Skip to main content

Part of the book series: Springer Series in Cognitive and Neural Systems ((SSCNS,volume 8))

  • 2103 Accesses

Abstract

In this chapter we will describe the morphology and physiology of neurons in much more detail, with particular emphasis on the ways in which molecules spanning the neuron membrane result in detection and integration of signals received from other neurons. At each point in time a neuron receives large numbers of external signals, most derived from other neurons. The internal chemistry of neurons results in the detection and integration of all the external signals and determines their current outputs and any changes to their integration algorithms. Hence understanding of how signals are received by neurons and integrated by chemical processes to influence current and future outputs is the detailed basis for understanding neural information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Giuditta A, Kaplan BB, van Minnen J, Alvarez J, Koenig E (2002) Axonal and presynaptic protein synthesis: new insights into the biology of the neuron. Trends Neurosci 25:400–404

    Article  PubMed  CAS  Google Scholar 

  2. Connors BW, Gutnick MJ (1990) Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci 13:99–104

    Article  PubMed  CAS  Google Scholar 

  3. Calvin WH, Sypert GW (1976) Fast and slow pyramidal tract neurons: an intracellular analysis of their contrasting repetitive firing properties in the cat. J Neurophysiol 39:420–434

    PubMed  CAS  Google Scholar 

  4. Llinas RR (1988) The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242:1654–1664

    Article  PubMed  CAS  Google Scholar 

  5. Bannister NJ, Larkman AU (1995) Dendritic morphology of CA1 pyramidal neurones from the rat hippocampus: I. Branching patterns. J Comp Neurol 360:150–160

    Article  PubMed  CAS  Google Scholar 

  6. Elston GN, Benavides-Piccione R, DeFelipe J (2001) The pyramidal cell in cognition: a comparative study in human and monkey. J Neurosci 21(RC163):1–5

    Google Scholar 

  7. Kim HG, Connors BW (1993) Apical dendrites of the neocortex: correlation between sodium- and calcium-dependent spiking and pyramidal cell morphology. J Neurosci 13(12):5301–5311

    PubMed  CAS  Google Scholar 

  8. Sabatini BL, Regehr WG (1996) Timing of neurotransmission at fast synapses in the mammalian brain. Nature 384:170–172

    Article  PubMed  CAS  Google Scholar 

  9. Connors BW, Long MA (2004) Electrical synapses in the mammalian brain. Annu Rev Neurosci 27:393–418

    Article  PubMed  CAS  Google Scholar 

  10. Bannister NJ, Larkman AU (1995) Dendritic morphology of CA1 pyramidal neurones from the rat hippocampus: II. Spine distributions. J Comp Neurol 360:161–171

    Article  PubMed  CAS  Google Scholar 

  11. Koch C, Zador A (1993) The function of dendritic spines: devices subserving biochemical rather than electrical compartmentalization. J Neurosci 13:413–422

    PubMed  CAS  Google Scholar 

  12. Bhatt DH, Zhang S, Gan W-B (2009) Dendritic spine dynamics. Annu Rev Physiol 71:261–282

    Article  PubMed  CAS  Google Scholar 

  13. Burnstock G (2004) Cotransmission. Curr Opin Pharmacol 4:47–52

    Article  PubMed  CAS  Google Scholar 

  14. Krebs EG, Beavo JA (1979) Phosphorylation-dephosphorylation of enzymes. Annu Rev Biochem 48:923–959

    Article  PubMed  CAS  Google Scholar 

  15. Wong W, John D, Scott JD (2004) AKAP signalling complexes: focal points in space and time. Nat Rev Mol Cell Biol 5:959–969

    Article  PubMed  CAS  Google Scholar 

  16. Kempermann G (2012) New neurons for ‘survival of the fittest’. Nat Rev Neurosci 13:727–736

    Article  PubMed  CAS  Google Scholar 

  17. Carafoli E (1991) Calcium pump of the plasma membrane. Physiol Rev 71:129–153

    PubMed  CAS  Google Scholar 

  18. Raley-Susman KM, Sapolsky RM, Kopito RR (1993) Cl–/HCO3 – exchange function differs in adult and fetal rat hippocampal neurons. Brain Res 614:308–314

    Article  PubMed  CAS  Google Scholar 

  19. Staley K, Smith R, Schaack J, Wilcox C, Jentsch J (1996) Alteration of GABAA receptor function following gene transfer of the CLC-2 chloride channel. Neuron 17:543–551

    Article  PubMed  CAS  Google Scholar 

  20. Staley KJ, Mody I (1992) Shunting of excitatory input to dentate gyrus granule cells by a depolarising GABAA receptor–mediated postsynaptic conductance. J Neurophysiol 68:197–212

    PubMed  CAS  Google Scholar 

  21. Nilius B, Droogmans G (2003) Amazing chloride channels: an overview. Acta Physiol Scand 177(2):119–147

    Article  PubMed  CAS  Google Scholar 

  22. Magee JC (1999) Voltage-gated ion channels in dendrites. In: Stuart G, Spruston N, Hausser M (eds) Dendrites. Oxford University Press, Oxford, pp 139–160

    Google Scholar 

  23. Hausser M, Spruston N, Stuart GJ (2000) Diversity and dynamics of dendritic signaling. Science 290:739–744

    Article  PubMed  CAS  Google Scholar 

  24. Williams SR, Stuart GJ (2000) Action potential backpropagation and somato-dendritic distribution of ion channels in thalamocortical neurons. J Neurosci 20:1307–1317

    PubMed  CAS  Google Scholar 

  25. Tank DW, Sugimori M, Connor JA, Llinas RR (1988) Spatially resolved calcium dynamics of mammalian Purkinje cells in cerebellar slice. Science 242:773–777

    Article  PubMed  CAS  Google Scholar 

  26. Reuveni I, Friedman A, Amitai Y, Gutnick MJ (1993) Stepwise repolarisation from Ca2+ plateaus in neocortical pyramidal cells: evidence for nonhomogeneous distribution of HVA Ca2+ channels in dendrites. J Neurosci 13:4609–4621

    PubMed  CAS  Google Scholar 

  27. Yamada M, Inanobe A, Kurachi Y (1998) G protein regulation of potassium ion channels. Pharmacol Rev 50:723–757

    PubMed  CAS  Google Scholar 

  28. Bergson C, Mrzljak L, Smiley JF, Pappy M, Levenson R, Goldman-Rakic PS (1995) Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain. J Neurosci 15:7821–7836

    PubMed  CAS  Google Scholar 

  29. Purcell AL, Sharma SK, Bagnall MW, Sutton MA, Carew TJ (2003) Activation of a tyrosine kinase-MAPK cascade enhances the induction of long-term synaptic facilitation and long-term memory in aplysia. Neuron 37:473–484

    Article  PubMed  CAS  Google Scholar 

  30. Huang EJ, Reichard LF (2003) Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 72:609–642

    Article  PubMed  CAS  Google Scholar 

  31. Kole MHP, Ilschner SU, Kampa BM, Williams SR, Ruben PC, Stuart GJ (2008) Action potential generation requires a high sodium channel density in the axon initial segment. Nat Neurosci 11:178–186

    Article  PubMed  CAS  Google Scholar 

  32. Hursh JB (1939) Conduction velocity and diameter of nerve fibers. Am J Physiol Cell Physiol 127:131–139

    Google Scholar 

  33. Hartline DK, Colman DR (2007) Rapid conduction and the evolution of giant axons and myelinated fibers. Curr Biol 17(1):R29–R35

    Article  PubMed  CAS  Google Scholar 

  34. Sah P (1996) Ca2+-activated K+ currents in neurones: types, physiological roles and modulation. Trends Neurosci 19:150–154

    Article  PubMed  CAS  Google Scholar 

  35. Faber ESL, Sah P (2003) Calcium-activated potassium channels: multiple contributions to neuronal function. Neuroscientist 9:181–194

    Article  PubMed  CAS  Google Scholar 

  36. Mel BW (1994) Information processing in dendritic trees. Neural Comput 6:1031–1085

    Article  Google Scholar 

  37. Oakley JC, Schwindt PC, Crill WE (2001) Initiation and propagation of regenerative Ca++-dependent potentials in dendrites of layer 5 pyramidal neurons. J Neurophysiol 86:503–513

    PubMed  CAS  Google Scholar 

  38. Waters J, Schaefer A, Sakmann B (2005) Backpropagating action potentials in neurones: measurement, mechanisms and potential functions. Prog Biophys Mol Biol 87(1):145–170

    Article  PubMed  Google Scholar 

  39. Larkum ME, Rioult MG, Luscher HR (1996) Propagation of action potentials in the dendrites of neurons from rat spinal cord slice cultures. J Neurophysiol 75:154–170. Mol Biol 87(1):145–170

    Google Scholar 

  40. Abraham WC, Huggett A (1997) Induction and reversal of long-term potentiation by repeated high-frequency stimulation in rat hippocampal slices. Hippocampus 7:137–145

    Article  PubMed  CAS  Google Scholar 

  41. Bi G-q, Poo M-m (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10464–10472

    PubMed  CAS  Google Scholar 

  42. Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64:355–405

    Article  PubMed  CAS  Google Scholar 

  43. Atwood HL, Karunanithi S (2002) Diversification of synaptic strength: presynaptic elements. Nat Rev Neurosci 3:497–516

    Article  PubMed  CAS  Google Scholar 

  44. Miller RJ (1998) Presynaptic receptors. Annu Rev Pharmacol Toxicol 38:201–227

    Article  PubMed  CAS  Google Scholar 

  45. Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21

    Article  PubMed  CAS  Google Scholar 

  46. Lynch MA (2004) Long-term potentiation and memory. Physiol Rev 84:87–136

    Article  PubMed  CAS  Google Scholar 

  47. Manahan-Vaughan D (2000) Long-term depression in freely moving rats is dependent upon strain variation, induction protocol and behavioral state. Cereb Cortex 10:482–487

    Article  PubMed  CAS  Google Scholar 

  48. Berretta N, Nistico R, Bernardi G, Mercuri NB (2008) Synaptic plasticity in the basal ganglia: a similar code for physiological and pathological conditions. Prog Neurobiol 84:343–362

    Article  PubMed  CAS  Google Scholar 

  49. Ito M (1989) Long-term depression. Annu Rev Neurosci 12:85–102

    Article  PubMed  CAS  Google Scholar 

  50. Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429:761–766

    Article  PubMed  CAS  Google Scholar 

  51. Patterson MA, Szatmari EM, Yasuda R (2010) AMPA receptors are exocytosed in stimulated spines and adjacent dendrites in a Ras-ERK–dependent manner during long-term potentiation. Pro Natl Acad Sci USA 107:15951–15956

    Article  CAS  Google Scholar 

  52. Snyder EM, Philpot BD, Huber KM, Dong X, Fallon JR, Mark F, Bear MF (2001) Internalization of ionotropic glutamate receptors in response to mGluR activation. Nat Neurosci 4:1079–1085

    Article  PubMed  CAS  Google Scholar 

  53. Raymond CR (2007) LTP forms 1, 2 and 3: different mechanisms for the ‘long’ in long-term potentiation. Trends Neurosci 30:167–175

    Article  PubMed  CAS  Google Scholar 

  54. Reymann KG, Frey JU (2007) Late maintenance of hippocampal LTP: requirements, phases, ‘synaptic tagging’, ‘late-associativity’ and implications. Neuropharmacology 52:24–40

    Article  PubMed  CAS  Google Scholar 

  55. Calabresi P, Picconi B, Tozzi A, Di Filippo M (2007) Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci 30:211–219

    Article  PubMed  CAS  Google Scholar 

  56. Stork O, Welzl H (1999) Memory formation and the regulation of gene expression. Cell Mol Life Sci 55:575–592

    Article  PubMed  CAS  Google Scholar 

  57. Pfeiffer BE, Huber KM (2006) Current advances in local protein synthesis and synaptic plasticity. J Neurosci 26:7147–7150

    Article  PubMed  CAS  Google Scholar 

  58. Berke JD, Steven E, Hyman SE (2000) Addiction, dopamine, and the molecular mechanisms of memory. Neuron 25:515

    Article  PubMed  CAS  Google Scholar 

  59. Lemon N, Manahan-Vaughan D (2006) Dopamine D1/D5 receptors gate the acquisition of novel information through hippocampal long-term potentiation and long-term depression. J Neurosci 26:7723–7729

    Article  PubMed  CAS  Google Scholar 

  60. Pastalkova E, Serrano P, Pinkhasova D, Wallace E, Fenton AA, Sacktor TC (2006) Storage of spatial information by the maintenance mechanism of LTP. Science 313:1141–1144

    Article  PubMed  CAS  Google Scholar 

  61. Whitlock JR, Heynen AJ, Shuler MG, Bear MF (2006) Learning induces long-term potentiation in the hippocampus. Science 313:1093–1097

    Article  PubMed  CAS  Google Scholar 

  62. Abraham WC, Williams JM (2003) Properties and mechanisms of LTP maintenance. Neuroscientist 2003(9):463–474

    Article  CAS  Google Scholar 

  63. Turrigiano GG (2008) The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135:422–435

    Article  PubMed  CAS  Google Scholar 

  64. Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Sacha B, Nelson SB (1998) Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391:892–896

    Article  PubMed  CAS  Google Scholar 

  65. Stephenson FA, Hawkins LM (2001) Neurotransmitter receptors in the postsynaptic neuron. In Encyclopedia of life sciences. Wiley

    Google Scholar 

  66. Salio C, Lossi L, Ferrini F, Merighi A (2006) Neuropeptides as synaptic transmitters. Cell Tissue Res 326:583–598

    Article  PubMed  CAS  Google Scholar 

  67. Gudermann T, Schoneberg T, Schultz G (1997) Functional and structural complexity of signal transduction via G-protein-coupled receptors. Annu Rev Neurosci 20:399–427

    Article  PubMed  CAS  Google Scholar 

  68. Hamm HE (1998) The many faces of G protein signaling. J Biol Chem 273:669–672

    Article  PubMed  CAS  Google Scholar 

  69. Cossart R, Epsztein J, Tyzio R, Becq H, Hirsch J, Ben-Ari Y, Crepel V (2002) Quantal release of glutamate generates pure kainate and mixed AMP/kainate EPSCs in hippocampal neurons. Neuron 35:147–159

    Article  PubMed  CAS  Google Scholar 

  70. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Ray Dingledine R (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62:405–496

    Article  PubMed  CAS  Google Scholar 

  71. Rosenmund C, Stern-Bach Y, Stevens CF (1998) The tetrameric structure of a glutamate receptor channel. Science 280:1596–1599

    Article  PubMed  CAS  Google Scholar 

  72. Chung HJ, Steinberg JP, Huganir RL, Linden DJ (2003) Requirement of AMPA receptor GluR2 phosphorylation for cerebellar long-term depression. Science 300:1751–1755

    Article  PubMed  CAS  Google Scholar 

  73. Nusser Z, Mulvihill E, Streit P, Somogyi P (1994) Subsynaptic segregation of metabotropic and ionotropic glutamate receptors as revealed by immunogold localization. Neuroscience 61:421–427

    Article  PubMed  CAS  Google Scholar 

  74. Jaskolski F, Coussen F, Mulle C (2005) Subcellular localization and trafficking of kainate receptors. Trends Pharmacol Sci 26:20–26

    Article  PubMed  CAS  Google Scholar 

  75. Niswender CM, Conn PJ (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 50:295–322

    Article  PubMed  CAS  Google Scholar 

  76. Cavallero A, Marte A, Fedele E (2009) l-Aspartate as an amino acid neurotransmitter: mechanisms of the depolarisation-induced release from cerebrocortical synaptosomes. J Neurochem 110:924–934

    Article  PubMed  CAS  Google Scholar 

  77. Fleck MW, Henze DA, Barrioneuvo G, Palmer AM (1993) Aspartate and glutamate mediate excitatory synaptic transmission in area CA1 of the hippocampus. J Neurosci 13:3944–3955

    PubMed  CAS  Google Scholar 

  78. Chen PE, Geballe MT, Stansfeld PJ, Johnston AR, Yuan H, Jacob AL, Snyder JP, Traynelis SF, Wyllie DJA (2005) Structural features of the glutamate binding site in recombinant NR1/NR2A N-methyl-d-aspartate receptors determined by site-directed mutagenesis and molecular modeling. Mol Pharmacol 67:1470–1484

    Article  PubMed  CAS  Google Scholar 

  79. Kaila K (1994) Ionic basis of GABAA receptor channel function in the nervous system. Prog Neurobiol 42:489–537

    Article  PubMed  CAS  Google Scholar 

  80. Kaupmann K, Schuler V, Mosbacher J, Bischoff H, Bittiger H, Heid J, Froestl W, Leonhard S, Pfaff T, Karschin A, Bettler B (1998) Human γ-aminobutyric acid type B receptors are differentially expressed and regulate inwardly rectifying K+ channels. Proc Natl Acad Sci USA 9:14991–14996

    Article  Google Scholar 

  81. Gulledge AT, Stuart GJ (2003) Excitatory actions of GABA in the cortex. Neuron 37:299–309

    Article  PubMed  CAS  Google Scholar 

  82. Staley KJ, Proctor WR (1999) Modulation of mammalian dendritic GABAA receptor function by the kinetics of Cl and HCO3 transport. J Physiol 519:693–712

    Article  PubMed  CAS  Google Scholar 

  83. Koch C, Poggio T, Torre V (1983) Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing. Proc Natl Acad Sci USA 80:2799–2802

    Article  PubMed  CAS  Google Scholar 

  84. Lynch JW (2004) Molecular structure and function of the glycine receptor chloride channel. Physiol Rev 84:1051–1095

    Article  PubMed  CAS  Google Scholar 

  85. Danysz W, Parsons CG (1998) Glycine and N-methyl-D-aspartate receptors: physiological significance and possible therapeutic applications. Pharmacol Rev 50:597–664

    PubMed  CAS  Google Scholar 

  86. Martina M, Gorfinkel Y, Halman S, Lowe JA, Periyalwar P, Schmidt CJ, Bergeron R (2004) Glycine transporter type 1 blockade changes NMDA receptor-mediated responses and LTP in hippocampal CA1 pyramidal cells by altering extracellular glycine levels. J Physiol 557:489–500

    Article  PubMed  CAS  Google Scholar 

  87. Smith KE, Borden LA, Hartig PR, Branchek T, Weinshank RL (1992) Cloning and expression of a glycine transporter reveal colocalization with NMDA receptors. Neuron 8:927–935

    Article  PubMed  CAS  Google Scholar 

  88. Zeilhofer HU, Studler B, Arabadzisz D, Schweizer C, Ahmadi S, Layh B, Bösl MR, Fritschy J-M (2005) Glycinergic neurons expressing enhanced green fluorescent protein in bacterial artificial chromosome transgenic mice. J Comp Neurol 482:123–216

    Article  PubMed  CAS  Google Scholar 

  89. Beaulieu J-M, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217

    Article  PubMed  CAS  Google Scholar 

  90. Surmeier DJ, Ding J, Day M, Wang Z, Shen W (2007) D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 30:228–235

    Article  PubMed  CAS  Google Scholar 

  91. Surmeier DJ, Song W-J, Zhen Y (1996) Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J Neurosci 16:6579–6591

    PubMed  CAS  Google Scholar 

  92. Jay TM (2003) Dopamine: a potential substrate for synaptic plasticity and memory mechanisms. Prog Neurobiol 69:375–390

    Article  PubMed  CAS  Google Scholar 

  93. Swant J, Wagner JJ (2006) Dopamine transporter blockade increases LTP in the CA1 region of the rat hippocampus via activation of the D3 dopamine receptor. Learn Mem 13:161–167

    Article  PubMed  CAS  Google Scholar 

  94. Centonze D, Picconi B, Paolo Gubellini P, Giorgio Bernardi G, Calabresi P (2001) Dopaminergic control of synaptic plasticity in the dorsal striatum. Eur J Neurosci 13:1071–1077

    Article  PubMed  CAS  Google Scholar 

  95. Frey U, Huang YY, Kandel ER (1993) Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons. Science 260:1661–1664

    Article  PubMed  CAS  Google Scholar 

  96. Caille I, Dumartin B, Bloch B (1996) Ultrastructural localization of D1 dopamine receptor immunoreactivity in rat striatonigral neurons and its relation with dopaminergic innervation. Brain Res 730:17–31

    PubMed  CAS  Google Scholar 

  97. Floresco SB, West AR, Ash B, Moore H, Grace AA (2003) Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat Neurosci 6:968–973

    Article  PubMed  CAS  Google Scholar 

  98. Meiergerd SM, Patterson TA, Schenk JO (1993) D2 receptors may modulate the function of the striatal transporter for dopamine: kinetic evidence from studies in vitro and in vivo. J Neurochem 61:764–767

    Article  PubMed  CAS  Google Scholar 

  99. Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41:1–24

    Article  PubMed  CAS  Google Scholar 

  100. Frazer A, Hensler JG (1999) Serotonin receptors. In: Siegel GJ, Agranoff BW, Albers RW, Fisher SK, Uhler MD (eds) Basic neurochemistry: molecular, cellular, and medical aspects, 6th edn. Lippincott-Raven, Philadelphia, pp 263–292

    Google Scholar 

  101. Lukyanetz EA, Sotkis AV, Kostyuk PG (2002) Mechanisms of up-regulation of single calcium channels by serotonin in Helix pomatia neurons. Biochem Biophys Res Commun 293:132–138

    Article  PubMed  CAS  Google Scholar 

  102. Karlin A (2002) Emerging structure of the nicotinic acetylcholine receptors. Nat Rev Neurosci 3:102–114

    Article  PubMed  CAS  Google Scholar 

  103. Felder CC (1995) Muscarinic acetylcholine receptors: signal transduction through multiple effectors. FASEB J 9:619–625

    PubMed  CAS  Google Scholar 

  104. Marrion NV (1997) Control of M-current. Annu Rev Physiol 59:483–504

    Article  PubMed  CAS  Google Scholar 

  105. Hein L (2006) Adrenoceptors and signal transduction in neurons (2006). Cell Tissue Res 326:541–551

    Article  PubMed  CAS  Google Scholar 

  106. Samuels ER, Szabadi E (2008) Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part I: principles of functional organization. Curr Neuropharmacol 6:235–253

    Article  PubMed  CAS  Google Scholar 

  107. Sah P, Isaacson JS (1995) Channels underlying the slow afterhyperpolarisation in hippocampal pyramidal neurons: neurotransmitters modulate the open probability. Neuron 15:435–441

    Article  PubMed  CAS  Google Scholar 

  108. Nicoll RA (1988) The coupling of neurotransmitter receptors to ion channels in the brain. Science 241:545–551

    Article  PubMed  CAS  Google Scholar 

  109. Pankratov Y, Lalo U, Verkhratsky A, North RA (2006) Vesicular release of ATP at central synapses. Eur J Physiol 452:589–597

    Article  CAS  Google Scholar 

  110. Zimmermann H (2008) ATP and acetylcholine, equal brethren. Neurochem Int 52:634–648

    Article  PubMed  CAS  Google Scholar 

  111. Williams M (2002) Purinergic neurotransmission. In: Davis KL, Charney D, Coyle JT, Nemeroff C (eds) Neuropschopharmacology: the fifth generation of progress. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  112. Jo Y-H, Role LW (2002) Coordinate release of ATP and GABA at in vitro synapses of lateral hypothalamic neurons. J Neurosci 22:4794–4804

    PubMed  CAS  Google Scholar 

  113. Pankratov YV, Lalo UV, Krishtal OA (2002) Role for P2X receptors in long-term potentiation. J Neurosci 22:8363–8369

    PubMed  CAS  Google Scholar 

  114. Schiffmann SN, Fisone G, Moresco R, Cunha RA, Ferre S (2007) Adenosine A2A receptors and basal ganglia physiology. Prog Neurobiol 83:277–292

    Article  PubMed  CAS  Google Scholar 

  115. Cunha RA (2001) Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors. Neurochem Int 38:107–125

    Article  PubMed  CAS  Google Scholar 

  116. Fredholm BB, Abbracchio MP, Burnstock G, Daly JW, Harden TK, Jacobson KA, Leff P, Williams M (1994) Nomenclature and classification of purinoceptors. Pharmacol Rev 46:143–156

    PubMed  CAS  Google Scholar 

  117. Fredholm BB, Dunwiddie TV (1988) How does adenosine inhibit transmitter release? Trends Pharmacol Sci 9:130–134

    Article  PubMed  CAS  Google Scholar 

  118. Bongsebandhu-phubhakdi S, Manabe T (2007) The neuropeptide nociceptin is a synaptically released endogenous inhibitor of hippocampal long-term potentiation. J Neurosci 27:4850–4858

    Article  PubMed  CAS  Google Scholar 

  119. Balschun D, Reymann KG (1994) Cholecystokinin (CCK-8S) prolongs ‘unsaturated’ θ-pulse induced long-term potentiation in rat hippocampal CA1 in vitro. Neuropeptides 26:421–427

    Article  PubMed  CAS  Google Scholar 

  120. Wilson RI, Nicoll RA (2002) Endocannabinoid signaling in the brain. Science 296:678–682

    Article  PubMed  CAS  Google Scholar 

  121. Hillard C, Jarrahian A (2003) Cellular accumulation of anandamide: consensus and controversy. Br J Pharmacol 140:802–808

    Article  PubMed  CAS  Google Scholar 

  122. Ronesi J, Gerdeman GL, Lovinger DM (2004) Disruption of endocannabinoid release and striatal long-term depression by postsynaptic blockade of endocannabinoid membrane transport. J Neurosci 24:1673–1679

    Article  PubMed  CAS  Google Scholar 

  123. Gerdeman GL, Lovinger DM (2003) Emerging roles for endocannabinoids in long-term synaptic plasticity. Br J Pharmacol 140:781–789

    Article  PubMed  CAS  Google Scholar 

  124. Di Tomaso E, Beltramo M, Piomelli D (1996) Brain cannabinoids in chocolate. Nature 382:677–678

    Article  PubMed  Google Scholar 

  125. Baranano DE, Ferris CD, Snyder SH (2001) Atypical neural messengers. Trends Neurosci 24:99–106

    Article  PubMed  CAS  Google Scholar 

  126. Toth K (2011) Zinc in neurotransmission. Annu Rev Nutr 31:139–153

    Article  PubMed  CAS  Google Scholar 

  127. Sindreu CB, Varoqui H, Erickson JD, Perez-Clausell J (2003) Boutons containing vesicular zinc define a subpopulation of synapses with low AMPAR content in rat hippocampus. Cereb Cortex 13:823–829

    Article  PubMed  Google Scholar 

  128. Perez-Clausell J, Danscher G (1985) Intravesicular localization of zinc in rat telencephalic boutons. A histochemical study. Brain Res 337:91–98

    Article  PubMed  CAS  Google Scholar 

  129. Peters S, Koh J, Choi DW (1987) Zinc selectively blocks the action of N-methyl-d-aspartate on cortical neurons. Science 236:589–593

    Article  PubMed  CAS  Google Scholar 

  130. Westbrook GL, Mayer ML (1987) Micromolar concentrations of Zn2+ antagonize NMDA and GABA responses of hippocampal neurons. Nature 328:640–643

    Article  PubMed  CAS  Google Scholar 

  131. Sensi SL, Yin HZ, Carriedo SG, Rao SS, Weiss JH (1999) Preferential Zn2+ influx through Ca2+-permeable AMPA/kainate channels triggers prolonged mitochondrial superoxide production. Proc Natl Acad Sci USA 96:2414–2419

    Article  PubMed  CAS  Google Scholar 

  132. Li Y, Hough CJ, Frederickson CJ, Sarvey JM (2001) Induction of mossy fiber → CA3 long-term potentiation requires translocation of synaptically released Zn2+. J Neurosci 21:8015–8025

    PubMed  CAS  Google Scholar 

  133. Hölscher C (1997) Nitric oxide, the enigmatic neuronal messenger: its role in synaptic plasticity. Trends Neurosci 20:298–303

    Article  PubMed  Google Scholar 

  134. Son H, Hawkins RD, Martin K, Kiebler M, Huang PL, Fishman MC, Kandel ER (1996) Long-term potentiation is reduced in mice that are doubly mutant in endothelial and neuronal nitric oxide synthase. Cell 87:1015–1023

    Article  PubMed  CAS  Google Scholar 

  135. Steinert JR, Kopp-Scheinpflug C, Baker C, Challiss RAJ, Mistry R, Haustein MD, Griffin SJ, Tong H, Graham BP, Forsythe ID (2008) Nitric oxide is a volume transmitter regulating postsynaptic excitability at a glutamatergic synapse. Neuron 60:642–656

    Article  PubMed  CAS  Google Scholar 

  136. Dieni S, Matsumoto T, Dekkers M, Rauskolb S, Ionescu MS, Deogracias R, Gundelfinger ED, Kojima M, Nestel S, Frotscher M, Barde Y-A (2012) BDNF and its pro-peptide are stored in presynaptic dense core vesicles in brain neurons. J Cell Biol. doi:10.1083/jcb.201201038

    PubMed  Google Scholar 

  137. Arévalo JC, Wu SH (2006) Neurotrophin signaling: many exciting surprises! Cell Mol Life Sci 63:1523–1537

    Article  PubMed  CAS  Google Scholar 

  138. Pape HC, McCormick DA (1989) Noradrenaline and serotonin selectively modulate thalamic burst firing by enhancing a hyperpolarisation-activated cation current. Nature 340:715–718

    Article  PubMed  CAS  Google Scholar 

  139. McCormick DA, Williamson A (1989) Convergence and divergence of neurotransmitter action in human cerebral cortex. Proc Natl Acad Sci USA 86:8098–8102

    Article  PubMed  CAS  Google Scholar 

  140. Angelino E, Brenner MP (2007) Excitability constraints on voltage-gated sodium channels. PLoS Comput Biol 3(9):e177. doi:10.1371/journal.pcbi.0030177

    Article  CAS  Google Scholar 

  141. Magee JC, Johnston D (1995) Characterization of single voltage-gated Na+ and Ca++ channels in apical dendrites of rat CA1 pyramidal neurons. J Physiol 487:67–90

    PubMed  CAS  Google Scholar 

  142. O’Dell TJ, Alger BE (1991) Single calcium channels in rat and guinea-pig hippocampal neurons. J Physiol 436:739–767

    PubMed  Google Scholar 

  143. Gutman GA, Chandy KG, Adelman JP, Lazdunski M, Mckinnon D, Pardo LA, Robertson GA, Rudy B, Sanguinetti MC, Stuhmer W, Wang X (2005) International union of pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated ion channels: potassium channels. Pharmacol Rev 57:473–508

    Article  PubMed  CAS  Google Scholar 

  144. Storm JF (1993) Functional diversity of K+ currents in hippocampal pyramidal neurons. Semin Neurosci 5:79–92

    Article  CAS  Google Scholar 

  145. Delmas P, Brown DA (2005) Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat Rev Neurosci 6:850–862

    Article  PubMed  CAS  Google Scholar 

  146. Metz AE, Spruston N, Martina M (2007) Dendritic D-type potassium currents inhibit the spike afterdepolarisation in rat hippocampal CA1 pyramidal neurons. J Physiol 581:175–187

    Article  PubMed  CAS  Google Scholar 

  147. Hoffman DA, Johnston D (1998) Downregulation of transient K+ channels in dendrites of hippocampal CA1 pyramidal neurons by activation of PKA and PKC. J Neurosci 18:3521–3528

    PubMed  CAS  Google Scholar 

  148. Wilke RA, Hsu S-F, Jackson MB (1998) Dopamine D4 receptor mediated inhibition of potassium current in neurohypophysial nerve terminals. J Pharmacol Exp Ther 284(2):542–548

    PubMed  CAS  Google Scholar 

  149. Lambe EK, Aghajanian GK (2001) The role of Kv1.2-containing potassium channels in serotonin-induced glutamate release from thalamocortical terminals in rat frontal cortex. J Neurosci 21:9955–9963

    PubMed  CAS  Google Scholar 

  150. Dong Y, White F (2003) Dopamine D1-class receptors selectively modulate a slowly inactivating potassium current in rat medial prefrontal cortex pyramidal neurons. J Neurosci 23:2686–2695

    PubMed  CAS  Google Scholar 

  151. Wu R, Barish ME (1999) Modulation of a slowly inactivating potassium current, ID, by metabotropic glutamate receptor activation in cultured hippocampal pyramidal neurons. J Neurosci 19:6825–6837

    PubMed  CAS  Google Scholar 

  152. Halliwell JV, Paul R, Adams PR (1982) Voltage-clamp analysis of muscarinic excitation in hippocampal neurons. Brain Res 250:71–92

    Article  PubMed  CAS  Google Scholar 

  153. Colino A, Halliwell JV (1987) Differential modulation of three separate K-conductances in hippocampal CA1 neurons by serotonin. Nature 328:73–77

    Article  PubMed  CAS  Google Scholar 

  154. Charpak S, Gahwiler BH, Do KQ, Knopfel T (1990) Potassium conductances in hippocampal neurons blocked by excitatory amino-acid transmitters. Nature 347:765–767

    Article  PubMed  CAS  Google Scholar 

  155. Moore SD, Madamba SG, Joels M, Siggins GR (1988) Somatostatin augments the M-current in hippocampal neurons. Science 239:278–280

    Article  PubMed  CAS  Google Scholar 

  156. Vacher H, Mohapatra DP, Trimmer JS (2008) Localization and targeting of voltage-dependent ion channels in mammalian central neurons. Physiol Rev 88:1407–1447

    Article  PubMed  CAS  Google Scholar 

  157. Bekkers JM (2000) Properties of voltage-gated potassium currents in nucleated patches from large layer 5 cortical pyramidal neurons of the rat. J Physiol 525:593–609

    Article  PubMed  CAS  Google Scholar 

  158. Solomon JS, Nerbonne JM (1993) Hyperpolarisation-activated currents in isolated superior colliculus-projecting neurons from rat visual cortex. J Physiol 462:393–420

    PubMed  CAS  Google Scholar 

  159. Williams SR, Stuart GJ (2003) Role of dendritic synapse location in the control of action potential output. Trends Neurosci 26:147–154

    Article  PubMed  CAS  Google Scholar 

  160. Berger T, Senn W, Luscher HR (2003) Hyperpolarisation activated current Ih disconnects somatic and dendritic spike initiation zones in layer V pyramidal neurons. J Neurophysiol 90:2428–2437

    Article  PubMed  Google Scholar 

  161. Sík A, Smith RL, Freund TF (2000) Distribution of chloride channel-2-immunoreactive neuronal and astrocytic processes in the hippocampus. Neuroscience 101:51–65

    Article  PubMed  Google Scholar 

  162. Jentsch TJ, Gunther W, Pusch M, Schwappach B (1995) Properties of voltage gated chloride channels of the ClC gene family. J Physiol 482:19S–25S

    PubMed  CAS  Google Scholar 

  163. Lai HC, Jan LY (2006) The distribution and targeting of neuronal voltage-gated ion channels. Nat Rev Neurosci 7:548–562

    Article  PubMed  CAS  Google Scholar 

  164. Tzingounis AV, Nicoll RA (2008) Contribution of KCNQ2 and KCNQ3 to the medium and slow afterhyperpolarisation currents. Proc N Y Acad Sci 105:19974–19979

    Article  CAS  Google Scholar 

  165. Sah P (1996) Ca2+-activated K+ currents in neurones: types, physiological roles and modulation. Trends Neurosci 19:150–154

    Article  PubMed  CAS  Google Scholar 

  166. Maingret F, Coste B, Hao J, Giamarchi A, Allen D, Crest M, Litchfield DW, Adelman JP, Delmas P (2008) Neurotransmitter modulation of small-conductance Ca2+-activated K+ channels by regulation of Ca2+ gating. Neuron 59(3):439–449

    Article  PubMed  CAS  Google Scholar 

  167. Stackman RW, Hammond RS, Linardatos E, Gerlach A, Maylie J, Adelman JP, Tzounopoulos T (2002) Small conductance Ca2+-activated K+ channels modulate synaptic plasticity and memory encoding. J Neurosci 22:10163–10171

    PubMed  CAS  Google Scholar 

  168. Raley-Susman KM, Cragoe EJ Jr, Sapolsky RM, Kopito RR (1991) Regulation of intracellular pH in cultured hippocampal neurons by an amiloride-insensitive Na+/H+ exchanger. J Biol Chem 266:2739–2745

    PubMed  CAS  Google Scholar 

  169. Kupfermann I (1980) Role of cyclic nucleotides in excitable cells. Annu Rev Physiol 42:629–641

    Article  PubMed  CAS  Google Scholar 

  170. Hong M, Ross WN (2007) Priming of intracellular calcium stores in rat CA1 pyramidal neurons. J Physiol 584:75–87

    Article  PubMed  CAS  Google Scholar 

  171. Muller W, Connor JA (1991) Dendritic spines as individual neuronal compartments for synaptic Ca2+ responses. Nature 354:73–76

    Article  PubMed  CAS  Google Scholar 

  172. Higley MJ, Sabatini BL (2008) Calcium signaling in dendrites and spines: practical and functional considerations. Neuron 59:902–913

    Article  PubMed  CAS  Google Scholar 

  173. Brorson JR, Bleakman D, Gibbons SJ, Miller RJ (1991) The properties of intracellular calcium stores in cultured rat cerebellar neurons. J Neurosci 17:4024–4043

    Google Scholar 

  174. Bayer KU, Schulman H (2001) Regulation of signal transduction by protein targeting: the case for CaMKII. Biochem Biophys Res Commun 289:917–923

    Article  PubMed  CAS  Google Scholar 

  175. Chin D, Means AR (2000) Calmodulin: a prototypical calcium sensor. Trends Cell Biol 10:322–328

    Article  PubMed  CAS  Google Scholar 

  176. Wayman GA, Wei J, Wong S, Storm DR (1996) Regulation of type I adenylyl cyclase by calmodulin kinase IV in vivo. Mol Cell Biol 16:6075–6082

    PubMed  CAS  Google Scholar 

  177. Wang J, Chen S, Siegelbaum SA (2001) Regulation of hyperpolarisation-activated HCN channel gating and cAMP modulation due to interactions of COOH terminus and core transmembrane regions. J Gen Physiol 118:237–250

    Article  PubMed  CAS  Google Scholar 

  178. Lucas KA, Pitari GM, Kazerounian S, Ruiz-Stewart I, Park J, Schulz S, Chepenik KP, Waldman SA (2000) Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev 52:375–413

    PubMed  CAS  Google Scholar 

  179. Conti M (2000) Phosphodiesterases and cyclic nucleotide signaling in endocrine cells. Mol Endocrinol 14:1317–1327

    Article  PubMed  CAS  Google Scholar 

  180. Menniti FS, Faraci WS, Schmidt CJ (2006) Phosphodiesterases in the CNS: targets for drug development. Nat Rev Drug Discov 5:660–670

    Article  PubMed  CAS  Google Scholar 

  181. Conti M, Beavo J (2007) Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 76:481–511

    Article  PubMed  CAS  Google Scholar 

  182. McDermott M, Wakelam MJO, Morris AJ (2004) Phospholipase D. Biochem Cell Biol 82:225–253

    Article  PubMed  CAS  Google Scholar 

  183. Neves SR, Ram PT, Iyengar R (2002) G protein pathways. Science 296:1636–1639

    Article  PubMed  CAS  Google Scholar 

  184. Alexander SPH, Mathie A, Peters JA (2009) Guide to receptors and channels (GRAC), 4th edn. Br J Pharmacol 158(suppl 1):S5–S101

    CAS  Google Scholar 

  185. Zhang S, Coso OA, Lee C, Gutkind JS, Simonds WF (1996) Selective activation of effector pathways by brain specific G protein b5. J Biol Chem 271:33575–33579

    Article  PubMed  CAS  Google Scholar 

  186. Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Neurosci 3:639–650

    Article  CAS  Google Scholar 

  187. Fimia GM, Sassone-Corsi P (2001) Cyclic AMP signalling. J Cell Sci 114:1971–1972

    PubMed  CAS  Google Scholar 

  188. Ferguson SSG (2001) Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev 53:1–24

    PubMed  CAS  Google Scholar 

  189. Tang W-J, Gilman AG (1992) Adenylyl cyclases. Cell 70:869–872

    Article  PubMed  CAS  Google Scholar 

  190. Kaupp UB, Reinhard Seifert R (2002) Cyclic nucleotide-gated ion channels. Physiol Rev 82:769–824

    PubMed  CAS  Google Scholar 

  191. Cooper DMF (2003) Regulation and organization of adenylyl cyclases and cAMP. Biochem J 375:517–529

    Article  PubMed  CAS  Google Scholar 

  192. Montminy M (1997) Transcriptional regulation by cyclic AMP. Annu Rev Biochem 66:807–822

    Article  PubMed  CAS  Google Scholar 

  193. Thelen M, Didichenko SA (1997) G-protein coupled receptor-mediated activation of PI 3-kinase in neutrophils. Ann N Y Acad Sci 832:368–382

    Article  PubMed  CAS  Google Scholar 

  194. Herlitze S, Garcia DE, Mackie K, Hille B, Scheuer T, Catterall WA (1996) Modulation of Ca2+ channels by G-protein beta gamma subunits. Nature 380:258–262

    Article  PubMed  CAS  Google Scholar 

  195. Delmas P, Crest M, Brown DA (2004) Functional organization of PLC signaling microdomains in neurons. Trends Neurosci 27:41–47

    Article  PubMed  CAS  Google Scholar 

  196. Simpson CS, Morris BJ (1995) Induction of c-fos and zif/268 gene expression in rat striatal neurons, following stimulation of D1-like dopamine receptors, involves protein kinase A and protein kinase C. Neuroscience 68:97–106

    Article  PubMed  CAS  Google Scholar 

  197. Tanaka C, Nishizuka Y (1994) The protein kinase C family for neuronal signaling. Annu Rev Neurosci 17:551–567

    Article  PubMed  CAS  Google Scholar 

  198. Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514

    Article  PubMed  CAS  Google Scholar 

  199. Kvachnina E, Liu G, Dityatev A, Renner U, Dumuis A, Richter DW, Dityateva G, Schachner M, Voyno-Yasenetskaya TA, Ponimaskin EG (2005) 5-HT7 receptor is coupled to G subunits of heterotrimeric G12-protein to regulate gene transcription and neuronal morphology. J Neurosci 25:7821–7830

    Article  PubMed  CAS  Google Scholar 

  200. Ponimaskin EG, Profirovic J, Vaiskunaite R, Richter DW, Voyno-Yasenetskaya TA (2002) 5-Hydroxytryptamine 4(a) receptor is coupled to the G alpha subunit of heterotrimeric G13 protein. J Biol Chem 277:20812–20819

    Article  PubMed  CAS  Google Scholar 

  201. Thomas DR, Melotto S, Massagrande M, Gribble AD, Jeffrey P, Stevens AJ, Deeks NJ, Eddershaw PJ, Fenwick SH, Riley G, Stean T, Scott CM, Hill MJ, Middlemiss DN, Hagan JJ, Price GW, Forbes IT (2003) SB-656104-A, a novel selective 5-HT7 receptor antagonist, modulates REM sleep in rats. Br J Pharmacol 139:705–714

    Article  PubMed  CAS  Google Scholar 

  202. Mansour SJ, Matten WT, Hermann AS, Candia JM, Rong S, Fukasawa K, Vande Woude GF, Ahn NG (1994) Transformation of mammalian cells by constitutively active MAP kinase kinase. Science 265:966–970

    Article  PubMed  CAS  Google Scholar 

  203. Ferrell JE, Bhatt RR (1997) Mechanistic studies of the dual phosphorylation of mitogen-activated protein kinase. J Biol Chem 272:19008–19016

    Article  PubMed  CAS  Google Scholar 

  204. Adams JA (2001) Kinetic and catalytic mechanisms of protein kinases. Chem Rev 101:2271–2290

    Article  PubMed  CAS  Google Scholar 

  205. Barford D, Das AK, Egloff M-P (1998) The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu Rev Biophys Biomol Struct 27:133–164

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Coward, L.A. (2013). Neuron Physiology. In: Towards a Theoretical Neuroscience: from Cell Chemistry to Cognition. Springer Series in Cognitive and Neural Systems, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7107-9_4

Download citation

Publish with us

Policies and ethics