Skip to main content

Part of the book series: Forestry Sciences ((FOSC,volume 81))

Abstract

The contribution of forest biotechnology to the future of our global forests is explored. Questions relating to how forest biotechnology can most appropriately fully contribute to achieving sustainable development goals in the light of REDD + and the United Nations Rio + 20 developments are raised. Opportunities for international support for preservation of old growth forest areas, whilst allowing for other areas to be semi-managed, or used for high density plantation forestry are discussed. The role of ‘trees of technology’ using modified practices or genetic components in tree breeding are described, with reference to future energy, pulp, food and construction uses. The crucial role of biotechnology in conserving forest biodiversity and uniquely valuable tree genotypes is evaluated. The current and future potential for leading edge biotechnological breakthroughs in manipulating rapid growth, extending geographical ranges, developmental control of flowering, carbohydrate commitment, ‘omics technologies and resistance to biotic and abiotic stresses are explored. The ability of forest biotechnology to contribute to delivering economic, societal and environmental benefits globally is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barakat A, DiLoreto DS, Zhang Y, Smith C, Baier K, Powell WA, Wheeler N, Sederoff R, Carlson JE (2009) Comparison of the transcriptomes of American chestnut (castanea dentata) and Chinese chestnut (castanea mollissima) in response to the chestnut blight infection. BMC Plant Biol 9:51

    Article  PubMed  Google Scholar 

  • Baxter I, Dilkes BP (2012) Elemental profiles reflect plant adaptations to the environment. Science 336:1661–1663

    Article  PubMed  CAS  Google Scholar 

  • Bohmert K (2000) Transgenic Arabidopsis can accumulate polyhydroxybutyrate to up to 4% of their fresh weight. Planta 211:841–845

    Article  PubMed  CAS  Google Scholar 

  • Bonetta L (2008) Epigenomics: detailed analysis. Nature 454:795–798

    Article  PubMed  CAS  Google Scholar 

  • Burg K, Helmersson A, Bozhkow P, von Arnold S (2007) Developmental and genetic variation in nuclear microsatellite stability during somatic embryogenesis in pine. J Exp Bot 58:687–698

    Article  PubMed  CAS  Google Scholar 

  • Dalton DA, Ma C, Murthy GS, Strauss SH (2012) Bioplastic production by transgenic poplar. Information Systems for Biotechnology News Report (Jan) 7–10

    Google Scholar 

  • DiFazio SP, Leonardi S, Slavov GT, Garman SL, Adams WT, Strauss SH (2012) Gene flow and simulation of transgenic dispersal from hybrid poplar plantations. New Phytologist 193:903–915

    Google Scholar 

  • ENCODE Project Consortium (2012) An integrated encyclopaedia of DNA elements in the human genome. Nature 489:57–74

    Article  Google Scholar 

  • Feng S, Cokus SJ, Zhang X, Chen P-Y, Bostick M, Goll MG, Hetzel J, Jain J, Strauss SH, Halpern ME, Ukomadu C, Sadler KC, Pradhan S, Pellerini M, Jacobsen SE (2010) Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci USA 107:8689–8694

    Article  PubMed  CAS  Google Scholar 

  • Fenning TM, Gartland KMA (2007) Why forests matter. Prospect 133:17–18

    Google Scholar 

  • Fenning TM, Walter C, Gartland KMA (2008) Forest biotech and climate change. Nat Biotechnol 26:615–617

    Article  PubMed  CAS  Google Scholar 

  • Gartland KMA, Gartland JS (2004) Biotechnology applied to conservation, insects and diseases. In: Kellison R, McCord S, Gartland KMA (eds) Forest biotechnology in Latin America. Institute of Forest Biotechnology, North Carolina, pp 109–116

    Google Scholar 

  • Gartland KMA, McHugh AT, Crow RM, Garg A, Gartland JS (2005) Biotechnological progress in dealing with Dutch Elm disease. In Vitro Cell Dev Biol Plant 41:364–367

    Article  Google Scholar 

  • Gatica-Arias AM, Arrieta-espinoza G, Espinoza-Esquivel AM (2008) Plant regeneration via somatic embryogenesis and optimisation of genetic transformation in coffee (coffea Arabica L.) cvs. Caturra and catuai. Electron J Biotechnol 11(1):9

    Article  Google Scholar 

  • Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94–108

    Article  PubMed  CAS  Google Scholar 

  • Hirsch R (2012) Blight resistance: it’s in the DNA. J Am Chestnut Found 26:20–22

    Google Scholar 

  • Hofstad O, Kohlin G, Namaala J (2009) How can emissions from woodfuel be reduced? In: Angelsen A (ed) Realising REDD+: national strategy and policy options. CIFOR, Bogor

    Google Scholar 

  • Huckabee Smith A (2012) Breeding for resistance: TACF and the Burnham hypothesis. J Am Chestnut Found 26:11–15

    Google Scholar 

  • Kremer A, Vincenti B, Alia R, Burczyk J, Cavers S, Degen B, Finkeldey R, Fluch S, Gomory D, Gugerli F, Koelwijn HP, Koskela J, Lefevre F, Morgante M, Mueller-Starck G, Plomion C, Taylor G, Turok J, Savolainen O, Ziegenhagen B (2011) Forest ecosystem genomics and adaptation. Tree Genet Genomes 7:869–875

    Article  Google Scholar 

  • Ma J, He Y, Wu C, Liu H, Hu Z, Sun G (2012) Cloning and molecular characterization of a SERK gene transcriptionally induced during somatic embryogenesis Ananas comusus cv. Shenwan. Plant Mol Biol Report 30:195–203

    Article  CAS  Google Scholar 

  • Newhouse AE, Kaczmar NS, Powell WA, Maynard CA (2009) American elm. In: Kole C, Hall TC (eds) A compendium of transgenic plants. Blackwell, Oxford, pp 241–262

    Google Scholar 

  • Novaes E, Kirst M, Chiang V, Winter-Sederoff H, Sederoff R (2010) Lignin and biomass: a negative correlation for wood formation and lignin content in trees. Plant Physiol 154:555–561

    Article  PubMed  CAS  Google Scholar 

  • Perez-Nunez MT, Souza R, Saenz L, Chan JL, Zuniga-Aguillar JJ, Oropreza C (2009) Detection of a SERK-like gene in coconut and analysis of its expression during the formation of embryogenic callus and somatic embryos. Plant Cell Rep 28:11–19

    Article  PubMed  CAS  Google Scholar 

  • Phelps J, Webb EL, Agrawal A (2010) Does REDD + threaten to recentralise forest governance? Science 328:312–313

    Article  PubMed  CAS  Google Scholar 

  • Stern N (2007) The economics of climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Troggio M, Gleave A, Salvi S, Chagne D, Cestaro A, Kumar S, Crowhurst RN, Gardiner SE (2012) Apple, from genome to breeding. Tree Genet Genomes 8:509–529

    Article  Google Scholar 

  • United Nations (1987) Report of the World Commission on Environment and Development. General Assembly Resolution 42/187, 11 December, 1987

    Google Scholar 

  • Vining KJ, Pomraning KR, Wilhelm LJ, Priest HD, Pellegrini M, Mockler TC, Freitag M, Strauss SH (2012) Dynamic DNA cytosine methylation in the Populus trichocarpa genome: tissue-level variation and relationship to gene expression. Biomed Cent Genom 13:27

    CAS  Google Scholar 

  • Viswanath V, Albrechtsen BR, Strauss SH (2012) Global regulatory burden for field testing of genetically modified trees. Tree Genet Genomes 8:221–226

    Article  Google Scholar 

  • Wegrzyn JL, Main D, Figueroa B, Choi M, Yu J, Neale DB, Jung S, Lee T, Stanton M, Zheng P, Ficklin S, Cho I, Peace C, Evans K, Volk G, Oraguzie N, Chen C, Olmstead M, Gmitter G Jr, Abbott AG (2012) Uniform standards for genome databases in forest and fruit trees. Tree Genet Genomes 8:549–557

    Article  Google Scholar 

  • Zagrai I, Capote N, Ravelonandro M, Cambra M, Zagrai L, Scorza R (2008) Plum pox virus silencing of C5 transgenic plums is stable under challenge inoculation with heterologous viruses. J Plant Pathol 90:63–71

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevan M. A. Gartland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gartland, K.M.A., Gartland, J.S. (2014). Forest Biotechnology Futures. In: Fenning, T. (eds) Challenges and Opportunities for the World's Forests in the 21st Century. Forestry Sciences, vol 81. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7076-8_23

Download citation

Publish with us

Policies and ethics