Skip to main content

Nature of Sensitive Clays from Québec

  • Chapter
  • First Online:
Landslides in Sensitive Clays

Part of the book series: Advances in Natural and Technological Hazards Research ((NTHR,volume 36))

Abstract

Quantitative mineralogical analyses of sediment samples from 18 sites in Québec indicate that plagioclase is the most abundant mineral in all soils and that chlorite is generally the dominant clay mineral followed by illite and expandable clays consisting of mixed-layer clays minerals involving vermiculite. The study also illustrates how specific surface area and constitutive water content can be used to evaluate departures from average in the mineralogical composition of sensitive clays. The relationship between activity and specific surface area of sensitive clays shows that when compared to soils from different sedimentary basins that have different mineralogy, they are characterized by a much lower activity and specific surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexiades CA, Jackson ML (1965) Quantitative determination of vermiculite in soils. Soil Sci Soc Am 29:522–527

    Article  Google Scholar 

  • Babineau P (1977) Minéralogie des argiles de St-Alban. MSc thesis, Université Laval, Ste.-Foy, Québec, 73 p

    Google Scholar 

  • Ball DF (1964) Loss on ignition as an estimate of organic matter and organic carbon in non-calcareous soils. J Soil Sci 18:84–92

    Google Scholar 

  • Ballivy G, Pouliot G, Loiselle A (1971) Quelques caractéristiques géologiques et minéralogiques des dépôts d’argile du nord-ouest du Québec. Can J Earth Sci 12:1525–1541

    Article  Google Scholar 

  • Bentley SP (1976) The contribution of primary mineral particles to the properties of sensitive clays from Eastern Canada. PhD thesis, University of Leeds, Leeds, 336 p

    Google Scholar 

  • Bentley SP (1980) Significance of amorphous material relative to sensitivity in some Champlain clays: Discussion. Can Geotech J 17:632–634

    Article  Google Scholar 

  • Bérend I, Cases JM, François M, Uriot JP, Michot L, Masion A, Thomas F (1995) Mechanism of adsorption and desorption of water vapor by homoionic montmorillonites: 2. The Li+, Na+, K+, and Cs+ − exchanged forms. Clay Clay Miner 43:324–336

    Article  Google Scholar 

  • Berry RW, Torrance JK (1998) Mineralogy, grain-size distribution and geotechnical behavior of Champlain clay core samples, Quebec. Can Mineral 36:1625–1636

    Google Scholar 

  • Brydon JE, Patry LM (1961) Mineralogy of Champlain Sea sediments and a Rideau clay soil profile. Can J Soil Sci 41:169–181

    Article  Google Scholar 

  • Chapman HD (1965) Cation exchange capacity. In: Black CA (ed) Methods of soil analysis. Agronomy, vol 9, part 2. American Society of Agronomy, Madison, pp 891–901

    Google Scholar 

  • Diamond S, Kinter EB (1958) Surface area of clay minerals as derived from measurements of glycol retention. Clay Clay Miner 5:334–347

    Article  Google Scholar 

  • Dreimanis A (1962) Quantitative bazometric determination of calcite and dolomite by using Chittick apparatus. J Sediment Petrol 32:520–529

    Google Scholar 

  • Engler P, Tyengar SS (1987) Analysis of mineral samples using combined instruments (XRD, TGA, ICOP) procedures for phase quantification. Am Mineral 72:832–838

    Google Scholar 

  • Foscal-Mella OM (1976) Analyse mineralogique des argiles glaciaires. Masters thesis, Ecole Polytechnique, Montreal, Quebec, 148 p

    Google Scholar 

  • Geertsema M, Torrance JK (2005) Quick clay from the Mink Creek landslide near Terrace, British Columbia: geotechnical properties, mineralogy, and geochemistry. Can Geotech J 42:907–918

    Article  Google Scholar 

  • Gillot JE (1971) Mineralogy of Leda clays. Can Mineral 10:797–811

    Google Scholar 

  • Gravel JY (1974) Minéralogie de l’argile Champlain de St-Jean-Vianney. Master thesis, Université Laval, Ste.-Foy, Québec, 42 p

    Google Scholar 

  • Jackson ML (1969) Soil chemical analysis, advanced course, 2nd edn. Parallel Press, Madison, 895 p

    Google Scholar 

  • Kiely PY, Jackson ML (1965) Quartz, Feldspar, and Mica determination for soils using sodium pyrosulfate fusion. Soil Sci Soc Am 29:159–163

    Article  Google Scholar 

  • Lebuis J, Robert J-M, Rissmann P (1983) Regional mapping of landslide hazards. In: Proceedings of the international symposium on slopes in soft clays, Swedish Geotechnical Institute, Report No. 17, pp 205–256

    Google Scholar 

  • Leroueil S, Tavenas F, Le Bihan JP (1983) Propriétés caractéristiques des argiles de l’est du Canada. Can Geotech J 20:681–705

    Article  Google Scholar 

  • Locat J (1982) Contribution à l’étude de l’origine de la structuration des argiles sensibles de l’Est du Canada. PhD thesis, University of Sherbrooke, Department of Civil Engineering, Québec, 512 p

    Google Scholar 

  • Locat J (1995) On the development of microstructure in a collapsible soils. NATO workshop. In: Derbyshire E et al (ed) Genesis and properties of collapsible soils. Kluwer Academic Publishers, Dordrecht, pp 93–128

    Google Scholar 

  • Locat J, Bérubé M-A (1986) L’influence de la granulométrie sur la mesure des carbonates par la méthode du chittick. Géogr Phys Quat 40:331–336

    Google Scholar 

  • Locat J, Levebvre G, Ballivy G (1984) Mineralogy, chemistry, and physical properties interrelationships of some sensitive clays from Eastern Canada. Can Geotech J 21:530–540

    Article  Google Scholar 

  • Locat J, Tanaka H, Tan TS, Dasari GR, Lee H (2003) Natural soils: geotechnical behavior and geological knowledge. In: Characterisation and engineering properties of natural soils, vol 1 (Proc. Singapore Workshop), Balkema. Swets & Zeitlinger, Lisse, pp 3–28

    Google Scholar 

  • Martel YA, De Kimpe CR, Laverdière MR (1978) Cation-exchange capacity of clay-rich soils in relation to organic matter, mineral composition and specific surface area. Soil Sci Soc Am 42:764–767

    Article  Google Scholar 

  • McKeague JA (1978) Manual on soil sampling and methods of analysis. Can Soc Soil Sci

    Google Scholar 

  • Mehra OP, Jackson ML (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. In: Proceedings of the 7th national conference on clays and clay minerals. Pergamon Press, New York, pp 317–327

    Google Scholar 

  • Pimol P, Khanidtha M, Prasert P (2008) Influence of particle size and salinity on adsorption of basic dyes by agricultural waste: dried Seagrape (Caulerpa lentillifera). J Environ Sci 20:760–768

    Article  Google Scholar 

  • Quigley RM (1980) Geology, mineralogy and geochemistry of Canadian soft soils: a geotechnical perspective. Can Geotech J 17:261–285

    Article  Google Scholar 

  • Reynolds RC, Lessing P (1962) The determination of dioctahedral mica and potassium feldspar in submicroscopic grain sizes. Am Mineral 47:979–982

    Google Scholar 

  • St-Gelais D, (1990) La surface spécifique et l’eau de constitution comme indicateur de la composition minéralogique des sols argileux du Québec. MSc thesis, Department of Geology and Geological Engineering, Laval University, Québec, 124p

    Google Scholar 

  • Torrance JK (1975) Pore water extraction and the effect of sample storage on the pore water chemistry of Leda clay. Soil Specimen Preparation Laboratory Testing. ASTM, STP 599, pp 147–157

    Google Scholar 

  • Torrance JK (1983) Towards a general model of quick clay development. Sedimentology 30:547–555

    Article  Google Scholar 

  • Torrance JK (1988) Mineralogy, pore-water chemistry, and geotechnical behaviour of Champlain Sea and related sediments. In: Gadd NR (ed) The late quaternary development of the Champlain Sea Basin, Geological Association of Canada, special paper 35. Geological Association of Canada, St. John’s, pp 259–275

    Google Scholar 

  • Torrance JK (1995) On the paucity of amorphous minerals in the sensitive post-glacial marine clays. Can Geotech J 32:535–538

    Article  Google Scholar 

  • Torrance JK, Ohtsubo M (1995) Ariake bay quick clays: a comparison with the general model. Soil Found 35:11–19

    Article  Google Scholar 

  • Tran NL (1977) Un nouvel essai d’identification des sols: l’essai au bleu de méthylène. Bulletin de Liaison des Laboratoires des Ponts et Chaussées 88:136–137

    Google Scholar 

  • Van der Plas L (1966) The identification of detrital feldspars. Elsevier Publishing Co, New York, pp 169–225

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Robert Ledoux and Marc-André Bérubé who greatly helped ensuring that the methods used for the mineralogical analysis were appropriate and used carefully. We also thank the support of the Ministère des transports du Québec for providing the samples. This research was supported by grants from the NSERC and Fonds FQRNT. Finally, we would like to thank Kenneth Torrance for his constructive comments that greatly helped the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Locat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Locat, J., St-Gelais, D. (2014). Nature of Sensitive Clays from Québec. In: L'Heureux, JS., Locat, A., Leroueil, S., Demers, D., Locat, J. (eds) Landslides in Sensitive Clays. Advances in Natural and Technological Hazards Research, vol 36. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7079-9_3

Download citation

Publish with us

Policies and ethics