Skip to main content

Microrheology of Biopolymers at Non-thermal Regimes

  • Chapter
Tissue Engineering

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 31))

  • 1793 Accesses

Abstract

Many studies demonstrate the relevance of the mechanical properties of molecules and living cells to physiological function. Therefore, several techniques have been developed to probe the rheology of biological materials. Among them are based on the analysis of embedded probe fluctuations. However, novel applications using this robust tool are still lacking, despite the fact that the study of living matter routinely demonstrate new phenomena, not immediately characterized by existing analytical tools developed in physics. Hence, we derive novel robust tools to adapt ways of probing non-linear and non-equilibrium phenomena for biological samples. We propose designs of optical tweezer systems using two-beam tandems by dual-wavelength and single-wavelength splitting, for the study of microrheology in bulk down to single biopolymer or protein based on the fluctuation spectra of embedded or attached probes. We generalize, for the first time, calculations for winding turn probabilities to account for unfolding events in single fibrous biopolymers, which is modeled using a newly derived worm-like-chain model re-expressed by fractional strain expansion. The ensuing probe fluctuations are taken as originating from a damped harmonic oscillator. The approach described here offer new ways of characterizing biopolymer rheology using parameters based on folding turns and a newly derived WLC expansion for non-linear stretching.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143

    Article  Google Scholar 

  2. Engler AJ, Griffin MA, Sen S, Bonnemann CG, Sweeney HL, Discher DE (2004) Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol 166(6):877–887

    Article  Google Scholar 

  3. Bacabac RG, Mizuno D, Schmidt CF, MacKintosh FC, Van Loon JJ, Klein-Nulend J, Smit TH (2008) Round versus flat: bone cell morphology, elasticity, and mechanosensing. J Biomech 41(7):1590–1598

    Article  Google Scholar 

  4. Nijenhuis N, Mizuno D, Schmidt CF, Vink H, Spaan JA (2008) Microrheology of hyaluronan solutions: implications for the endothelial glycocalyx. Biomacromolecules 9(9):2390–2398

    Article  Google Scholar 

  5. Burger EH, Klein-Nulend J (1999) Responses of bone cells to biomechanical forces in vitro. Adv Dent Res 13:93–98

    Article  Google Scholar 

  6. Bacabac RG, Smit TH, Mullender MG, Dijcks SJ, Van Loon JJ, Klein-Nulend J (2004) Nitric oxide production by bone cells is fluid shear stress rate dependent. Biochem Biophys Res Commun 315(4):823–829

    Article  Google Scholar 

  7. Bacabac RG, Smit TH, Van Loon JJ, Doulabi BZ, Helder M, Klein-Nulend J (2006) Bone cell responses to high-frequency vibration stress: does the nucleus oscillate within the cytoplasm? FASEB J 20(7):858–864

    Article  Google Scholar 

  8. Janmey PA, Weitz DA (2004) Dealing with mechanics: mechanisms of force transduction in cells. Trends Biochem Sci 29(7):364–370

    Article  Google Scholar 

  9. Endlich N, Otey CA, Kriz W, Endlich K (2007) Movement of stress fibers away from focal adhesions identifies focal adhesions as sites of stress fiber assembly in stationary cells. Cell Motil Cytoskelet 64(12):966–976

    Article  Google Scholar 

  10. Gittes F, MacKintosh FC (1998) Dynamic shear modulus of a semiflexible polymer network. Phys Rev E 58(2):R1241

    Article  Google Scholar 

  11. Janmey PA, Hvidt S, Kas J, Lerche D, Maggs A, Sackmann E, Schliwa M, Stossel TP (1994) The mechanical properties of actin gels. Elastic modulus and filament motions. J Biol Chem 269(51):32503–32513

    Google Scholar 

  12. Storm C, Pastore JJ, MacKintosh FC, Lubensky TC, Janmey PA (2005) Nonlinear elasticity in biological gels. Nature 435(7039):191–194

    Article  Google Scholar 

  13. Bendix PM, Koenderink GH, Cuvelier D, Dogic Z, Koeleman BN, Brieher WM, Field CM, Mahadevan L, Weitz DA (2008) A quantitative analysis of contractility in active cytoskeletal protein networks. Biophys J 94(8):3126–3136

    Article  Google Scholar 

  14. Piechoka IK, Bacabac RG, Potters M, MacKintosh FC, Koenderink GH (2010) Structural hierarchy governs fibrin gel mechanics. Biophys J 98:2281–2289

    Article  Google Scholar 

  15. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell. Garland Science, New York

    Google Scholar 

  16. Fung YC (1988) Microrheology and constitutive equation of soft tissue. Biorheology 25(1–2):261–270

    MathSciNet  Google Scholar 

  17. Smith D, Ziebert F, Humphrey D, Duggan C, Steinbeck M, Zimmermann W, Kas J (2007) Molecular motor-induced instabilities and cross linkers determine biopolymer organization. Biophys J 93(12):4445–4452

    Article  Google Scholar 

  18. Bernido CC, Carpio-Bernido MV (2005) Overwinding in a stochastic model of an extended polymer. Phys Lett A 369:1–4

    Article  Google Scholar 

  19. Bernido CC, Carpio-Bernido MV, Bornales JB (2005) Overwinding in a stochastic model of an extended polymer. Phys Lett A 339:232–236

    Article  MATH  Google Scholar 

  20. Crocker JC, Hoffman BD (2007) Multiple-particle tracking and two-point microrheology in cells. Methods Cell Biol 83:141–178

    Article  Google Scholar 

  21. Levine AJ, Lubensky TC (2000) One- and two-particle microrheology. Phys Rev Lett 85(8):1774–1777

    Article  Google Scholar 

  22. Levine AJ, Lubensky TC (2001) Response function of a sphere in a viscoelastic two-fluid medium. Phys Rev E, Stat Nonlinear Soft Matter Phys 63(4 Pt 1):041510

    Article  Google Scholar 

  23. Addas KM, Schmidt CF, Tang JX (2004) Microrheology of solutions of semiflexible biopolymer filaments using laser tweezers interferometry. Phys Rev E, Stat Nonlinear Soft Matter Phys 70(2 Pt 1):021503

    Article  Google Scholar 

  24. Atakhorrami M, Addas KM, Schmidt CF (2008) Twin optical traps for two-particle cross-correlation measurements: eliminating cross-talk. Rev Sci Instrum 79(4):043103

    Article  Google Scholar 

  25. Janmey PA, Georges PC, Hvidt S (2007) Basic rheology for biologists. Methods Cell Biol 83:3–27

    Google Scholar 

  26. Schnurr B, Gittes F, MacKintosh FC, Schmidt CF (1997) Determining microscopic viscoelasticity in flexible and semiflexible polymer networks from thermal fluctuations. Macromolecules 30(25):7781–7792

    Article  Google Scholar 

  27. Hegner M, Grange W (2002) Mechanics and imaging of single DNA molecules. J Muscle Res Cell Motil 23(5–6):367–375

    Article  Google Scholar 

  28. Baumann CG, Bloomfield VA, Smith SB, Bustamante C, Wang MD, Block SM (2000) Stretching of single collapsed DNA molecules. Biophys J 78(4):1965–1978

    Article  Google Scholar 

  29. Mizuno D, Head DA, MacKintosh FC, Schmidt CF (2008) Active and passive microrheology in equilibrium and nonequilibrium systems. Macromolecules 41(19):7194–7202

    Article  Google Scholar 

  30. Crocker JC, Valentine MT, Weeks ER, Gisler T, Kaplan PD, Yodh AG, Weitz DA (2000) Two-point microrheology of inhomogeneous soft materials. Phys Rev Lett 85(4):888–891

    Article  Google Scholar 

  31. Mizuno D, Tardin C, Schmidt CF, MacKintosh FC (2007) Nonequilibrium mechanics of active cytoskeletal networks. Science 315(5810):370–373

    Article  Google Scholar 

  32. Mizuno D, Bacabac RG, Tardin C, Head DA, Schmidt CF (2009) High-resolution probing of cellular force transmission. Phys Rev Lett 102:168102

    Article  Google Scholar 

  33. Lau AW, Hoffman BD, Davies A, Crocker JC, Lubensky TC (2003) Microrheology, stress fluctuations, and active behavior of living cells. Phys Rev Lett 91(19):198101

    Article  Google Scholar 

  34. MacKintosh FC, Levine AJ (2008) Nonequilibrium mechanics and dynamics of motor-activated gels. Phys Rev Lett 100(1):018104

    Article  Google Scholar 

  35. Gittes F, Schmidt CF (1998) Interference model for back-focal-plane displacement detection in optical tweezers. Opt Lett 23(1):7–9

    Article  Google Scholar 

  36. Peterman EJ, Gittes F, Schmidt CF (2003) Laser-induced heating in optical traps. Biophys J 84 (2 Pt 1):1308–1316

    Article  Google Scholar 

  37. Moffitt JR, Chemla YR, Izhaky D, Bustamante C (2006) Differential detection of dual traps improves the spatial resolution of optical tweezers. Proc Natl Acad Sci USA 103(24):9006–9011

    Article  Google Scholar 

  38. Mangeol P, Bockelmann U (2008) Interference and crosstalk in double optical tweezers using a single laser source. Rev Sci Instrum 79(8):083103

    Article  Google Scholar 

Download references

Acknowledgements

The research work reported in this paper was partially funded by the University of San Carlos (USC, Cebu City, Philippines) Research Office and the Department of Physics (USC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rommel G. Bacabac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bacabac, R.G., Ayade, H., Villaruz, L.G.M., Sarmiento, R., Otadoy, R. (2014). Microrheology of Biopolymers at Non-thermal Regimes. In: Fernandes, P., Bartolo, P. (eds) Tissue Engineering. Computational Methods in Applied Sciences, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7073-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7073-7_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7072-0

  • Online ISBN: 978-94-007-7073-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics