the rat cortex. Synapse 27:79–82

    Article  PubMed  CAS  Google Scholar 

  37. Wilson MA, Molliver ME (1991) The organization of serotonergic projections to cerebral cortex in primates: regional distribution of axon terminals. Neuroscience 44:537–553

    Article  PubMed  CAS  Google Scholar 

  38. De Almeida J, Palacios JM, Mengod G (2008) Distribution of 5-HT and DA receptors in primate prefrontal cortex: implications for pathophysiology and treatment. Prog Brain Res 172:101–115

    Article  PubMed  CAS  Google Scholar 

  39. Houser CR, Crawford GD, Salvaterra PM, Vaugn JE (1985) Immunocytochemical localization of choline acetyltransferase in rat cerebral cortex: a study of cholinergic neurons and synapses. J Comp Neurol 234:17–34

    Article  PubMed  CAS  Google Scholar 

  40. Thomson AM, Bannister AP (2003) Interlaminar connections in the neocortex. Cereb Cortex 13:5–14

    Article  PubMed  Google Scholar 

  41. Huang ZJ, Di Cristo G, Ango F (2007) Development of GABA innervation in the cerebral and cerebellar cortices. Nat Rev Neurosci 8:673–686

    Article  PubMed  CAS  Google Scholar 

  42. Dantzker JL, Callaway EM (2000) Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons. Nat Neurosci 3:701–707

    Article  PubMed  CAS  Google Scholar 

  43. Beaulieu C, Colonnier M (1989) Number of neurons in individual laminae of areas 3B, 4γ, and 6aα of the cat cerebral cortex: a comparison with major visual areas. J Comp Neurol 279:228–234

    Article  PubMed  CAS  Google Scholar 

  44. Lubke J, Feldmeyer D (2007) Excitatory signal flow and connectivity in a cortical column: focus on barrel cortex. Brain Struct Funct 212:3–17

    Article  PubMed  Google Scholar 

  45. Guillery RW, Feig SL, Lozsadi DA (1998) Paying attention to the thalamic reticuar nucleus. Trends Neurosci 21:28–32

    Article  PubMed  CAS  Google Scholar 

  46. Amunts K, Schleicher A, Ditterich A, Zilles K (2003) Broca’s region: cytoarchitectonic asymmetry and developmental changes. J Comp Neurol 465:72–89

    Article  PubMed  Google Scholar 

  47. Knecht S, Drager B, Deppe M, Bobe L, Lohmann H, Floel A, Ringelstein E-B, Henningsen H (2000) Handedness and hemispheric language dominance in healthy humans. Brain 123:2512–2518

    Article  PubMed  Google Scholar 

  48. Joseph R (1988) The right cerebral hemisphere: emotion, music, visual-spatial skills, body-image, dreams, and awareness. J Clin Psychol 44:630–673

    Article  PubMed  CAS  Google Scholar 

  49. Scheperjans F, Palomero-Gallagher N, Grefkes C, Schleicher A, Zilles K (2005) Transmitter receptors reveal segregation of cortical areas in the human superior parietal cortex: relations to visual and somatosensory regions. Neuroimage 28:362–379

    Article  PubMed  Google Scholar 

  50. Haxby JV, Grady CL, Horwitz B, Ungerleider LG, Mishkin M, Carsons RE, Herscovitch P, Schapiro MB, Rapoport SI (1991) Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proc Natl Acad Sci USA 88:1621–1625

    Article  PubMed  CAS  Google Scholar 

  51. Milner AD, Perrett DI, Johnston RS, Benson PJ, Jordan TR, Heeley DW, Bettucci D, Mortara F, Mutani R, Terazzi E, Davidson DLW (1991) Perception and action in “Visual Form Agnosia”. Brain 114:405–428; James TW, Culham JG, Keith Humphrey GK, Milner AD, Goodale MA (2003) Ventral occipital lesions impair object recognition but not object-directed grasping: an fMRI study. Brain 126:2463–2475

    Google Scholar 

  52. Jakobson LS, Archibald YM, Carey DP, Goodale MA (1991) A kinematic analysis of reaching and grasping movements in a patient recovering from optic ataxia. Neuropsychologia 29(8):803–809

    Article  PubMed  CAS  Google Scholar 

  53. Mikami A, Newsome WT, Wurtz RH (1986) Motion selectivity in Macaque visual cortex. II. Spatiotemporal range of directional interactions in MT and V1. J Neurophysiol 55:1328–1339

    PubMed  CAS  Google Scholar 

  54. Richer F, Martinez M, Robert M, Bouvier G, Saint-Hilaire J-M (1993) Stimulation of human somatosensory cortex: tactile and body displacement perceptions in medial region. J Exp Brain Res 93(1):173–176

    CAS  Google Scholar 

  55. Nudo RJ (1999) Recovery after damage to motor cortical areas. Curr Opin Neurobiol 9:740–747

    Article  PubMed  CAS  Google Scholar 

  56. Hari R, Forss N, Avikainen S, Kirveskari E, Salenius S, Rizzolatti G (1998) Activation of human primary motor cortex during action observation: a neuromagnetic study. Proc Natl Acad Sci USA 95:15061–15065

    Article  PubMed  CAS  Google Scholar 

  57. Dijkerman HC, de Haan EHF (2007) Somatosensory processes subserving perception and action. Behav Brain Sci 30:189–239

    Article  PubMed  Google Scholar 

  58. Berndt RS, Caramazza A (1980) A redefinition of the syndrome of Broca’s aphasia: implications for a neuropsychological model of language. Appl Psycholinguist 1:225–278

    Article  Google Scholar 

  59. Dronkers NF, Wilkins DP, Van Valin RD Jr, Redfern BB, Jaeger JJ (2004) Lesion analysis of the brain areas involved in language comprehension. Cognition 92:145–177

    Article  PubMed  Google Scholar 

  60. Binder JR, Frost JA, Hammeke TA, Cox RW, Rao SM, Prieto T (1997) Human brain language areas identified by functional magnetic resonance imaging. J Neurosci 17:353–362

    PubMed  CAS  Google Scholar 

  61. Thompson-Schill SL (2003) Neuroimaging studies of semantic memory: inferring “how” from “where”. Neuropsychologia 41:280–292

    Article  PubMed  Google Scholar 

  62. Grossman M, Koenig P, Kounios J, McMillan C, Work M, Peachie Moore P (2006) Category-specific effects in semantic memory: category–task interactions suggested by fMRI. Neuroimage 30:1003–1009

    Article  PubMed  Google Scholar 

  63. Vandenberghe R, Price C, Wise R, Josephs O, Frackowiak RS (1996) Functional anatomy of a common semantic system for words and pictures. Nature 383:254–256

    Article  PubMed  CAS  Google Scholar 

  64. Lebreton K, Desgranges B, Landeau B, Baron J-C, Eustache F (2001) Visual priming within and across symbolic format using a tachistoscopic picture identification task: a PET study. J Cogn Neurosci 13:670–686

    Article  PubMed  CAS  Google Scholar 

  65. Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202

    Article  PubMed  CAS  Google Scholar 

  66. Badre D, D’Esposito M (2009) Is the rostro-caudal axis of the frontal lobe hierarchical? Nat Rev Neurosci 10:659–669

    Article  PubMed  CAS  Google Scholar 

  67. Duncan J, Owen AM (2000) Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci 23:475–483

    Article  PubMed  CAS  Google Scholar 

  68. Kanwisher N, Stanley D, Harris A (1999) The fusiform face area is selective for faces not animals. Neuroreport 10:183–187

    Article  PubMed  CAS  Google Scholar 

  69. De Renzi E (1997) Prosopagnosia. In: Feinberg TE, Farah MJ (eds) Behavioral neurology and neuropsychology. McGraw-Hill, New York, pp 245–255

    Google Scholar 

  70. Whiteley AM, Warrington EK (1977) Prosopagnia: a clinical, psychological, and anatomical study of three patients. J Neurol Neurosurg Psychiatry 40:395–403

    Article  PubMed  CAS  Google Scholar 

  71. Gloning I, Gloning K, Jellinger K, Quatember R (1970) A case of “prosopagnosia” with necropsy findings. Neuropsychologia 8:199–204

    Article  PubMed  CAS  Google Scholar 

  72. Schultz TS, Grelotti DJ, Klin A, Kleinman J, Van der Gaag C, Marois R, Skudlarski P (2003) The role of the fusiform face area in social cognition: implications for the pathobiology of autism. Philos Trans R Soc Lond B 358:415–427

    Article  Google Scholar 

  73. Critchley HD, Daly EM, Bullmore ET, Williams SCR, Van Amelsvoort T, Robertson DM, Rowe A, Phillips M, McAlonan G, Howlin P, Murphy DGM (2000) The functional neuroanatomy of social behaviour: changes in cerebral blood flow when people with autistic disorder process facial expressions. Brain 123:2203–2212

    Article  PubMed  Google Scholar 

  74. Cabeza R, Nyberg L (2000) Imaging cognition II: an empirical review of 275 PET and fMRI studies. J Cogn Neurosci 12:1–47

    Article  PubMed  CAS  Google Scholar 

  75. Mistry RB, Isaac JTR, Crabtree JW (2008) Two differential frequency-dependent mechanisms regulating tonic firing of thalamic reticular neurons. Eur J Neurosci 27:2643–2656

    Article  PubMed  Google Scholar 

  76. MacDonald KD, Fifkova E, Jones MS, Barth DS (1998) Focal stimulation of the thalamic reticular nucleus induces focal gamma waves in cortex. J Physiol 79:474–477

    CAS  Google Scholar 

  77. Vertes RP, Albo Z, Viana Di Prisco G (2001) Theta-rhythmically firing neurons in the anterior thalamus: implications for mnemonic functions of Papez’s circuit. Neuroscience 104:619–625

    Article  PubMed  CAS  Google Scholar 

  78. Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, Berger MS, Barbaro NM, Knight RT (2006) High gamma power is phase-locked to theta oscillations in human neocortex. Science 313:1626–1628

    Article  PubMed  CAS  Google Scholar 

  79. Buzsaki G, Bickford RG, Ponomareff G, Thal LJ, Mandel R, Gage FH (1988) Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J Neurosci 8:4007–4026

    PubMed  CAS  Google Scholar 

  80. Timofeev I, Bazhenov M (2005) Mechanisms and biological role of thalamocortical oscillations. In: Columbus F (ed) Trends in chronobiology research. Nova Science Publishers, New York

    Google Scholar 

  81. Arcelli P, Frassoni C, Regondi MC, De Biasi S, Spreafico R (1997) GABAergic neurons in mammalian thalamus: a marker of thalamic complexity? Brain Res Bull 42:27–37

    Article  PubMed  CAS  Google Scholar 

  82. Barroso-Chinea P, Castle M, Aymerich MS, Lanciego JL (2008) Expression of vesicular glutamate transporters 1 and 2 in the cells of origin of the rat thalamostriatal pathway. J Chem Neuroanat 35:101–107

    Article  PubMed  CAS  Google Scholar 

  83. Castro-Alamancos MA, Calcagnotto ME (1999) Presynaptic long-term potentiation in corticothalamic synapses. J Neurosci 19:9090–9097

    PubMed  CAS  Google Scholar 

  84. Vogt BA, Rosene DL, Peters A (1981) Synaptic termination of thalamic and callosal afferents in cingulate cortex of the rat. J Comp Neurol 201:265–283

    Article  PubMed  CAS  Google Scholar 

  85. Viaene AN, Petrof I, Sherman SM (2011) Synaptic properties of thalamic input to layers 2/3 and 4 of primary somatosensory and auditory cortices. J Neurophysiol 105:279–292

    Article  PubMed  Google Scholar 

  86. Sherman SM (2012) Thalamocortical interactions. Curr Opin Neurobiol 22:575–579

    Article  PubMed  CAS  Google Scholar 

  87. Petrof I, Sherman SM (2009) Synaptic properties of the mammillary and cortical afferents to the anterodorsal thalamic nucleus in the mouse. J Neurosci 29:7815–7819

    Article  PubMed  CAS  Google Scholar 

  88. Sherman SM (2005) Thalamic relays and cortical functioning. Prog Brain Res 149:107–126

    Article  PubMed  Google Scholar 

  89. McCormick DA (1992) Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog Neurobiol 39:337–388

    Article  PubMed  CAS  Google Scholar 

  90. Middleton FA, Strick PL (2001) Cerebellar projections to the prefrontal cortex of the primate. J Neurosci 21(2):700–712

    PubMed  CAS  Google Scholar 

  91. Sherman SM, Guillery RW (1996) Functional organization of thalamocortical relays. J Neurophysiol 76:1367–1395

    PubMed  CAS  Google Scholar 

  92. Sanchez-Gonzalez MA, Garcia-Cabezas MA, Rico B, Cavada C (2005) The primate thalamus is a key target for brain dopamine. J Neurosci 25:6076–6083

    Article  PubMed  CAS  Google Scholar 

  93. Van der Werf YD, Witter MP, Groenewegen HJ (2002) The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res Rev 39:107–140

    Article  PubMed  Google Scholar 

  94. Parton A, Husain M (2004) Spatial neglect. Adv Clin Neurosci Rehabil 4:17–18

    Google Scholar 

  95. Karnath H-O, Himmelbach M, Rorden C (2002) The subcortical anatomy of human spatial neglect: putamen, caudate nucleus and pulvinar. Brain 125:350–360

    Article  PubMed  Google Scholar 

  96. Van Der Werf YD, Jolles J, Witter MP, Uylings HBM (2003) Contributions of thalamic nuclei to declarative memory functioning. Cortex 39:1047–1062

    Article  PubMed  Google Scholar 

  97. Rees G (2009) Visual attention: the thalamus at the centre? Curr Biol 19:R213–R214

    Article  PubMed  CAS  Google Scholar 

  98. O’Connor DH, Fukui MM, Pinsk MA, Kastner S (2002) Attention modulates responses in the human lateral geniculate nucleus. Nat Neurosci 5:1203–1209

    Article  PubMed  CAS  Google Scholar 

  99. McAlonan K, Cavanaugh J, Wurtz RH (2006) Attentional modulation of thalamic reticular neurons. J Neurosci 26:4444–4450

    Article  PubMed  CAS  Google Scholar 

  100. Mayo JP (2009) Intrathalamic mechanisms of visual attention. J Neurophysiol 101:1123–1125

    Article  PubMed  Google Scholar 

  101. Jensen O, Kaiser J, Lachaux J-P (2007) Human gamma-frequency oscillations associated with attention and memory. Trends Neurosci 30:317–324

    Article  PubMed  CAS  Google Scholar 

  102. Jones EG (2001) The thalamic matrix and thalamocortical synchrony. Trends Neurosci 24:595–601

    Article  PubMed  CAS  Google Scholar 

  103. Llinas RR, Leznik E, Urbano FJ (2002) Temporal binding via cortical coincidence detection of specific and nonspecific thalamocortical inputs: a voltage-dependent dye-imaging study in mouse brain slices. Proc Natl Acad Sci USA 99:449–454

    Article  PubMed  CAS  Google Scholar 

  104. Graybiel AM (1990) Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci 13:244–254

    Article  PubMed  CAS  Google Scholar 

  105. Nambu A (2007) Globus pallidus internal segment. Prog Brain Res 160:135–150

    Article  PubMed  CAS  Google Scholar 

  106. Battaglini PP, Squatrito S, Galletti C, Maioli MG, Riva Sanseverino E (1982) Bilateral projections from the visual cortex to the striatum in the cat. Exp Brain Res 47:28–32

    Article  PubMed  CAS  Google Scholar 

  107. Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114:2283–2301

    Article  PubMed  Google Scholar 

  108. Walker FO (2007) Huntingdon’s disease. Lancet 369:218–228

    Article  PubMed  CAS  Google Scholar 

  109. Temel Y, Blokland A, Steinbusch HWM (2005) The functional role of the subthalamic nucleus in cognitive and limbic circuits. Prog Neurobiol 76(6):393–413

    Article  PubMed  CAS  Google Scholar 

  110. Singer HS, Reiss AL, Brown JE et al (1993) Volumetric MRI changes in basal ganglia of children with Tourette’s syndrome. Neurology 43:950–956

    Article  PubMed  CAS  Google Scholar 

  111. Singer HS, Minzer K (2003) Neurobiology of Tourette’s syndrome: concepts of neuroanatomic localization and neurochemical abnormalities. Brain Dev 25(S1):S70–S84

    Article  PubMed  Google Scholar 

  112. Brown LL, Schneider JS, Lidsky TI (1997) Sensory and cognitive functions of the basal ganglia. Curr Opin Neurobiol 7:157–163

    Article  PubMed  CAS  Google Scholar 

  113. Packard MG, Knowlton BJ (2002) Learning and memory functions of the basal ganglia. Annu Rev Neurosci 25:563–593

    Article  PubMed  CAS  Google Scholar 

  114. Dubois D, Pillon B (1997) Cognitive deficits in Parkinson’s disease. J Neurol 244:2–8

    Article  PubMed  CAS  Google Scholar 

  115. Matison R, Mayeux R, Rosen J, Fahn S (1982) ‘Tip-of-the-tongue’ phenomenon in Parkinson’s disease. Neurology 32:567–570

    Article  PubMed  CAS  Google Scholar 

  116. Ikemoto S, Glazier BS, Murphy JM, McBride WJ (1997) Role of dopamine D1 and D2 receptors in the nucleus accumbens in mediating reward. J Neurosci 17(21):8580–8587; Smith KS, Tindell AJ, Aldridge JW, Berridge KC (2009) Ventral palladium roles in reward and motivation. Behav Brain Res 196:155–167; Geisler S, Wise RA (2008) Functional implications of glutamatergic projections to the ventral tegmental area. Rev Neurosci 19:227–244

    Google Scholar 

  117. Boraud T, Brown P, Goldberg JA, Graybiel AM, Magill PJ, Bolam JP, Ingham CA (2005) Oscillations in the basal ganglia: the good, the bad and the unexpected. In: Magill PJ (ed) The basal ganglia VIII. Springer, New York, pp 3–24

    Google Scholar 

  118. Bergman H, Feingold A, Nini A, Raz A, Slovin H, Abeles M, Vaadia E (1998) Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. Trends Neurosci 21:32–38

    Article  PubMed  CAS  Google Scholar 

  119. Sharott A, Moll CKE, Engler G, Denker M, Grün S, Engel AK (2009) Different subtypes of striatal neurons are selectively modulated by cortical oscillations. J Neurosci 29:4571–4585

    Article  PubMed  CAS  Google Scholar 

  120. Kubota Y, Kawaguchi Y (2000) Dependence of GABAergic synaptic areas on the interneuron type and target size. J Neurosci 20:375–386

    PubMed  CAS  Google Scholar 

  121. Ibanez-Sandoval O, Tecuapetla F, Unal B, Shah F, Koos T, Tepper JM (2010) Electrophysiological and morphological characteristics and synaptic connectivity of tyrosine hydroxylase-expressing neurons in adult mouse striatum. J Neurosci 30:6999–7016

    Article  PubMed  CAS  Google Scholar 

  122. English DF, Ibanez-Sandoval O, Stark E, Tecuapetla F, Buzsaki G, Diesseroth K, Tepper JM, Koos T (2011) GABAergic circuits mediate the reinforcement-related signals of striatal cholinergic interneurons. Nat Neurosci 15:123–130

    Article  PubMed  CAS  Google Scholar 

  123. Yan Z, Flores-Hernandez J, Surmeier DJ (2001) Coordinated expression of muscarinic receptor messenger RNAs in striatal medium spiny neurons. Neuroscience 103:1017–1024

    Article  PubMed  CAS  Google Scholar 

  124. Kincaid AE, Zheng T, Wilson CJ (1998) Connectivity and convergence of single corticostriatal axons. J Neurosci 18:4722–4731

    PubMed  CAS  Google Scholar 

  125. Smith Y, Bennett BD, Bolam JP, Parent A, Sadikot AF (1994) Synaptic relationships between dopaminergic afferents and cortical or thalamic input in the sensorimotor territory of the striatum in monkey. J Comp Neurol 344:1–19

    Article  PubMed  CAS  Google Scholar 

  126. Freund TF, Powell JF, Smith AD (1984) Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines. Neuroscience 13:1189–1215

    Article  PubMed  CAS  Google Scholar 

  127. Moss J, Bolam JP (2008) A dopaminergic axon lattice in the striatum and its relationship with cortical and thalamic terminals. J Neurosci 28(44):11221–11230

    Article  PubMed  CAS  Google Scholar 

  128. Graybiel AM, Ragsdale CW Jr (1978) Histochemically distinct compartments in the striatum of human, monkey, and cat demonstrated by acetylthiocholinesterase staining. Proc Natl Acad Sci USA 75:5723–5726

    Article  PubMed  CAS  Google Scholar 

  129. Levey AI, Hersch SM, Rye DB, Sunahara RK, Niznik HB, Kitt CA, Price DL, Maggio R, Brann MR, Ciliax BJ (1993) Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies. Proc Natl Acad Sci USA 90:8861–8865

    Article  PubMed  CAS  Google Scholar 

  130. Langer LF, Graybiel AM (1989) Distinct nigrostriatal projection systems innervate striosomes and matrix in the primate striatum. Brain Res 498:344–350

    Article  PubMed  CAS  Google Scholar 

  131. Alexander GE, DeLong MR (1985) Microstimulation of the primate neostriatum. I. Physiological properties of striatal microexcitable zones. J Neurophysiol 53:1401–1416

    PubMed  CAS  Google Scholar 

  132. West MO, Carelli RM, Cohen SM, Gardner JP, Pomerantz M, Chapin JK, Woodward DJ (1990) A region in the dorsolateral striatum of the rat exhibiting single unit correlations with specific locomotor limb movements. J Neurophysiol 64:1233–1246

    PubMed  CAS  Google Scholar 

  133. Tippett LJ, Waldvogel HJ, Thomas SJ, Hogg VM, van Roon-Mom W, Synek BJ, Graybiel AM, Faull RLM (2007) Striosomes and mood dysfunction in Huntington’s disease. Brain 130:206–221

    Article  PubMed  Google Scholar 

  134. Reiner A, Jiao Y, Del Mar N, Laverghetta AV, Lei WL (2003) Differential morphology of pyramidal tract-type and intratelencephalically projecting-type corticostriatal neurons and their intrastriatal terminals in rats. J Comp Neurol 457:420–440

    Article  PubMed  Google Scholar 

  135. Reiner A, Hart NM, Lei W, Deng Y (2010) Corticostriatal projection neurons – dichotomous types and dichotomous functions. Front Neuroanat 4:142

    Article  PubMed  Google Scholar 

  136. Gerfen CR (1989) The neostriatal mosaic: striatal patch-matrix organization is related to cortical lamination. Science 246:385–388

    Article  PubMed  CAS  Google Scholar 

  137. Ragsdale CW, Graybiel AM (1990) A simple ordering of neocortical areas established by the compartmental organization of their striatal projections. Proc Natl Acad Sci USA 87:6196–6199

    Article  PubMed  Google Scholar 

  138. Parthasarathy HB, Schall JD, Graybiell AM (1992) Distributed but convergent ordering of corticostriatal projections: analysis of the frontal eye field and the supplementary eye field in the macaque monkey. J Neurosci 12(11):4468–4488

    PubMed  CAS  Google Scholar 

  139. Ballion B, Mallet N, Bezard E, Lanciego JL, Gonon F (2008) Intratelencephalic corticostriatal neurons equally excite striatonigral and striatopallidal neurons and their discharge activity is selectively reduced in experimental parkinsonism. Eur J Neurosci 27:2313–2321

    Article  PubMed  Google Scholar 

  140. Zheng T, Wilson CJ (2002) Corticostriatal combinatorics: the implications of corticostriatal axonal arborizations. J Neurophysiol 87:1007–1017

    PubMed  CAS  Google Scholar 

  141. Wilson CJ (1992) Dendritic morphology, inward rectification and the functional properties of neostriatal neurons. In: McKenna T, Davis J, Zornetzer SF (eds) Single neuron computation. Academic, San Diego

    Google Scholar 

  142. Groenewegen HJ, Vermeulen-Van der Zee E, te Kortschot A, Witter MP (1987) Organization of the projections from the subiculum to the ventral striatum in the rat. A study using anterograde transport of phaseolus vulgaris leucoagglutinin. Neuroscience 23:103–120

    Article  PubMed  CAS  Google Scholar 

  143. Ragsdale CW, Graybiel AM (1988) Fibers from the basolateral nucleus of the amygdala selectively innervate striosomes in the caudate nucleus of the cat. J Comp Neurol 269:506–522

    Article  PubMed  Google Scholar 

  144. Kita H, Kwai ST (1990) Amygdaloid projections to the frontal cortex and the striatum in the rat. J Comp Neurol 298:40–49

    Article  PubMed  CAS  Google Scholar 

  145. Sershen H, Hashim A, Lajtha A (2000) Serotonin-mediated striatal dopamine release involves the dopamine uptake site and the serotonin receptor. Brain Res Bull 53(3):353–357

    Article  PubMed  CAS  Google Scholar 

  146. Stoof JC, Drukarch B, De Boer P, Westerink BHC, Groenewegen HJ (1992) Regulation of the activity of striatal cholinergic neurons by dopamine. Neuroscience 47:755–770; Aosaki T, Kiuchi K, Kawaguchi Y (1998) Dopamine D1-like receptor activation excites rat striatal large aspiny neurons in vitro. J Neurosci 18(14):5180–5190

    Google Scholar 

  147. Blomeley C, Bracci E (2005) Excitatory effects of serotonin on rat striatal cholinergic interneurones. J Physiol 569:715–721

    Article  PubMed  CAS  Google Scholar 

  148. Pisani A, Bonsi P, Centonze D, Martorana A, Fusco F, Sancesario G, De Persis C, Bernardi G, Calabresi P (2003) Activation of β1-adrenoceptors excites striatal cholinergic interneurons through a cAMP-dependent, protein kinase-independent pathway. J Neurosci 15:5272–5282

    Google Scholar 

  149. Mavridis M, Degryse A-D, Lategan AJ, Marien MR, Colpaert FC (1991) Effects of locus coeruleus lesions on Parkinsonian signs, striatal dopamine and substantia nigra cell loss after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in monkeys: a possible role for the locus coeruleus in the progression of Parkinson’s disease. Neuroscience 41:507–523

    Article  PubMed  CAS  Google Scholar 

  150. Tepper JM, Bolam JP (2004) Functional diversity and specificity of neostriatal interneurons. Curr Opin Neurobiol 14:685–692

    Article  PubMed  CAS  Google Scholar 

  151. Parent A, Hazrati L-N (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev 20:91–127

    Article  PubMed  CAS  Google Scholar 

  152. Tepper JM, Koós T, Wilson CJ (2004) GABAergic microcircuits in the neostriatum. Trends Neurosci 27:662–669

    Article  PubMed  CAS  Google Scholar 

  153. Chuhma N, Tanaka KF, Hen R, Rayport S (2011) Functional connectome of the striatal medium spiny neuron. J Neurosci 31:1183–1192

    Article  PubMed  CAS  Google Scholar 

  154. Parent A, Hazrati L-N (1995) Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Rev 20:128–154

    Article  PubMed  CAS  Google Scholar 

  155. Sato F, Parent M, Levesque M, Parent A (2000) Axonal branching pattern of neurons of the subthalamic nucleus in primates. J Comp Neurol 424:142–152

    Article  PubMed  CAS  Google Scholar 

  156. Nakano K, Hasegawa Y, Tokushige A, Nakagawa S, Kayahara T, Mizuno N (1990) Topographical projections from the thalamus, subthalamic nucleus and pedunculopontine tegmental nucleus to the striatum in the Japanese monkey, Macaca fuscata. Brain Res 537:54–68

    Article  PubMed  CAS  Google Scholar 

  157. Levesque J-C, Parent A (2005) GABAergic interneurons in human subthalamic nucleus. Mov Disord 20(5):574–584

    Article  PubMed  Google Scholar 

  158. Hazrati L-N, Parent A (1993) Striatal and subthalamic afferents to the primate pallidum: interactions between two opposite chemospecific neuronal systems. Prog Brain Res 99:89–104

    Article  PubMed  CAS  Google Scholar 

  159. Kita H (2007) Globus pallidus external segment. Prog Brain Res 160:111–133

    Article  PubMed  CAS  Google Scholar 

  160. Cooper AJ, Stanford IM (2002) Calbindin D-28k positive projection neurones and calretinin positive interneurones of the rat globus pallidus. Brain Res 929:243–251

    Article  PubMed  CAS  Google Scholar 

  161. Cheramy A, Leviel V, Glowinski J (1981) Dendritic release of dopamine in the substantia nigra. Nature 289:537–542

    Article  PubMed  CAS  Google Scholar 

  162. Mitchell SJ, Richardson RT, Baker FH, DeLong MR (1987) The primate globus pallidus: neuronal activity related to direction of movement. Exp Brain Res 68:491–505

    PubMed  CAS  Google Scholar 

  163. Gardiner TW, Kitai ST (1992) Single-unit activity in the globus pallidus and neostriatum of the rat during performance of a trained head movement. Exp Brain Res 88:517–530

    Article  PubMed  CAS  Google Scholar 

  164. Hajos M, Greenfield SA (1994) Synaptic connections between pars compacta and pars reticulata neurones: electrophysiological evidence for functional modules within the substantia nigra. Brain Res 660:216–224

    Article  PubMed  CAS  Google Scholar 

  165. Tepper JM, Abercrombie ED, Bolam JP (2007) Basal ganglia macrocircuits. Prog Brain Res 160:3–7

    Article  PubMed  CAS  Google Scholar 

  166. Tritsch NX, Ding JB, Sabatini BL (2012) Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature 490:262–266

    Article  PubMed  CAS  Google Scholar 

  167. Yung WH, Hausser MA, Jack JJB (1991) Electrophysiology of dopaminergic and non-dopaminergic neurones of the guinea-pig substantia nigra pars compacta in vitro. J Physiol 436:643–667

    PubMed  CAS  Google Scholar 

  168. Hebb MO, Robertson HA (2000) Identification of a subpopulation of substantia nigra pars compacta γ-aminobutyric acid neurons that is regulated by basal ganglia activity. J Comp Neurol 416:30–44

    Article  PubMed  CAS  Google Scholar 

  169. Groenewegen HJ, Wright CI, Beijer AV, Voorn P (1999) Convergence and segregation of ventral striatal inputs and outputs. Ann N Y Acad Sci 877:49–63

    Article  PubMed  CAS  Google Scholar 

  170. Zahm DS (1999) Functional-anatomical implications of the nucleus accumbens core and shell subterritories. Ann N Y Acad Sci 877:113–128

    Article  PubMed  CAS  Google Scholar 

  171. Sadikot AF, Sasseville R (1997) Neurogenesis in the mammalian neostriatum and nucleus accumbens: parvalbumin-immunoreactive GABAergic interneurons. J Comp Neurol 389:193–211

    Article  PubMed  CAS  Google Scholar 

  172. Wright CI, Beijer AVJ, Groenewegen HJ (1996) Basal amygdaloid complex afferents to the rat nucleus accumbens are compartmentally organized. J Neurosci 15(5):1877–1893

    Google Scholar 

  173. Pennartz CMA, Groenewegen HJ, Lopes Da Silva FH (1994) The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data. Prog Neurobiol 47:719–761

    Article  Google Scholar 

  174. Haber SN, Groenewegen HJ, Grove EA, Nauta WJH (1985) Efferent connections of the ventral pallidum: evidence of a dual striato pallidofugal pathway. J Comp Neurol 235:322–335

    Article  PubMed  CAS  Google Scholar 

  175. Kretschmer BD (2000) NMDA receptor antagonist-induced dopamine release in the ventral pallidum does not correlate with motor activation. Brain Res 859:147–156; Geisler S, Derst C, Veh RW, Zahm DS (2007) Glutamatergic afferents of the ventral tegmental area in the rat. J Neurosci 27(21):5730–5743

    Google Scholar 

  176. Kretschmer BD (2000) NMDA receptor antagonist-induced dopamine release in the ventral pallidum does not correlate with motor activation. Brain Res 859:147–156

    Article  PubMed  CAS  Google Scholar 

  177. Smith KS, Tindell AJ, Aldridge JW, Berridge KC (2009) Ventral pallidum roles in reward and motivation. Behav Brain Res 196:155–167

    Article  PubMed  Google Scholar 

  178. Johnson SW, North RA (1992) Two types of neurone in the rat ventral tegmental area and their synaptic inputs. J Physiol 450:455–468

    PubMed  CAS  Google Scholar 

  179. Geisler S, Wise RA (2008) Functional implications of glutamatergic projections to the ventral tegmental area. Rev Neurosci 19(4–5):227–244

    PubMed  Google Scholar 

  180. Ullsperger M, von Cramon DY (2003) Error monitoring using external feedback: specific roles of the habenular complex, the reward system, and the cingulate motor area revealed by functional magnetic resonance imaging. J Neurosci 23:4308–4314

    PubMed  CAS  Google Scholar 

  181. Ungless MA, Magill PJ, Bolam JP (2004) Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science 303:2040–2042

    Article  PubMed  CAS  Google Scholar 

  182. Beckstead RM, DoMesick VB, Nauta WJH (1979) Efferent connections of the substantia nigra and ventral tegmental areas in the rat. Brain Res 175:191–217

    Article  PubMed  CAS  Google Scholar 

  183. Carr DB, Sesack SR (2000) Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. J Neurosci 20:3864–3873

    PubMed  CAS  Google Scholar 

  184. Lovinger DM (2010) Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum. Neuropharmacology 58:951–961

    Article  PubMed  CAS  Google Scholar 

  185. Martinez-Gonzalez C, Bolam JP, Mena-Segovia J (2011) Topographical organization of the pedunculopontine nucleus. Front Neuroanat 5:22

    Article  PubMed  Google Scholar 

  186. Good CH, Lupica CR (2010) Afferent-specific AMPA receptor subunit composition and regulation of synaptic plasticity in midbrain dopamine neurons by abused drugs. J Neurosci 30:7900–7909

    Article  PubMed  CAS  Google Scholar 

  187. Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375

    Article  PubMed  CAS  Google Scholar 

  188. Bolam JP, Brown MTC, Moss J, Magill PJ (2007) Basal ganglia: internal organization. Encycl Neurosci 2:97–104

    Google Scholar 

  189. Gerfen CR, Surmeier DJ (2011) Modulation of striatal projection systems by dopamine. Annu Rev Neurosci 34:441–466

    Article  PubMed  CAS  Google Scholar 

  190. Floresco SB, Todd CL, Grace AA (2001) Glutamatergic afferents from hippocampus to the nucleus accumbens regulate activity of ventral tegmental area dopamine neurons. J Neurosci 21:4915–4922

    PubMed  CAS  Google Scholar 

  191. Hyland BI, Reynolds JNJ, Hay J, Perk CG, Miller R (2002) Firing modes of midbrain dopamine cells in the freely moving rat. Neuroscience 114:475–492

    Article  PubMed  CAS  Google Scholar 

  192. Overton PG, Clark D (1997) Burst firing in midbrain dopaminergic neurons. Brain Res Rev 25:312–334

    Article  PubMed  CAS  Google Scholar 

  193. Grace AA, Bunney BS (1979) Paradoxical GABA excitation of nigral dopaminergic cells: indirect mediation through reticulata inhibitory neurons. Eur J Pharmacol 59:211–218

    Article  PubMed  CAS  Google Scholar 

  194. Goto Y, Otani S, Grace AA (2007) The Yin and Yang of dopamine release: a new perspective. Neuropharmacology 53:583–587

    Article  PubMed  CAS  Google Scholar 

  195. Otake K, Nakamura Y (2000) Possible pathways through which neurons of the shell of the nucleus accumbens influence the outflow of the core of the nucleus accumbens. Brain Dev 22:S17–S26

    Article  PubMed  Google Scholar 

  196. Alexander GE, Mahlon R, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  PubMed  CAS  Google Scholar 

  197. Tekin S, Jeffrey L, Cummings JL (2002) Frontal–subcortical neuronal circuits and clinical neuropsychiatry: an update. J Psychosom Res 53:647–654

    Article  PubMed  Google Scholar 

  198. Crutcher MD, DeLong MR (1984) Single cell studies of the primate putamen. II. Relations to direction of movement and pattern of muscular activity. Exp Brain Res 53:244–258

    Article  PubMed  CAS  Google Scholar 

  199. Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13(7):266–271

    Article  PubMed  CAS  Google Scholar 

  200. Jaeger D, Gilman S, Wayne Aldridge JW (1995) Neuronal activity in the striatum and pallidum of primates related to the execution of externally cued reaching movements. Brain Res 694:111–127

    Article  PubMed  CAS  Google Scholar 

  201. Haber SN, Fudge JL, McFarland NR (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20:2369–2382

    PubMed  CAS  Google Scholar 

  202. McDonald AJ (2003) Is there an amygdala and how far does it extend? An anatomical perspective. Ann N Y Acad Sci 985:1–21

    Article  PubMed  Google Scholar 

  203. Kemppainen S, Jolkkonen E, Pitkanen A (2002) Projections from the posterior cortical nucleus of the amygdala to the hippocampal formation and parahippocampal region in rat. Hippocampus 12:735–755

    Article  PubMed  Google Scholar 

  204. Swanson LW (2003) The amygdala and its place in the cerebral hemisphere. Ann N Y Acad Sci 985:174–184

    Article  PubMed  Google Scholar 

  205. Meunier M, Bachevalier J, Murray EA, Malkova L, Mishkin M (1999) Effects of aspiration vs. neurotoxic lesions of the amygdala on emotional responses in monkeys. Eur J Neurosci 11:4403–4418

    Article  PubMed  CAS  Google Scholar 

  206. Fanselow MS, Gale GD (1994) The amygdala, fear, and memory. Proc Natl Acad Sci USA 91:11771–11776

    Article  Google Scholar 

  207. Ohman A (2005) The role of the amygdala in human fear: automatic detection of threat. Psychoneuroendocrinology 30(10):953–958

    Article  PubMed  Google Scholar 

  208. Bechara A, Tranel D, Damasio H, Adolphs R, Rockland C, Damasio AR (1995) Declarative knowledge relative to the amygdala and hippocampus in humans. Science 269:1115–1118

    Article  PubMed  CAS  Google Scholar 

  209. Gallagher M, Holland PC (1994) The amygdala complex: multiple roles in associative learning and attention. Proc Natl Acad Sci USA 91:11771–11776

    Article  PubMed  CAS  Google Scholar 

  210. Ekman P, Friesen WV (1971) Constants across cultures in the face and emotion. J Pers Soc Psychol 17(2):124–129

    Article  PubMed  CAS  Google Scholar 

  211. Lanteaume L, Khalfa S, Regis J, Marquis P, Chauvel P, Bartolomei F (2007) Emotion induction after direct intracerebral stimulations of human amygdala. Cereb Cortex 17:1307–1313

    Article  PubMed  Google Scholar 

  212. Fanselow MS, Joseph E, LeDoux JE (1999) Why we think plasticity underlying viewpoint Pavlovian fear conditioning occurs in the basolateral amygdala. Neuron 23:229–232

    Article  PubMed  CAS  Google Scholar 

  213. Baxter MG, Murray EA (2002) The amygdala and reward. Nat Rev Neurosci 3:563–573

    Article  PubMed  CAS  Google Scholar 

  214. Málková L, Gaffan D, Murray EA (1997) Excitotoxic lesions of the amygdala fail to produce impairments in visual learning for auditory secondary reinforcement but interfere with reinforcer devaluation effects in rhesus monkeys. J Neurosci 17:6011–6020

    PubMed  Google Scholar 

  215. LeDoux JE, Cicchetti P, Xagoraris A, Romanski LM (1990) The lateral amygdaloid nucleus: sensory interface of the amygdala in fear conditioning. J Neurosci 10:1062–1069

    PubMed  CAS  Google Scholar 

  216. Adolphs R, Tranel D, Buchanan AW (2005) Amygdala damage impairs emotional memory for gist but not details of complex stimuli. Nat Neurosci 8:512–518

    Article  PubMed  CAS  Google Scholar 

  217. Buchanan AW, Tranel D, Adolphs R (2003) A specific role for the human amygdala in olfactory memory. Learn Mem 10:319–325

    Article  PubMed  Google Scholar 

  218. Likhtik E, Pelletier JG, Popescu AT, Pare D (2006) Identification of basolateral amygdala projection cells and interneurons using extracellular recordings. J Neurophysiol 96:3257–3265

    Article  PubMed  Google Scholar 

  219. Nishijo H, Ono T, Nishino H (1988) Single neuron responses in amygdala of alert monkey during complex sensory stimulation with affective significance. J Neurosci 8:3570–3583

    PubMed  CAS  Google Scholar 

  220. Duguid I, Sjostrom PJ (2006) Novel presynaptic mechanisms for coincidence detection in synaptic plasticity. Curr Opin Neurobiol 16:312–322

    Article  PubMed  CAS  Google Scholar 

  221. Humeau Y, Shaban H, Bissiere S, Luthi A (2003) Presynaptic induction of heterosynaptic associative plasticity in the mammalian brain. Nature 426:841–845

    Article  PubMed  CAS  Google Scholar 

  222. Humeau Y, Herry C, Kemp N, Shaban H, Fourcaudot E, Bissiere S, Luthi A (2005) Dendritic spine heterogeneity determines afferent-specific Hebbian plasticity in the amygdala. Neuron 45:119–131

    Article  PubMed  CAS  Google Scholar 

  223. Samson RD, Pare D (2005) Activity-dependent synaptic plasticity in the central nucleus of the amygdala. J Neurosci 25:1847–1855

    Article  PubMed  CAS  Google Scholar 

  224. Walker DL, Davis M (2002) The role of amygdala glutamate receptors in fear learning, fear-potentiated startle, and extinction. Pharmacol Biochem Behav 71:379–392

    Article  PubMed  CAS  Google Scholar 

  225. Petrovich GD, Canteras NS, Swanson LW (2001) Combinatorial amygdalar inputs to hippocampal domains and hypothalamic behavior systems. Brain Res Rev 38(2001):247–289

    Article  PubMed  CAS  Google Scholar 

  226. Finch DM (1996) Neurophysiology of converging synaptic inputs from the rat prefrontal cortex, amygdala, midline thalamus, and hippocampal formation onto single neurons of the caudate/putamen and nucleus accumbens. Hippocampus 6(5):495–512

    Article  PubMed  CAS  Google Scholar 

  227. McDonald AJ (1991) Topographical organization of amygdaloid projections to the caudatoputamen, nucleus accumbens and related striatal-like areas of the rat brain. Neuroscience 44:15–33

    Article  PubMed  CAS  Google Scholar 

  228. Pare D, Duvarci S (2012) Amygdala microcircuits mediating fear expression and extinction. Curr Opin Neurobiol 22:717–723

    Article  PubMed  CAS  Google Scholar 

  229. Viviani D, Charlet A, van den Burg E, Robinet C, Hurni N, Abatis M, Magara F, Stoop R (2011) Oxytocin selectively gates fear responses through distinct outputs from the central amygdala. Science 333:104–107

    Article  PubMed  CAS  Google Scholar 

  230. Ciocchi S, Herry C, Grenier F, Wolff SBE, Letzkus JJ, Vlachos I, Ehrlich I, Sprengel R, Deisseroth K, Stadler MB, Muller C, Luthi A (2010) Encoding of conditioned fear in central amygdala inhibitory circuits. Nature 468:277–282

    Article  PubMed  CAS  Google Scholar 

  231. Knobloch HS, Charlet A, Hoffmann LC, Eliava M, Khrulev S, Cetin AH, Osten P, Schwarz MK, Seeburg PH, Stoop R, Grinevich V (2012) Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 73:553–566

    Article  PubMed  CAS  Google Scholar 

  232. Gozzi A, Jain A, Giovanelli A, Bertollini C, Crestan V, Schwarz AJ, Tsetsenis T, Ragozzino D, Gross CT, Bifone A (2010) A neural switch for active and passive fear. Neuron 67:656–666

    Article  PubMed  CAS  Google Scholar 

  233. Saper CB (2004) Hypothalamus. In: Paxinos G, Mai JK (eds) The human nervous system. Elsevier, San Diego, pp 513–550

    Chapter  Google Scholar 

  234. Simerly RB (2004) Anatomical substrates of hypothalamic integration. In: Paxinos G (ed) The rat nervous system. Elsevier, San Diego, pp 335–368

    Google Scholar 

  235. Berger B, Esclapez M, Alvarez C, Meyer G, Catala M (2001) Human and monkey fetal brain development of the supramammillary-hippocampal projections: a system involved in the regulation of theta activity. J Comp Neurol 429:515–529

    Article  PubMed  CAS  Google Scholar 

  236. Swaab DF (2006) The human hypothalamus in metabolic and episodic disorders. Prog Brain Res 153:3–45

    Article  PubMed  CAS  Google Scholar 

  237. Palmini A, Chandler C, Andermann F, Costa da Costa J, Paglioli-Neto E, Polkey C, Rosenblatt B, Montes J, Martínez JV, Farmer JP, Sinclair B, Aronyk K, Paglioli E, Coutinho L, Raupp S, Portuguez M (2002) Resection of the lesion in patients with hypothalamic hamartomas and catastrophic epilepsy. Neurology 58:1338–1347

    Article  PubMed  CAS  Google Scholar 

  238. Tanaka Y, Miyazawa Y, Akaoka F, Yamada T (1997) Amnesia following damage to the mammillary bodies. Neurology 48:160–165

    Article  PubMed  CAS  Google Scholar 

  239. Rolls ET, Burton MJ, Mora R (1976) Hypothalamic neuronal responses associated with the sight of food. Brain Res 111:53–66

    Article  PubMed  CAS  Google Scholar 

  240. Panatier A, Gentles SJ, Bourque CW, Oliet SHR (2006) Activity-dependent synaptic plasticity in the supraoptic nucleus of the rat hypothalamus. J Physiol 573:711–721

    Article  PubMed  CAS  Google Scholar 

  241. Rao Y, Liu Z-W, Borok E, Rabenstein RL, Shanabrough M, Lu M, Picciotto MR, Horvath TL, Gao X-B (2007) Prolonged wakefulness induces experience-dependent synaptic plasticity in mouse hypocretin/orexin neurons. J Clin Invest 117:4022–4033

    Article  PubMed  CAS  Google Scholar 

  242. Rempel-Clower NL, Barbas H (1998) Topographic organization of connections between the hypothalamus and prefrontal cortex in the rhesus monkey. J Comp Neurol 398:393–419

    Article  PubMed  CAS  Google Scholar 

  243. Mesulam M-M, Mufson EJ, Levey AI, Wainer BH (1983) Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol 214:170–197

    Article  PubMed  CAS  Google Scholar 

  244. Carmichael ST, Price JL (1995) Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol 363:615–641

    Article  PubMed  CAS  Google Scholar 

  245. Smeltzer MD, Curtis JT, Aragona BJ, Wang Z (2006) Dopamine, oxytocin, and vasopressin receptor binding in the medial prefrontal cortex of monogamous and promiscuous voles. Neurosci Lett 394:146–151

    Article  PubMed  CAS  Google Scholar 

  246. Johnson AK, Gross PM (1993) Sensory circumventricular organs and brain homeostatic pathways. FASEB J 7:678–686

    PubMed  CAS  Google Scholar 

  247. Qin C, Luo M (2009) Neurochemical phenotypes of the afferent and efferent projections of the mouse medial habenula. Neuroscience 161:827–837

    Article  PubMed  CAS  Google Scholar 

  248. Ren J, Qin C, Hu F, Tan J, Qiu L, Zhao S, Feng G, Luo M (2010) Habenula “Cholinergic” neurons corelease glutamate and acetylcholine and activate postsynaptic neurons via distinct transmission modes. Neuron 69:445–452

    Article  CAS  Google Scholar 

  249. Kiss J, Csaki A, Bokor H, Kocsis K, Kocsis B (2002) Possible glutamatergic/aspartatergic projections to the supramammillary nucleus and their origins in the rat studied by selective [3H]D-aspartate labelling and immunocytochemistry. Neuroscience 111:671–691

    Article  PubMed  CAS  Google Scholar 

  250. Lecourtiera L, Kelly PH (2007) A conductor hidden in the orchestra? Role of the habenular complex in monoamine transmission and cognition. Neurosci Biobehav Rev 31:658–672

    Article  CAS  Google Scholar 

  251. Sperlágh B, Maglóczky Z, Vizi ES, Freund TF (1996) The triangular septal nucleus as the major source of ATP release in the rat habenula: a combined neurochemical and morphological study. Neuroscience 86:1195–1207

    Article  Google Scholar 

  252. Araki M, McGeer PL, McGeer EG (1984) Retrograde HRP tracing combined with a pharmacohistochemical method for GABA transaminase for the identification of presumptive GABAergic projections to the habenula. Brain Res 304:271–277

    Article  PubMed  CAS  Google Scholar 

  253. Kalen P, Pritzel M, Nieoullon A, Wiklund L (1986) Further evidence for excitatory amino acid transmission in the lateral habenular projection to the rostral raphe nuclei: lesion-induced decrease of high affinity glutamate uptake. Neurosci Lett 68:35–40

    Article  PubMed  CAS  Google Scholar 

  254. Christoph GR, Leonzio RJ, Wilcox KS (1986) Stimulation of the lateral habenula inhibits dopamine-containing neurons in the substantia nigra and ventral tegmental area of the rat. J Neurosci 6:613–619

    PubMed  CAS  Google Scholar 

  255. Park MR (1987) Monosynaptic inhibitory postsynaptic potentials from lateral habenula recorded in dorsal raphe neurons. Brain Res Bull 19:581–586

    Article  PubMed  CAS  Google Scholar 

  256. Kalen P, Strecker RE, Rosengren E, Bjorklund A (1989) Regulation of striatal serotonin release by the lateral habenula-dorsal raphe pathway in the rat as demonstrated by in vivo microdialysis: role of excitatory amino acids and GABA. Brain Res 492:187–202

    Article  PubMed  CAS  Google Scholar 

  257. Hikosaka O (2010) The habenula: from stress evasion to value-based decision-making. Nat Rev Neurosci 11:503–513

    Article  PubMed  CAS  Google Scholar 

  258. Morris JS, Smith KA, Cowen PJ, Friston KJ, Dolan RJ (1999) Covariation of activity in habenula and dorsal raphe nuclei following tryptophan depletion. Neuroimage 10:163–172

    Article  PubMed  CAS  Google Scholar 

  259. Glickstein M, Doron K (2008) Cerebellum: connections and functions. Cerebellum 7:589–594

    Article  PubMed  Google Scholar 

  260. Andersen BB, Korbo L, Pakkenberg B (1992) A quantitative study of the human cerebellum with unbiased stereological techniques. J Comp Neurol 326:549–560

    Article  PubMed  CAS  Google Scholar 

  261. Voogd J (2004) Cerebellum and precerebellar nuclei. In: Paxinos G, Mai JK (eds) The human nervous system. Elsevier, San Diego

    Google Scholar 

  262. Soteropoulos DS, Baker SN (2006) Cortico-cerebellar coherence during a precision grip task in the monkey. J Neurophysiol 95:1194–1206

    Article  PubMed  Google Scholar 

  263. Holmes G (1939) The cerebellum of man. Brain 62:1–30

    Article  Google Scholar 

  264. Ravizza SM, McCormick CA, Schlerf JE, Justus T, Richard B, Ivry RB, Julie A, Fiez JA (2006) Cerebellar damage produces selective deficits in verbal working memory. Brain 129:306–320

    Article  PubMed  Google Scholar 

  265. Chen SH, Desmond JE (2005) Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasks. Neuroimage 24:332–338

    Article  PubMed  Google Scholar 

  266. Ackermann H, Mathiak K, Reicker A (2007) The contribution of the cerebellum to speech production and speech perception: clinical and functional imaging data. Cerebellum 6:202–213; Mathiak K, Hertrich I, Grodd W, Ackermann H (2002) Cerebellum and speech perception: a functional magnetic resonance imaging study. J Cogn Neurosci 14:902–912

    Google Scholar 

  267. Bracke-Tolkmitt R, Linden A, Canavan AGM, Rockstroh B, Scholz E, Wessel K, Diener H-C (1989) The cerebellum contributes to mental skills. Behav Neurosci 103(2):442–446

    Article  Google Scholar 

  268. Ekerot C-F, Jörntell H (2001) Parallel fibre receptive fields of Purkinje cells and interneurons are climbing fibre-specific. Eur J Neurosci 13:1303–1310

    Article  PubMed  CAS  Google Scholar 

  269. Palay SL, Chan-Palay V (1974) Cerebellar cortex. Springer, Berlin

    Book  Google Scholar 

  270. Nunzi MG, Russo M, Mugnaini E (2003) Vesicular glutamate transporters VGLUT1 and VGLUT2 define two subsets of unipolar brush cells in organotypic cultures of mouse vestibulocerebellum. Neuroscience 122:359–371

    Article  PubMed  CAS  Google Scholar 

  271. Munoz DG (1990) Monodendritic neurons: a cell type in the human cerebellar cortex identified by chromogranin A-like immunoreactivity. Brain Res 528:335–338

    Article  PubMed  CAS  Google Scholar 

  272. Kinney GA, Overstreet LS, Slater NT (1997) Prolonged physiological entrapment of glutamate in the synaptic cleft of cerebellar unipolar brush cells. J Neurophysiol 78:1320–1333

    PubMed  CAS  Google Scholar 

  273. Mugnaini E, Sekerkova G, Martina M (2011) The unipolar brush cell: a remarkable neuron finally receiving deserved attention. Brain Res Rev 66:220–245

    Article  PubMed  CAS  Google Scholar 

  274. Uusisaari M, De Schutter E (2011) The mysterious microcircuitry of the cerebellar nuclei. J Physiol 589:3441–3457

    Article  PubMed  CAS  Google Scholar 

  275. Pijpers A, Apps R, Pardoe J, Voogd J, Rugrok TJH (2006) Precise spatial relationships between mossy fibers and climbing fibers in rat cerebellar cortical zones. J Neurosci 24:12067–12080

    Article  CAS  Google Scholar 

  276. D’Angelo E, De Philippi G, Rossi P, Taglietti V (1995) Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors. J Physiol 484:397–413

    PubMed  Google Scholar 

  277. Dino MR, Schuerger RJ, Liu Y-B, Slater NT, Mugnaini E (2000) Unipolar brush cell: a potential feed forward excitatory interneuron of the cerebellum. Neuroscience 98(4):625–636; Uusisaari M, De Schutter E (2011) The mysterious microcircuitry of the cerebellar nuclei. J Physiol 589:3441–3457

    Google Scholar 

  278. Sugihara I, Wu HS, Shinoda Y (2001) The entire trajectories of single olivocerebellar axons in the cerebellar cortex and their contribution to cerebellar compartmentalization. J Neurosci 21:7715–7723

    PubMed  CAS  Google Scholar 

  279. Teune TM, van der Burg J, de Zeeuw CI, Voogd J, Ruigrok TJH (1998) Single Purkinje cell can innervate multiple classes of projection neurons in the cerebellar nuclei of the rat: a light microscopic and ultrastructural triple-tracer study in the rat. J Comp Neurol 392:164–178

    Article  PubMed  CAS  Google Scholar 

  280. Zheng N, Raman IM (2010) Synaptic inhibition, excitation, and plasticity in neurons of the cerebellar nuclei. Cerebellum 9:56–66

    Article  PubMed  Google Scholar 

  281. Brodal P, Bjaalie JG (1992) Organization of the pontine nuclei. Neurosci Res 13:83–118

    Article  PubMed  CAS  Google Scholar 

  282. Albus K, Donate-Oliver F, Sanides D, Fries W (1981) The distribution of pontine projection cells in visual and association cortex of the cat: an experimental study with horseradish peroxidase. J Comp Neurol 201:175–189

    Article  PubMed  CAS  Google Scholar 

  283. Knowlton BJ, Thompson JK, Thompson RF (1993) Projections from the auditory cortex to the pontine nuclei in the rabbit. Behav Brain Res 56:23–30

    Article  PubMed  CAS  Google Scholar 

  284. Ramnani N, Behrens TEJ, Johansen-Berg H, Richter MC, Pinsk MA, Andersson JLR, Rudebeck P, Ciccarelli O, Richter W, Thompson AJ, Gross CG, Robson MD, Kastner S, Matthews PM (2006) The evolution of prefrontal inputs to the cortico-pontine system: diffusion imaging evidence from macaque monkeys and humans. Cereb Cortex 16:811–818

    Article  PubMed  Google Scholar 

  285. Mihailoff GA, Kosinski RJ, Azizi SA, Border BG (1989) Survey of noncortical afferent projections to the basilar pontine nuclei: a retrograde tracing study in the rat. J Comp Neurol 282:617–643

    Article  PubMed  CAS  Google Scholar 

  286. Mihailoff GA, McArdle CB, Adams CE (1981) The cytoarchitecture, cytology, and synaptic organization of the basilar pontine nuclei in the rat. I. Nissl and Golgi studies. J Comp Neurol 195:181–201

    Article  PubMed  CAS  Google Scholar 

  287. Boesten AJP, Voogd J (1975) Projections of the dorsal column nuclei and the spinal cord on the inferior olive in the cat. J Comp Neurol 161(2):215–237

    Article  PubMed  CAS  Google Scholar 

  288. Saint-Cyr JA (1983) The projection from the motor cortex to the inferior olive in the cat. An experimental study using axonal transport techniques. Neuroscience 10(3):667–684

    Article  PubMed  CAS  Google Scholar 

  289. Watson TC, Jones MW, Apps R (2009) Electrophysiological mapping of novel prefrontal – cerebellar pathways. Front Integr Neurosci 3:18

    Article  PubMed  Google Scholar 

  290. Sedgwick EM, Williams TD (1966) Afferent connexions to single units in the inferior olive of the cat. Nature 212:1370–1371

    Article  PubMed  CAS  Google Scholar 

  291. Hoge GJ, Davidson KGV, Yasumura T, Castillo PE, Rash JE, Pereda AE (2011) The extent and strength of electrical coupling between inferior olivary neurons is heterogeneous. J Neurophysiol 105:1089–1101

    Article  PubMed  Google Scholar 

  292. De Zeeuw CI, Simpson JI, Hoogenraad CC, Galjart N, Koekkoek SKE, Ruigrok TJH (1998) Microcircuitry and function of the inferior olive. Trends Neurosci 21:391–400

    Article  PubMed  Google Scholar 

  293. Llinás R, Muhlethaler M (1988) Electrophysiology of guinea-pig cerebellar nuclear cells in the in vitro brain stem-cerebellar preparation. J Physiol 404:241–258

    PubMed  Google Scholar 

  294. Aizenman CD, Linden DJ (1999) Regulation of the rebound depolarisation and spontaneous firing patterns of deep nuclear neurons in slices of ret cerebellum. J Neurophysiol 82:1697–1709; De Schutter E, Steuber V (2009) Patterns and pauses in Purkinje cell simple spike trains: experiments, modeling and theory. Neuroscience 162:816–826

    Google Scholar 

  295. Hoover JE, Strick PL (1999) The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuronal transport of herpes simplex virus type 1. J Neurosci 19:1446–1463

    PubMed  CAS  Google Scholar 

  296. Morishima M, Kawaguchi Y (2006) Recurrent connection patterns of corticostriatal pyramidal cells in frontal cortex. J Neurosci 26:4394–4405

    Article  PubMed  CAS  Google Scholar 

  297. See reference 797

    Google Scholar 

  298. Nambu A, Yoshida S, Jinnai K (1988) Projection on the motor cortex of thalamic neurons with pallidal input in the monkey. Exp Brain Res 71:658–662

    Article  PubMed  CAS  Google Scholar 

  299. Bostan AC, Strick PL (2010) The cerebellum and basal ganglia are interconnected. Neuropsychol Rev 20:261–270

    Article  PubMed  Google Scholar 

  300. Oscarsson O (1979) Functional units of the cerebellum – sagittal zones and microzones. Trends Neurosci 2:143–145

    Article  Google Scholar 

  301. Apps R (1990) Columnar organisation of the inferior olive projection to the posterior lobe of the rat cerebellum. J Comp Neurol 302:236–254

    Article  PubMed  CAS  Google Scholar 

  302. Ito M (2001) Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 81:1143–1195

    PubMed  CAS  Google Scholar 

  303. Apps R, Garwicz M (2005) Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci 6:297–311

    Article  PubMed  CAS  Google Scholar 

  304. Ekerot C-F, Jörntell H, Garwicz M (1995) Functional relation between corticonuclear input and movements evoked on microstimulation in cerebellar nucleus interpositus anterior in the cat. Exp Brain Res 106:365–376

    Article  PubMed  CAS  Google Scholar 

  305. Vogt KE, Canepari M (2010) On the induction of postsynaptic granule cell-Purkinje neuron LTP and LTD. Cerebellum 9:284–290

    Article  PubMed  Google Scholar 

  306. Hartell NA (1996) Strong activation of parallel fibers produces localized calcium transients and a form of LTD that spreads to distant synapses. Neuron 16:601–610

    Article  PubMed  CAS  Google Scholar 

  307. Hansel C, Linden DJ, D’Angelo E (2001) Beyond parallel fiber LTD: the diversity of synaptic and nonsynaptic plasticity in the cerebellum. Nat Neurosci 4:467–475

    PubMed  CAS  Google Scholar 

  308. Morishita W, Sastry BR (1996) Postsynaptic mechanisms underlying long-term depression of GABAergic transmission in neurons of the deep cerebellar nuclei. J Neurophysiol 76:59–68

    PubMed  CAS  Google Scholar 

  309. Ouardouz M, Sastry BR (2000) Mechanisms underlying LTP of inhibitory synaptic transmission in the deep cerebellar nuclei. J Neurophysiol 84:1414–1421

    PubMed  CAS  Google Scholar 

  310. D’Errico A, Prestori F, D’Angelo E (2009) Differential induction of bidirectional long-term changes in neurotransmitter release by frequency-coded patterns at the cerebellar input. J Physiol 587:5843–5857

    Article  PubMed  CAS  Google Scholar 

  311. D’Angelo E, Rossi P, Gall D, Prestori F, Nieus T, Maffei A, Sola E (2005) Long-term potentiation of synaptic transmission at the mossy fiber-granule cell relay of cerebellum. Prog Brain Res 148:69–80

    Article  PubMed  CAS  Google Scholar 

  312. McCormick DA, Lavond DG, Clark GA, Kettner RE, Rising CE, Thompson RF (1981) The engram found? Role of the cerebellum in classical conditioning of nictitating membrane and eyelid responses. Bull Psychon Soc 18:103–105

    Google Scholar 

  313. Lincoln JS, McCormick DA, Thompson RF (1982) Ipsilateral cerebellar lesions prevent learning of the classically conditioned nictitating membrane/eyelid response. Brain Res 242:190–193

    Article  PubMed  CAS  Google Scholar 

  314. Medina JF, Nores WL, Ohyama T, Mauk MD (2000) Mechanisms of cerebellar learning suggested by eyelid conditioning. Curr Opin Neurobiol 10:717–724

    Article  PubMed  CAS  Google Scholar 

  315. Steinmetz JE (2000) Brain substrates of classical eyeblink conditioning: a highly localized but also distributed system. Behav Brain Res 110:13–24

    Article  PubMed  CAS  Google Scholar 

  316. Moyer JR, Deyo RA, Disterhoft JF (1990) Hippocampectomy disrupts trace eye-blink conditioning in rabbits. Behav Neurosci 104:243–252

    Article  PubMed  Google Scholar 

  317. Gerwig M, Haerter K, Hajjar K, Dimitrova A, Maschke M, Kolb FP, Thilmann AF, Gizewski ER, Timmann D (2006) Trace eyeblink conditioning in human subjects with cerebellar lesions. Exp Brain Res 170:7–21

    Article  PubMed  CAS  Google Scholar 

  318. Niewiadomska G, Baksalerska-Pazera M, Riedel G (2009) The septo-hippocampal system, learning and recovery of function. Prog Neuropsychopharmacol Biol Psychiatry 33(2009):791–805

    Article  PubMed  Google Scholar 

  319. Lyness SA, Zarow C, Chui HC (2003) Neuron loss in key cholinergic and aminergic nuclei in Alzheimer disease: a meta-analysis. Neurobiol Aging 24:1–23

    Article  PubMed  CAS  Google Scholar 

  320. Hepler DJ, Olton DS, Wenk GL, Coyle JT (1985) Lesions in nucleus basalis magnocellularis and medial septal area of rats produce qualitatively similar memory impairments. J Neurosci 5:866–873

    PubMed  CAS  Google Scholar 

  321. Winkler J, Suhr ST, Gage FH, Thal LJ, Fisher LJ (1995) Essential role of neocortical acetylcholine in spatial memory. Nature 375:484–487

    Article  PubMed  CAS  Google Scholar 

  322. Bartus RT, Flicker C, Dean RL, Pontecorvo M, Figueiredo JC, Fisher SK (1985) Selective memory loss following nucleus basalis lesions: long term behavioral recovery despite persistent cholinergic deficiencies. Pharmacol Biochem Behav 23:125–135

    Article  PubMed  CAS  Google Scholar 

  323. Baxter MG, Bucci DJ, Gorman LK, Wiley RG, Gallagher M (1995) Selective immunotoxic lesions of basal forebrain cholinergic cells: effects on learning and memory in rats. Behav Neurosci 109:714–722

    Article  PubMed  CAS  Google Scholar 

  324. McGaughy J, Dalley JW, Morrison CH, Everitt BJ, Robbins TW (2002) Selective behavioral and neurochemical effects of cholinergic lesions produced by intrabasalis infusions of 192 IgG-saporin on attentional performance in a five-choice serial reaction time task. J Neurosci 22:1905–1913

    PubMed  CAS  Google Scholar 

  325. Dalley JW, Theobald DE, Bouger P, Chudasama Y, Cardinal RN, Robbins TW (2004) Cortical cholinergic function and deficits in visual attentional performance in rats following 192 IgG-saporin-induced lesions of the medial prefrontal cortex. Cereb Cortex 14:922–932

    Article  PubMed  Google Scholar 

  326. Warburton EC, Koder T, Cho K, Massey PV, Duguid G, Barker GRI, Aggleton JP, Bashir ZA, Malcolm W, Brown MW (2003) Cholinergic neurotransmission is essential for perirhinal cortical plasticity and recognition memory. Neuron 38:987–996

    Article  PubMed  CAS  Google Scholar 

  327. Ramanathan D, Tuszynski MH, Conner JM (2009) The basal forebrain cholinergic system is required specifically for behaviorally mediated cortical map plasticity. J Neurosci 29:5992–6000

    Article  PubMed  CAS  Google Scholar 

  328. Goard M, Dan Y (2009) Basal forebrain activation enhances cortical coding of natural scenes. Nat Neurosci 12:1444–1449

    Article  PubMed  CAS  Google Scholar 

  329. Buchanan KA, Petrovic MM, Chamberlain SEL, Marrion NV, Mellor JR (2010) Facilitation of long-term potentiation by muscarinic M1 receptors is mediated by inhibition of SK channels. Neuron 68:948–963

    Article  PubMed  CAS  Google Scholar 

  330. Brocher S, Artola A, Wolf Singer W (1992) Agonists of cholinergic and noradrenergic receptors facilitate synergistically the induction of long-term potentiation in slices of rat visual cortex. Brain Res 573:27–36

    Article  PubMed  CAS  Google Scholar 

  331. Detari L, Rasmusson DD, Semba K (1999) The role of basal forebrain neurons in tonic and phasic activation of the cerebral cortex. Prog Neurobiol 58:249–277

    Article  PubMed  CAS  Google Scholar 

  332. Walker LC, Koliatsos VE, Kitt CA, Richardson RT, Rokaeus A, Price DL (1989) Peptidergic neurons in the basal forebrain magnocellular complex of the rhesus monkey. J Comp Neurol 280:272–282

    Article  PubMed  CAS  Google Scholar 

  333. Manns ID (2001) The role of basal forebrain neurons in the modulation of cortical activity: a physiological and anatomical examination. Ph.D. thesis, Department of Neurology and Neurosurgery, McGill University, Montreal. http://digitool.Library.McGill.CA:80/webclient/DeliveryManager?application=DIGITOOL-3&owner=resourcediscovery&custom_att_2=simple_viewer&forebear_coll=&user=GUEST&pds_handle=&pid=37653&con_lng=ENG&search_terms=&adjacency=N&rd_session=http://digitool.Library.McGill.CA:80/R/29SIHEV2V547EVBVCH9FNP2HDAPNXLQMVALHEQHLF3GT1YJJBS-03192

  334. Colom LV (2006) Septal networks: relevance to theta rhythm, epilepsy and Alzheimer’s disease. J Neurochem 96:609–623

    Article  PubMed  CAS  Google Scholar 

  335. Penley SC, Hinman JR, Sabolek HR, Escabi MA, Markus EJ, Chrobak JJ (2011) Theta and gamma coherence across the septotemporal axis during distinct behavioral states. Hippocampus 22:1164–1175

    Article  PubMed  Google Scholar 

  336. Manns ID, Alonso A, Jones BE (2000) Discharge properties of juxtacellularly labeled and immunohistochemically identified cholinergic basal forebrain neurons recorded in association with the electroencephalogram in anesthetized rats. J Neurosci 20:1505–1518

    PubMed  CAS  Google Scholar 

  337. Manns ID, Alonso A, Jones BE (2000) Discharge profiles of juxtacellularly labeled and immunohistochemically identified GABAergic basal forebrain neurons recorded in association with the electroencephalogram in anesthetized rats. J Neurosci 20:9252–9263

    PubMed  CAS  Google Scholar 

  338. Colom LV, Castaneda MT, Reyna T, Hernandez S, Garrido-Sanabria E (2005) Characterization of medial septal glutamatergic neurons and their projection to the hippocampus. Synapse 58:151–164

    Article  PubMed  CAS  Google Scholar 

  339. Bigl V, Woolf NJ, Butcher LL (1982) Cholinergic projections from the basal forebrain to frontal, parietal, temporal, occipital, and cingulate cortices: a combined fluorescent tracer and acetylcholinesterase analysis. Brain Res Bull 8:727–749

    Article  PubMed  CAS  Google Scholar 

  340. Bickford ME, Gunluk AE, Van Horn SC, Sherman SM (1994) GABAergic projection from the basal forebrain to the visual sector of the thalamic reticular nucleus in the cat. J Comp Neurol 348:481–510

    Article  PubMed  CAS  Google Scholar 

  341. Haring JH, Wang RY (1986) The identification of some sources of afferent input to the rat nucleus basalis magnocellularis by retrograde transport of horseradish peroxidase. Brain Res 366:152–158

    Article  PubMed  CAS  Google Scholar 

  342. Risold PY (2004) The septal region. In: Paxinos G (ed) The rat nervous system. Elsevier, San Diego

    Google Scholar 

  343. Lee S-H, Yang Dan Y (2012) Neuromodulation of brain states. Neuron 76:209–222

    Article  PubMed  CAS  Google Scholar 

  344. Carter ME, Yizhar O, Chikahisa S, Nguyen H, Adamantidis A, Nishino S, Deisseroth K, de Lecea L (2010) Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci 13:1526–1533

    Article  PubMed  CAS  Google Scholar 

  345. Monti JM (1993) Involvement of histamine in the control of the waking state. Life Sci 53:1331–1338

    Article  PubMed  CAS  Google Scholar 

  346. Monti JM, Jantos H (2008) The roles of dopamine and serotonin, and of their receptors, in regulating sleep and waking. Prog Brain Res 172:625–646

    Article  PubMed  CAS  Google Scholar 

  347. McCormick DA, Wang Z, Huguenard J (1993) Neurotransmitter control of neocortical neuronal activity and excitability. Cereb Cortex 3:387–398

    Article  PubMed  CAS  Google Scholar 

  348. Tully K, Li Y, Tsvetkov E, Bolshakov VY (2007) Norepinephrine enables the induction of associative long-term potentiation at thalamo-amygdala synapses. Proc N Y Acad Sci 104:14146–14150

    Article  CAS  Google Scholar 

  349. Tully K, Bolshakov VY (2010) Emotional enhancement of memory: how norepinephrine enables synaptic plasticity. Mol Brain 3:15

    Article  PubMed  CAS  Google Scholar 

  350. Staubli U, Otaky N (1994) Serotonin controls the magnitude of LTP induced by theta bursts via an action on NMDA-receptor-mediated responses. Brain Res 643:10–16

    Article  PubMed  CAS  Google Scholar 

  351. Zhong P, Liu W, Gu Z, Yan Z (2008) Serotonin facilitates long-term depression induction in prefrontal cortex via p38 MAPK/Rab5-mediated enhancement of AMPA receptor internalization. J Physiol 586:4465–4479

    Article  PubMed  CAS  Google Scholar 

  352. Kojic L, Gu Q, Douglas RM, Cynader MS (1997) Serotonin facilitates synaptic plasticity in kitten visual cortex: an in vitro study. Dev Brain Res 101:299–304

    Article  CAS  Google Scholar 

  353. Brown RE, Fedorov NB, Haas HL, Reymann KG (1995) Histaminergic modulation of synaptic plasticity in area CA1 of rat hippocampal slices. Neuropharmacology 34:181–190

    Article  PubMed  CAS  Google Scholar 

  354. Kuo M-C, Dringenberg HC (2008) Histamine facilitates in vivo thalamocortical long-term potentiation in the mature visual cortex of anesthetized rats. Eur J Neurosci 27:1731–1738

    Article  PubMed  Google Scholar 

  355. Kolomiets B, Marzo A, Caboche J, Vanhoutte P, Otani S (2009) Background dopamine concentration dependently facilitates long-term potentiation in rat prefrontal cortex through postsynaptic activation of extracellular signal-regulated kinases. Cereb Cortex 19:2708–2718

    Article  PubMed  CAS  Google Scholar 

  356. Li S, Cullen WK, Anwyl R, Rowan MJ (2003) Dopamine-dependent facilitation of LTP induction in hippocampal CA1 by exposure to spatial novelty. Nat Neurosci 6:526–531

    PubMed  CAS  Google Scholar 

  357. Pasquier DA, Kemper TL, Forbes WB, Morgane PJ (1977) Dorsal raphe, substantia nigra and locus coeruleus: interconnections with each other and the neostriatum. Brain Res Bull 2:323–339

    Article  PubMed  CAS  Google Scholar 

  358. Ericson H, Blomqvist A, Köhler C (1989) Brainstem afferents to the tuberomammillary nucleus in the rat brain with special reference to monoaminergic innervation. J Comp Neurol 281:169–192

    Article  PubMed  CAS  Google Scholar 

  359. Brown RE, Sergeeva OA, Eriksson KS, Haas HL (2002) Convergent excitation of dorsal raphe serotonin neurons by multiple arousal systems (orexin/hypocretin, histamine and noradrenaline). J Neurosci 22:8850–8859

    PubMed  CAS  Google Scholar 

  360. Haas HL, Sergeeva OA, Selbach O (2008) Histamine in the nervous system. Physiol Rev 88:1183–1241

    Article  PubMed  CAS  Google Scholar 

  361. Moore RY, Bloom FE (1979) Central catecholamine neuron systems: anatomy and physiology of the norepinephrine and epinephrine systems. Annu Rev Neurosci 2:113–168

    Article  PubMed  CAS  Google Scholar 

  362. Sara SJ (2009) The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci 10:211–223

    Article  PubMed  CAS  Google Scholar 

  363. Foote SL, Morrison JH (1987) Extrathalamic modulation of cortical function. Annu Rev Neurosci 10:67–95

    Article  PubMed  CAS  Google Scholar 

  364. Loughlin SE, Foote SL, Fallon JH (1982) Locus coeruleus projections to cortex: topography, morphology and collateralization. Brain Res Bull 9:287–294

    Article  PubMed  CAS  Google Scholar 

  365. Lewis DA, Campbell MJ, Foote SL, Goldstein M, Morrison JH (1987) The distribution of tyrosine hydroxylase-immunoreactive fibers in primate neocortex is widespread but regionally specific. J Neurosci 7(1):279–290

    PubMed  CAS  Google Scholar 

  366. Simpson KL, Altman DW, Wang L, Kirifides ML, Lin RC, Waterhouse BD (1997) Lateralization and functional organization of the locus coeruleus projection to the trigeminal somatosensory pathway in rat. J Comp Neurol 385:135–147

    Article  PubMed  CAS  Google Scholar 

  367. Wang Z, David A, McCormick DA (1993) Control of firing mode of corticotectal and corticopontine layer V burst-generating neurons by norepinephrine, acetylcholine, and 1S,3R-ACPD. J Neurosci 13:2199–2216

    PubMed  CAS  Google Scholar 

  368. Samuels ER, Szabadi E (2008) Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part II: physiological and pharmacological manipulations and pathological alterations of locus coeruleus activity in humans. Curr Neuropharmacol 6:254–285

    Article  PubMed  CAS  Google Scholar 

  369. Aston-Jones G, Rajkowski J, Jonathan Cohen J (1999) Role of locus coeruleus in attention and behavioral flexibility. Biol Psychiatry 46:1309–1320

    Article  PubMed  CAS  Google Scholar 

  370. Ordway GA (1997) Pathophysiology of the locus coeruleus in suicide. Ann N Y Acad Sci 836:233–252

    Article  PubMed  CAS  Google Scholar 

  371. German DC, Manaye KF, White CL, Woodward DJ, McIntire DD, Smith WK, Kalaria RN, Mann DMA (1992) Disease-specific patterns of locus coeruleus cell loss. Ann Neurol 32(5):667–676

    Article  PubMed  CAS  Google Scholar 

  372. Hornung J-P (2004) Raphe nuclei. In: Paxinos G, Mai JK (eds) The human nervous system. Elsevier, Amsterdam

    Google Scholar 

  373. Bobillier P, Seguin S, Petitjean F, Salvert D, Touret M, Jouvet M (1976) The raphe nuclei of the cat brain stem: a topographical atlas of their efferent projections as revealed by autoradiography. Brain Res 113:449–486

    Article  PubMed  CAS  Google Scholar 

  374. Andrade R, Nicoll RA (1987) Pharmacologically distinct actions of serotonin on single pyramidal neurones of the rat hippocampus recorded in vitro. J Physiol 394:99–124

    PubMed  CAS  Google Scholar 

  375. Qing-Ping W, Nakai Y (1994) The dorsal raphe: an important nucleus in pain modulation. Brain Res Bull 34:575–585

    Article  Google Scholar 

  376. Monti JM (2011) Serotonin control of sleep-wake behavior. Sleep Med Rev 15:269–281

    Article  PubMed  Google Scholar 

  377. Meltzer HY (1999) The role of serotonin in antipsychotic drug action. Neuropsychopharmacology 21:106S–115S

    PubMed  CAS  Google Scholar 

  378. Köhler C, Swanson LW, Haglund L, J-Yen W (1985) The cytoarchitecture, histochemistry and projections of the tuberomammillary nucleus in the rat. Neuroscience 16:85–110

    Article  PubMed  Google Scholar 

  379. Ericson H, Blomqvist A, Köhler C (1991) Origin of neuronal inputs to the region of the tuberomammillary nucleus of the rat brain. J Comp Neurol 311:45–64

    Article  PubMed  CAS  Google Scholar 

  380. Haas H, Panula P (2003) The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev Neurosci 4:121–130

    Article  PubMed  CAS  Google Scholar 

  381. Martinez-Mir MI, Pollard H, Morea J, Arrang JM, Ruat M, Traiffort E, Schwartz JC, Palacios JM (1990) Three histamine receptors (H1, H2 and H3) visualized in the brain of human and non-human primates. Brain Res 526:322–327

    Article  PubMed  CAS  Google Scholar 

  382. Brown RE, Stevens DR, Haas HL (2001) The physiology of brain histamine. Prog Neurobiol 63:637–672

    Article  PubMed  CAS  Google Scholar 

  383. Bjorklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: an update. Trends Neurosci 30:194–202

    Article  PubMed  CAS  Google Scholar 

  384. Dobi A, Margolis EB, Wang H-L, Harvey BK, Morales M (2010) Glutamatergic and nonglutamatergic neurons of the ventral tegmental area establish local synaptic contacts with dopaminergic and nondopaminergic neurons. J Neurosci 30:218–229

    Article  PubMed  CAS  Google Scholar 

  385. Gasbarri A, Sulli A, Packard MG (1997) The dopaminergic mesencephalic projections to the hippocampal formation in the rat. Prog Neuropsychopharmacol Biol Psychiatry 21:1–22

    Article  PubMed  CAS  Google Scholar 

  386. Cho YT, Fudge JL (2010) Heterogeneous dopamine populations project to specific subregions of the primate amygdala. Neuroscience 165:1501–1518

    Article  PubMed  CAS  Google Scholar 

  387. Berger B, Trottier S, Verney C, Gaspar P, Alvarez C (1988) Regional and laminar distribution of the dopamine and serotonin innervation in the macaque cerebral cortex: a radioautographic study. J Comp Neurol 273:99–119

    Article  PubMed  CAS  Google Scholar 

  388. Kröner S, Rosenkranz JA, Grace AA, Barrionuevo G (2005) Dopamine modulates excitability of basolateral amygdala neurons in vitro. J Neurophysiol 93:1598–1610

    Article  PubMed  CAS  Google Scholar 

  389. Choi WS, Machida CA, Ronnekleiv OK (1995) Distribution of dopamine D1, D2, and D5 receptor mRNAs in the monkey brain: ribonuclease protection assay analysis. Mol Brain Res 31:86–94

    Article  PubMed  CAS  Google Scholar 

  390. Wang GJ, Volkow ND, Fowler JS, Ding YS, Logan J, Gatley SJ, MacGregor RR, Wolf AP (1995) Comparison of two PET radioligands for imaging extrastriatal dopamine transporters in human brain. Life Sci 57:PL187–PL191

    Article  PubMed  CAS  Google Scholar 

  391. Lodge DJ, Buffalari DM, Grace AA (2009) Dopamine: CNS pathways and neurophysiology. In: Squire LR (ed) Encyclopedia of neuroscience, pp 549–555

    Google Scholar 

  392. Abi-Dargham A, Mawlawi O, Lombardo I, Gil R, Martinez D, Huang Y, Hwang DR, Keilp J, Kochan L, Van Heertum R, Gorman JM, Laruelle M (2002) Prefrontal dopamine D1 receptors and working memory in schizophrenia. J Neurosci 22:3708–3719

    PubMed  CAS  Google Scholar 

  393. Schott BH, Seidenbecher CI, Fenker DB, Lauer CJ, Bunzeck N, Bernstein H-J, Tischmeyer W, Gundelfinger ED, Heinze H-J, Duzel E (2006) The dopaminergic midbrain participates in human episodic memory formation: evidence from genetic imaging. J Neurosci 26:1407–1417

    Article  PubMed  CAS  Google Scholar 

  394. Sesack SR, Grace AA (2010) Cortico-basal ganglia reward network: microcircuitry. Neuropsychopharmacology 35:27–47

    Article  PubMed  Google Scholar 

  395. Tritsch NX, Sabatini BL (2012) Dopaminergic modulation of synaptic transmission in cortex and striatum. Neuron 76:33–50

    Article  PubMed  CAS  Google Scholar 

  396. Canto CB, Wouterlood FG, Witter MP (2008) What does the anatomical organization of the entorhinal cortex tell us? Neural Plast 2008:381243

    Article  PubMed  Google Scholar 

  397. Blaizot X, Martinez-Marcos A, Arroyo-Jimenez M, Marcos P, Artacho-Pérula E, Muñoz M, Chavoix C, Ricardo Insausti R (2004) Parahippocampal gyrus in the baboon: anatomical, cytoarchitectonic and magnetic resonance imaging (MRI) studies. Cereb Cortex 14:231–246

    Article  PubMed  Google Scholar 

  398. O’Mara SM, Commins S, Anderson M, Gigg J (2001) The subiculum: a review of form, physiology and function. Prog Neurobiol 64:129–155

    Article  PubMed  Google Scholar 

  399. Insausti R, Amaral DG (2004) Hippocampal formation. In: Paxinos G, Mai JK (eds) The human nervous system. Elsevier, Amsterdam

    Google Scholar 

  400. Amaral D, Lavenex P (2006) Hippocampal neuroanatomy. In: Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J (eds) The hippocampus book. Oxford University Press, Oxford

    Google Scholar 

  401. Kullmann DM (2011) Interneuron networks in the hippocampus. Curr Opin Neurobiol 21:709–716

    Article  PubMed  CAS  Google Scholar 

  402. Fischer Y, Wittner L, Freund TF, Gähwiler BH (2002) Simultaneous activation of gamma and theta network oscillations in rat hippocampal slice cultures. J Physiol 539:857–868

    Article  PubMed  CAS  Google Scholar 

  403. Siapas AG, Lubenov EV, Wilson MA (2005) Prefrontal phase locking to hippocampal theta oscillations. Neuron 46:141–151

    Article  PubMed  CAS  Google Scholar 

  404. Bliss TVP, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356

    PubMed  CAS  Google Scholar 

  405. Kaibara T, Leung LS (1993) Basal versus apical dendritic long-term potentiation of commissural afferents to hippocampal CA1: a current-source density study. J Neurosci 13:2391–2404

    PubMed  CAS  Google Scholar 

  406. Maccaferri G, Tóth K, McBain CJ (1998) Target-specific expression of presynaptic mossy fiber plasticity. Science 279:1368–1371

    Article  PubMed  CAS  Google Scholar 

  407. Acsady L, Kamondi A, Sik A, Freund T, Buzsaki G (1998) GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. J Neurosci 18:3386–3403

    PubMed  CAS  Google Scholar 

  408. Suzuki WA (1996) Neuroanatomy of the monkey entorhinal, perirhinal and parahippocampal cortices: organization of cortical inputs and interconnections with amygdala and striatum. Semin Neurosci 8:3–12

    Article  Google Scholar 

  409. Amaral DG, Ishizuka N, Claiborne B (1990) Neurons, numbers and the hippocampal network. Prog Brain Res 83:1–11

    Article  PubMed  CAS  Google Scholar 

  410. Ribak CE, Seress L, Amaral DG (1985) The development, ultrastructure and synaptic connections of the mossy cells of the dentate gyrus. J Neurocytol 14:835–857

    Article  PubMed  CAS  Google Scholar 

  411. Buckmaster PS, Strowbridge BW, Kunkel DD, Schmiege DL, Schwartzkroin PA (1992) Mossy cell axonal projections to the dentate gyrus molecular layer in the rat hippocampal slice. Hippocampus 2:349–362

    Article  PubMed  CAS  Google Scholar 

  412. Mody I (2002) The GAD-given right of dentate gyrus granule cells to become GABAergic. Epilepsy Curr 2:143–145

    Article  PubMed  Google Scholar 

  413. Vertes RP, McKenna JT (2000) Collateral projections from the supramammillary nucleus to the medial septum and hippocampus. Synapse 38:281–293

    Article  PubMed  CAS  Google Scholar 

  414. Sloviter RS (1983) “Epileptic” brain damage in rats induced by sustained electrical stimulation of the perforant path. I. Acute electrophysiological and light microscopic studies. Brain Res Bull 10:675–697

    Article  PubMed  CAS  Google Scholar 

  415. Amaral DG, Witter MP (1989) The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31:571–591

    Article  PubMed  CAS  Google Scholar 

  416. Wyss JM, Swanson LW, Cowan WM (1979) A study of subcortical afferents to the hippocampal formation in the rat. Neuroscience 4:463–476

    Article  PubMed  CAS  Google Scholar 

  417. Bayat M, Hasandeh GR, Barzroodipour M, Javadi M (2005) The effect of low protein diet on thalamic projections of hippocampus in rat. Neuroanatomy 4:43–48

    Google Scholar 

  418. Shibata H (1993) Direct projections from the anterior thalamic nuclei to the retrohippocampal region in the rat. J Comp Neurol 337:431–445

    Article  PubMed  CAS  Google Scholar 

  419. Allen GV, Hopkins DA (1989) Mamillary body in the rat: topography and synaptology of projections from the subicular complex, prefrontal cortex, and midbrain tegmentum. J Comp Neurol 286:311–336

    Article  PubMed  CAS  Google Scholar 

  420. Veazey RB, Amaral DG, Cowan WM (1982) The morphology and connections of the posterior hypothalamus in the cynomolgus monkey (Macaca fascicularis). 11. Efferent connections. J Comp Neurol 207:135–156

    Article  PubMed  CAS  Google Scholar 

  421. Siegel A, Edinger H, Ohgami S (1974) The topographical organization of the hippocampal projection to the septal area: a comparative neuroanatomical analysis in the gerbil, rat, rabbit, and cat. J Comp Neurol 157:359–378

    Article  PubMed  CAS  Google Scholar 

  422. Lindsey BW, Tropepe V (2006) A comparative framework for understanding the biological principles of adult neurogenesis. Prog Neurobiol 80:281–307

    Article  PubMed  CAS  Google Scholar 

  423. Schmidt-Hieber C, Jonas P, Bischofberger J (2004) Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 429:184–187

    Article  PubMed  CAS  Google Scholar 

  424. Corkin S (2002) What’s new with the amnesic patient H.M.? Nat Rev Neurosci 3:153–160

    Article  PubMed  CAS  Google Scholar 

  425. Wickelgren WA (1968) Sparing of short-term memory in an amnesic patient: implications for strength theory of memory. Neuropsychologia 6:235–244

    Article  Google Scholar 

  426. Gabrieli JDE, Corkin S, Mickel SF, Growden JH (1993) Intact acquisition and long-term retention of mirror tracing skill in Alzheimer’s disease and in global amnesia. Behav Neurosci 107:899–910

    Article  PubMed  CAS  Google Scholar 

  427. Phelps EA (2006) Emotion and cognition: insights from studies of the human amygdala. Annu Rev Psychol 57:27–53

    Article  PubMed  Google Scholar 

  428. Caulo M, Van Hecke J, Toma L, Ferretti A, Tartaro A, Colosimo C, Romani GL, Uncini A (2005) Functional MRI study of diencephalic amnesia in Wernicke-Korsakoff syndrome. Brain 128:1584–1594

    Article  PubMed  CAS  Google Scholar 

  429. Dolcos F, LaBar KS, Cabeza R (2004) Interaction between the amygdala and the medial temporal lobe memory system predicts better memory for emotional events. Neuron 42:855–863

    Article  PubMed  CAS  Google Scholar 

  430. Berti A, Arienta C, Papagno C (1990) A case of amnesia after excision of the septum pellucidum. J Neurol Neurosurg Psychiatry 53:922–924

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Coward, L.A. (2013). Major Anatomical Structures. In: Towards a Theoretical Neuroscience: from Cell Chemistry to Cognition. Springer Series in Cognitive and Neural Systems, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7107-9_6

Download citation

Publish with us

Policies and ethics