Advertisement

Bloom and Bust: Why Do Blooms of Jellyfish Collapse?

  • Kylie A. PittEmail author
  • Ariella Chelsky Budarf
  • Joanna G. Browne
  • Robert H. Condon
Chapter

Abstract

Research on jellyfish blooms has focused heavily on the factors influencing the production of blooms. Identifying the factors that cause blooms to collapse, however, is important for predicting the duration of blooms and when they are likely to disappear. We assembled studies from the literature to assess the persistence of populations of medusae, the timing of the disappearance of the populations and the potential cause of the populations’ declines. We found 76 observations that met our criteria for inclusion that were derived from 33 studies and included 47 different taxa. Most populations exhibited strongly seasonal patterns of occurrence, but the population dynamics of the same or closely related species varied greatly across small spatial and temporal scales. Duration of occurrence was negatively related to latitude, but latitude explained only 8 % of the total variability, and no relationship existed when tropical species were excluded from the analysis. Senescence after spawning, infestations of parasites, food limitation, disease, low salinity, extreme water temperatures, predation and intertidal stranding were most commonly cited as causing blooms to collapse. Improving understanding of when and why blooms collapse will benefit coastal industries that are affected by blooms and greatly improve our understanding of how jellyfish blooms impact the ecology of the systems they inhabit.

Keywords

Jellyfish blooms Cnidarians Biogeochemical cycling Jelly-falls Population dynamics Feeding ecology Parasitism Hyperiid amphipods Digenean trematodes Physiological tolerance Catabolism 

References

  1. Acuña JL, López-Urrutia Á, Colin S (2011) Faking giants: the evolution of high prey clearance rates in jellyfishes. Science 333:1327–1629Google Scholar
  2. Aksnes DL, Nejstgaard J, Sœdberg ST (2004) Optical control of fish and zooplankton populations. Limnol Oceanogr 49:233–238Google Scholar
  3. Albert DJ (2005) Reproduction and longevity of Aurelia labiata in Roscoe Bay, a small bay on the Pacific coast of Canada. J Mar Biol Assoc UK 85:575–581Google Scholar
  4. Arai MN (1988) Interactions of fish and pelagic coelenterates. Can J Zool 66:1913–1927Google Scholar
  5. Arai MN (1997) A functional biology of Scyphozoa. Chapman and Hall, LondonGoogle Scholar
  6. Arai MN (2005) Predation on pelagic coelenterates: a review. J Mar Biol Assoc UK 85:523–536Google Scholar
  7. Arai MN, Ford JA, Whyte JNC (1989) Biochemical composition of fed and starved Aequorea victoria (Murbach et Shearer, 1902) (Hydromedusa). J Exp Mar Biol Ecol 127:289–299Google Scholar
  8. Arneberg P, Skorping A, Grenfell B, Read AF (1998) Host densities as determinants of abundance in parasite communities. Proc Roy Soc Lond Ser B 265:1283–1289Google Scholar
  9. Ates R (1988) Medusivorous fishes, a review. Zool Meded 62:29–42Google Scholar
  10. Attrill MJ, Thomas RM (1996) Long-term distribution patterns of mobile estuarine invertebrates (Ctenophora, Cnidaria, Crustacea: Decapoda) in relation to hydrological parameters. Mar Ecol Prog Ser 143:25–36Google Scholar
  11. Badham C (1917) On a larval actinian parasitic in a rhizostome. Q J Microsc Sci 62:221–229Google Scholar
  12. Bagge A, Poulin R, Valtonen E (2004) Fish population size, and not density, as the determining factor of parasite infection: a case study. Parasitology 128:305–313PubMedGoogle Scholar
  13. Båmstedt U, Martinussen MB, Matsakis S (1994) Trophodynamics of the two scyphozoan jellyfishes, Aurelia aurita and Cyanea capillata, in western Norway. ICES J Mar Sci 51:369–382Google Scholar
  14. Banaszak AT, Trench RK (1995) Effects of ultraviolet (UV) radiation on marine microalgal invertebrate symbioses. II. The synthesis of mycosporine-like amino acids in response to exposure to UV in Anthopleura elegantissima and Cassiopea xamachana. J Exp Mar Biol Ecol 194:233–250Google Scholar
  15. Barham EG, Pickwell GV (1969) The giant isopod, Anuropus: a scyphozoan symbiont. Deep-Sea Res 16:525–529Google Scholar
  16. Bartoli P, Bray R (2004) Cephalolepidapedon saba; Yamaguti, 1970 (Digenea: Lepocreadiidae), the redescription of a species newly reported in European waters. Syst Parasitol 58:189–198PubMedGoogle Scholar
  17. Barz K, Hirche H-J (2007) Abundance, distribution and prey composition of scyphomedusae in the southern North Sea. Mar Biol 151:1021–1033Google Scholar
  18. Batistić M, Jasprica N, Carić M, Lučić D (2007) Annual cycle of the gelatinous invertebrate zooplankton of the eastern South Adriatic coast (NE Mediterranean). J Plankton Res 29:671–696Google Scholar
  19. Billett DSM, Bett BJ, Jacobs CL, Rouse IP, Wigham BD (2006) Mass deposition of jellyfish in the deep Arabian Sea. Limnol Oceanogr 51:2077–2083Google Scholar
  20. Blanquet RS, Phelan MA (1987) An unusual blue mesogleal protein from the mangrove jellyfish Cassiopea xamachana. Mar Biol 94:423–430Google Scholar
  21. Bray R, Gibson D (1990) The Lepocreadiidae (Digenea) of fishes of the north-east Atlantic: review of the genera Opechona Looss, 1907 and Prodistomum Linton, 1910. Syst Parasitol 15:159–202Google Scholar
  22. Brewer RH (1989) The annual pattern of feeding, growth, and sexual reproduction in Cyanea (Cnidaria: Scyphozoa) in the Niantic River estuary, Connecticut. Biol Bull 176:272–281Google Scholar
  23. Bumann D, Puls G (1996) Infestation with larvae of the sea anemone Edwardsia lineata affects nutrition and growth of the ctenophore Mnemiopsis leidyi. Parasitology 113:123–128Google Scholar
  24. Cardona L, de Quevedo IA, Borrell A, Aguilar A (2012) Massive consumption of gelatinous plankton by Mediterranean apex predators. PLoS One 7:e31329PubMedGoogle Scholar
  25. Cargo DG, King DR (1990) Forecasting the abundance of the Sea Nettle, Chrysaora quinquecirrha, in the Chesapeake Bay. Estuaries 13:486–491Google Scholar
  26. Clarke A, Holmes LJ, Gore DJ (1992) Proximate and elemental composition of gelatinous zooplankton from the Southern Ocean. J Exp Mar Biol Ecol 155:55–68Google Scholar
  27. Condon RH, Norman MD (1999) Commensal associations between the hyperiid amphipod, Themisto australis, and the scyphozoan jellyfish, Cyanea capillata. Mar Freshw Behav Physiol 32:261–267Google Scholar
  28. Condon RH, Steinberg DK, del Giorgio PA, Bouvier TC, Bronk DA, Graham WM, Ducklow HW (2011) Jellyfish blooms result in a major microbial respiratory sink of carbon in marine systems. Proc Natl Acad Sci USA 108:10225–10230PubMedGoogle Scholar
  29. Condon RH, Graham WM, Duarte CM, Pitt KA, Lucas CH, Haddock SHD, Sutherland KR, Robinson KL, Dawson MN, Decker MB, Mills CE, Rhode JE, Malej A, Hermes M, Uye S-I, Belcich S, Madin LP (2012) Questioning the rise of gelatinous zooplankton in the world’s oceans. BioScience 62:160–169Google Scholar
  30. Costello J (1991) Complete carbon and nitrogen budgets for the hydromedusa Cladonema californicum (Anthomedusa: Cladonemidae). Mar Biol 108:119–128Google Scholar
  31. Costello JH (1998) Physiological response of the hydromedusa Cladonema californicum Hyman (Anthomedusa: Cladonemidae) to starvation and renewed feeding. J Exp Mar Biol Ecol 225:13–28Google Scholar
  32. Costello JH, Sullivan BK, Gifford DJ, Van Keuren D, Sullivan LJ (2006) Seasonal refugia, shoreward thermal amplification, and metapopulation dynamics of the ctenophore Mnemiopsis leidyi in Narragansett Bay, Rhode Island. Limnol Oceanogr 51:1819–1831Google Scholar
  33. Dawson MN, Jacobs DK (2001) Molecular evidence for cryptic species of Aurelia aurita (Cnidaria, Scyphozoa). Biol Bull 200:92–96PubMedGoogle Scholar
  34. Dawson MN, Martin LE, Penland LK (2001) Jellyfish swarms, tourists, and the Christ-child. Hydrobiol 155:131–144Google Scholar
  35. Decker MB, Brown CW, Hood RR, Purcell JE, Gross TFZ, Matanoski JC, Bannon RO, Setzler-Hamilton EM (2007) Predicting the distribution of the scyphomedusa Chrysaora quinquecirrha in Chesapeake Bay. Mar Ecol Prog Ser 329:99–113Google Scholar
  36. Diaz Briz L, Martorelli S, Genzano G, Mianzan H (2012) Parasitism (Trematoda, Digenea) in medusae from the southwestern Atlantic Ocean: medusa hosts, parasite prevalences, and ecological implications. Hydrobiologia 690:215–226Google Scholar
  37. Dittrich B (1988) Studies on the life cycle and reproduction of the parasitic amphipod Hyperia galba in the North Sea. Helgol Mar Res 42:79–98Google Scholar
  38. Donnelly J, Torres JJ, Hopkins TL, Lancraft TM (1994) Chemical composition of Antarctic zooplankton during austral fall and winter. Polar Biol 14:171–183Google Scholar
  39. Doores S, Cook TM (1976) Occurrence of Vibrio and other bacteria on the sea nettle, Chrysaora quinquecirrha. Microb Ecol 3:31–40Google Scholar
  40. Fancett M (1986) Species composition and abundance of scyphomedusae in Port Phillip Bay, Victoria. Mar Freshw Res 37:379–384Google Scholar
  41. Fraser JH (1970) The ecology of the ctenophore Pleurobrachia pileus in Scottish waters. ICES J Mar Sci 33:149–168Google Scholar
  42. Freudenthal AR, Joseph PR (1993) Seabather’s eruption. New Engl J Med 329:542–544PubMedGoogle Scholar
  43. Fuentes VL, Angel DL, Bayha KM, Atienza D, Edelist D, Bordehore C, Gilia J-M, Purcell JE (2010) Blooms of the invasive ctenophore, Mnemiopsis leidyi, span the Mediterranean Sea in 2009. Hydrobiol 645:23–37Google Scholar
  44. García JR (1990) Population dynamics and production of Phyllorhiza punctata (Cnidaria: Scyphozoa) in Laguna Joyuda, Puerto Rico. Mar Ecol Prog Ser 64:243–251Google Scholar
  45. Gasca R, Haddock SHD (2004) Associations between gelatinous zooplankton and hyperiid amphipods (Crustacea : Peracarida) in the Gulf of California. Hydrobiologia 530–31:529–535Google Scholar
  46. Gatz AJ, Kennedy VS, Mihursky JA (1973) Effects of temperature on activity and mortality of the scyphozoan medusa, Chrysaora quinquecirrha. Chesapeake Sci 14:171–180Google Scholar
  47. Girola CV, Martorelli SR, Sardella NH (1992) Presencia de metacercarias de Monascus filiformis (Digenea, Fellodistomidae) en hidromedusas del Océano Atlántico Sur (Presence of metacercariae of Monascus filiformis (Digenea, Fellodistomidae) in hydromedusae of the South Atlantic Ocean). Rev Chil Hist Nat 65:409–415Google Scholar
  48. Gómez-Gutiérrez J, Peterson WT, De Robertis A, Brodeur RD (2003) Mass mortality of krill caused by parasitoid ciliates. Science 301:339PubMedGoogle Scholar
  49. Graham WM, Martin DL, Felder DL, Asper VL, Perry HM (2003) Ecological and economic implications of a tropical jellyfish invader in the Gulf of Mexico. Biol Invasions 5:53–69Google Scholar
  50. Haddad MA, Hogueira M (2006) Reappearance and seasonality of Phyllorhiza punctata von Lendenfeld (Cnidaria, Scyphozoa, Rhizostomeae) medusae in southern Brazil. Revista Brasileira de Zoologia 23:824–831Google Scholar
  51. Hagadorn JW, Dott RH Jr, Damrow D (2002) Stranded on a Late Cambrian shoreline: Medusae from central Wisconsin. Geology 30:147–150Google Scholar
  52. Hamner W, Jensen R (1974) Growth, degrowth, and irreversible cell differentiation in Aurelia aurita. Am Zool 14:33–849Google Scholar
  53. Hamner WM, Gillmer RW, Hamner PP (1982) The physical, chemical, and biological characteristics of a stratified, saline, sulfide lake in Palau. Limnol Oceanogr 27:896–909Google Scholar
  54. Harbison GR, Biggs DC, Madin LP (1977) Associations of Amphipoda Hyperiidea with gelatinous zooplankton – II. Associations with Cnidaria, Ctenophora and Radiolaria. Deep-Sea Res 24:465–472Google Scholar
  55. Harrison NM (1984) Predation on jellyfish and their associates by seabirds. Limnol Oceanogr 29:1335–1337Google Scholar
  56. Hatai S (1917) On the composition of the medusa, Cassiopea xamachana and the changes in it after starvation. Proc Natl Acad Sci USA 3:22–24PubMedGoogle Scholar
  57. Hatcher MJ, Dick JTA, Dunn AM (2012) Diverse effects of parasites in ecosystems: linking interdependent processes. Front Ecol Environ 10:186–194Google Scholar
  58. Heeger T, Piatkowski U, Möller H (1992) Predation on jellyfish by the cephalopod Argonauta argo. Mar Ecol Prog Ser 88:293–296Google Scholar
  59. Heins DC, Birden EL, Baker JA (2010) Host mortality and variability in epizootics of Schistocephalus solidus infecting the threespine stickleback, Gasterosteus aculeatus. Parasitology 137:1681–1686PubMedGoogle Scholar
  60. Hosia A, Båmstedt U (2007) Seasonal changes in the gelatinous zooplankton community and hydromedusa abundances in Korsfjord and Fanafjord, western Norway. Mar Ecol Prog Ser 351:113–127Google Scholar
  61. Houghton JDR, Doyle TK, Davenport J, Lilley MKS, Wilson RP, Hays GC (2007) Stranding events provide indirect insights into the seasonality and persistence of jellyfish medusae (Cnidaria: Scyphozoa). Hydrobiologia 589:1–13Google Scholar
  62. Ishii H, Båmstedt U (1998) Food regulation of growth and maturation in a natural population of Aurelia aurita (L.). J Plankton Res 20:805–816Google Scholar
  63. Jansen PA, Kristoffersen AB, Viljugrein H, Jimenez D, Aldrin M, Stien A (2012) Sea lice as a density-dependent constraint to salmonid farming. Proc Roy Soc Lond Ser B 279:2330–2338Google Scholar
  64. Jarms G, Båmstedt U, Tiemann H, Martinussen MB, Fosså JH (1999) The holopelagic life cycle of the deep-sea medusa Periphylla periphylla (Scyphozoa, Coronatae). Sarsia 84:55–65Google Scholar
  65. Kikinger R (1992) Cotylorhiza tuberculata (Cnidaria: Scyphozoa) – Life history of a stationary population. Mar Ecol 13:333–362Google Scholar
  66. Lafferty KD (2008) Ecosystem consequences of fish parasites. J Fish Biol 73:2083–2093Google Scholar
  67. Larson RJ (1986) Changes in the standing stocks, growth rates, and production rates of gelatinous predators in Saanich Inlet, British Columbia. Mar Ecol Prog Ser 33:89–98Google Scholar
  68. Lauckner G (1980) Diseases of Cnidaria. In: Kinne O (ed) Diseases of marine animals, Volume I: general aspects, Protozoa to Gastropoda. Wiley, Chichester, pp 167–237Google Scholar
  69. Laval P (1972) Comportement, parasitisme et écologie d’ Hyperia schizogeneios Stebb. (Amphipode Hypéride) dans le plancton de Villefranche-sur-mer. Ann de l’Instit Océanogr Paris 48:49–74Google Scholar
  70. Laval P (1980) Hyperiid amphipods as crustacean parasitoids associated with gelatinous zooplankton. Oceanogr Mar Biol Annu Rev 18:11–56Google Scholar
  71. Lebrato M, Jones DOB (2009) Mass deposition event of Pyrosoma atlanticum carcasses off Ivory Coast (West Africa). Limnol Oceanogr 54:1197–1209Google Scholar
  72. Lebrato M, Pahlow M, Oschlies A, Pitt KA, Jones DOB, Molinero JC, Condon RH (2011) Depth attenuation of organic matter export associated with jelly falls. Limnol Oceanogr 56:1917–1928Google Scholar
  73. Lebrato M, Pitt KA, Sweetman AK, Jones DOB, Cartes JE, Oschlies A, Condon RH, Molinero JC, Adler L, Gaillard C, Lloris D, Billett DSM (2012) Jelly-falls historic and recent observations: a review to drive future research directions. Hydrobiologia 690:227–245Google Scholar
  74. Lebrato M, Jesus Mendes P, Steinberg DK, Cartes JE, Jones BM, Birsa LM, Benavides R, Oschiles A (2013) Jelly biomass sinking speed reveals a fast carbon export mechanism. Limnol Oceanogr 58:1113–1122Google Scholar
  75. Lilley MKS, Houghton JDR, Hays GC (2009) Distribution, extent of inter-annual variability and diet of the bloom-forming jellyfish Rhizostoma in European waters. J Mar Biol Assoc UK 89:39–48Google Scholar
  76. Lilley MKS, Beggs SE, Doyle TK, Hobson VJ, Stromberg KHP, Hays GC (2011) Global patterns of epipelagic gelatinous zooplankton biomass. Mar Biol 158:2429–2436Google Scholar
  77. Lin Y-CJ, Grigoriev NG, Spencer AN (2000) Wound healing in jellyfish striated muscle involves rapid switching of two modes of cell mobility and a change in the source of regulatory calcium. Dev Biol 225:87–100PubMedGoogle Scholar
  78. Link JS, Ford MD (2006) Widespread and persistent increase of Ctenophora in the continental shelf ecosystem off NE USA. Mar Ecol Prog Ser 320:153–159Google Scholar
  79. Lo WT, Chen IL (2008) Population succession and feeding of scyphomedusae, Aurelia aurita, in a eutrophic tropical lagoon in Taiwan. Estuar Coast Shelf Sci 76:227–238Google Scholar
  80. Lucas CH (1996) Population dynamics of Aurelia aurita (Scyphozoa) from an isolated brackish lake, with particular reference to sexual reproduction. J Plankton Res 18:987–1007Google Scholar
  81. Lucas CH, Williams JA (1994) Population dynamics of the scyphomedusa Aurelia aurita in Southampton Water. J Plankton Res 16:879–895Google Scholar
  82. Lucas CH, Hirst AG, Williams JA (1997) Plankton dynamics and Aurelia aurita production in two contrasting ecosystems: Comparisons and consequences. Estuar Coast Shelf Sci 45:209–219Google Scholar
  83. Lützen J (2005) Amphipoda (amphipods). In: Rohde K (ed) Marine parasitology. CSIRO Publishing, Collingwood, pp 165–169Google Scholar
  84. Madin LP, Harbison GR (1977) The associations of Amphipoda Hyperiidea with gelatinous zooplankton – I. Associations with Salpidae. Deep-Sea Res 24:449–463Google Scholar
  85. Malej A, Malej M (1992) Population dynamics of the jellyfish Pelagia noctiluca (Forsskål, 1775). Marine eutrophication and population dynamics. In: Proceedings of 25th EMBS, pp 215–219Google Scholar
  86. Marcogliese DJ (1995) The role of zooplankton in the transmission of helminth parasites to fish. Rev Fish Biol Fish 5:336–371Google Scholar
  87. Martin LE, Dawson MN, Bell LJ, Colin PL (2006) Marine lake ecosystem dynamics illustrate ENSO variation in the tropical western Pacific. Biol Lett 2:144–147PubMedGoogle Scholar
  88. Martorelli SR, Cremonte F (1998) A proposed three-host life history of Monascus filiformis (Rudolphi, 1819) (Digenea: Fellodistomidae) in the southwest Atlantic Ocean. Can J Zool 76:1198–1203Google Scholar
  89. Matsakis S, Conover RH (1991) Abundance and feeding of medusae and their potential impact as predators on other zooplankton in Bedford Basin (Nova Scotia, Canada) during Spring. Can J Fish Aquat Sci 48:1419–1430Google Scholar
  90. Mayer AG (1914) The law governing the loss of weight in starving Cassiopea. Pap Tortugas Lab Carnegie Inst Wash 6:55–83Google Scholar
  91. McDermott JJ, Zubkoff PL, Lin AL (1982) The occurrence of the anemone Peachia parasitica as a symbiont in the scyphozoan Cyanea capillata in the lower Chesapeake Bay. Estuaries 5:319–321Google Scholar
  92. Metz P (1967) On the relations between Hyperia galba Montagu (Amphipoda, Hyperiidae) and its host Aurelia aurita in the Isefjord area (Sjaelland, Denmark). Vidensk Medd Dan Naturhist Foren 130:85–108Google Scholar
  93. Miglietta MP, Rossi M, Collin R (2008) Hydromedusa blooms and upwelling events in the Bay of Panama, Tropical East Pacific. J Plankton Res 30:783–793Google Scholar
  94. Mills CE (1993) Natural mortality in NE Pacific coastal hydromedusae: Grazing predation, wound healing and senescence. Bull Mar Sci 53:194–203Google Scholar
  95. Möller H (1980) Population dynamics of Aurelia aurita medusae in Kiel Bight, Germany (FRG). Mar Biol 60:123–128Google Scholar
  96. Møller LF, Riisgård HU (2007) Population dynamics, growth and predation impact of the common jellyfish Aurelia aurita and two hydromedusae, Sarsia tubulosa and Aequorea vitrina, in Limfjorden (Denmark). Mar Ecol Prog Ser 346:153–165Google Scholar
  97. Mutlu E (2001) Distribution and abundance of moon jellyfish (Aurelia aurita) and its zooplankton food in the Black Sea. Mar Biol 138:329–339Google Scholar
  98. Ohtsuka S, Koike K, Lindsay D, Nishikawa J, Miyake H, Kawahara M, Mujiono N, Hiromi J, Komatsu H (2009) Symbionts of marine medusae and ctenophores. Plankton Benth Res 4:1–13Google Scholar
  99. Olesen NJ, Frandsen K, Riisgård HU (1994) Population dynamics, growth and energetics of jellyfish Aurelia aurita in a shallow fjord. Mar Ecol Prog Ser 105:9–18Google Scholar
  100. Pagès F (2000) Biological associations between barnacles and jellyfish with emphasis on the ectoparasitism of Alepas pacifica (Lepadomorpha) on Diplulmaris malayensis (Scyphozoa). J Nat Hist 34:2045–2056Google Scholar
  101. Papathanassiou E, Panayotidis P, Anganostaki K (1987) Notes on the biology and ecology of the jellyfish Aurelia aurita Lam. In Elefsis Bay (Saronikos Gulf, Greece). Mar Ecol 8:49–58Google Scholar
  102. Pertsova NM, Kosobokova KN, Prudkovsky AA (2006) Population size structure, population distribution, and life cycle of the Hydromedusa Aglantha digitale (O.F. Müller, 1766) in the White Sea. Oceanology 46:228–237Google Scholar
  103. Pitt KA, Kingsford MJ (2000) Geographic separation of stocks of the edible jellyfish Catostylus mosaicus (Rhizostomeae) in New South Wales, Australia. Mar Ecol Prog Ser 196:143–155Google Scholar
  104. Pitt KA, Clement AL, Connolly RM, Thibault-Botha D (2008) Predation by jellyfish on large and emergent zooplankton: implications for benthic-pelagic coupling. Estuar Coast Shelf Sci 76:827–833Google Scholar
  105. Pitt KA, Welsh DT, Condon RH (2009a) Influence of jellyfish blooms on carbon, nitrogen and phosphorus cycling and plankton production. Hydrobiologia 616:133–149Google Scholar
  106. Pitt KA, Connolly RM, Meziane T (2009b) Stable isotope and fatty acid tracers in energy and nutrient studies of jellyfish: a review. Hydrobiologia 616:119–132Google Scholar
  107. Pitt KA, Duarte CM, Lucas CH, Sutherland KR, Condon RH, Mianzan H, Purcell JE, Robinson KL, Uye S-I (2013) Jellyfish body plans provide allometric advantages beyond low carbon content. PLoS One 8(8):e72683PubMedGoogle Scholar
  108. Primo AL, Marques SC, Falcão J, Crespo D, Pardal MA, Azeiteiro U (2012) Environmental forcing on jellyfish communities in a small temperate estuary. Mar Environ Res 79:152–159PubMedGoogle Scholar
  109. Purcell JE, Arai MN (2001) Interactions of pelagic cnidarians and ctenophores with fish: a review. Hydrobiologia 451:27–44Google Scholar
  110. Purcell JE, Decker MB (2005) Effects of climate on relative predation pressure by scyphomedusae and copepods in Chesapeake Bay during 1987–2000. Limnol Oceanogr 50:376–387Google Scholar
  111. Purcell JE, White JR, Nemazie DA, Wright DA (1999) Temperature, salinity and food effects on asexual reproduction and abundance of the scyphozoan Chrysaora quinquecirrha. Mar Ecol Prog Ser 180:187–196Google Scholar
  112. Reimann L, Titelman J, Båmstedt U (2006) Links between jellyfish and microbes in a jellyfish dominated fjord. Mar Ecol Prog Ser 325:29–42Google Scholar
  113. Reitzel AM, Sullivan JC, Finnerty JR (2006) Qualitative shift to indirect development in the parasitic sea anemone Edwardsiella lineata. Integr Comp Biol 46:827–837PubMedGoogle Scholar
  114. Reitzel AM, Sullivan JC, Brown BK, Chin DW, Cira EK, Edquist SK, Genco BM, Joseph OC, Kaufman CA, Kovitvongsa K, Munoz MM, Negri TL, Taffel JR, Zuehike RT, Finnerty JR (2007) Ecological and developmental dynamics of a host-parasite system involving a sea anemone and two ctenophores. J Parasitol 93:1392–1402PubMedGoogle Scholar
  115. Rhode SC, Pawlowski M, Tollrian R (2001) The impact of ultraviolet radiation on the vertical distribution of zooplankton of the genus Daphnia. Nature 412:69–72PubMedGoogle Scholar
  116. Riisgård HU, Barth-Jensen C, Madsen CV (2010) High abundance of the jellyfish Aurelia aurita excludes the invasive ctenophore Mnemiopsis leidyi to establish in a shallow cove (Kertinge Nor, Denmark). Aquat Invasions 5:347–356Google Scholar
  117. Rippingale RJ, Kelly SJ (1995) Reproduction and survival of Phyllorhiza punctata (Cnidaria: Rhizostomeae) in a seasonally fluctuating salinity regime in Western Australia. Mar Freshwater Res 46:1145–1151Google Scholar
  118. Salonen K, Högmander P, Langenberg V, Mölsä H, Sarvala J, Tarvainen A, Tiirola M (2012) Limnocnida tanganyicae medusae (Cnidaria: Hydrozoa): a semiautonomous microcosm in the food web of Lake Tanganyika. Hydrobiologia 690:97–112Google Scholar
  119. Schneider G, Behrends G (1994) Population dynamics and the trophic role of Aurelia aurita medusae in the Kiel Bight and western Baltic. ICES J Mar Sci 51:359–367Google Scholar
  120. Selander E, Møller L, Sundberg P, Tiselius P (2010) Parasitic anemone infects the invasive ctenophore Mnemiopsis leidyi in the North East Atlantic. Biol Invasions 12:1003–1009Google Scholar
  121. Sexton MA, Hood RR, Sarkodee-adoo J, Liss AM (2010) Response of Chrysaora quinquecirrha medusae to low temperature. Hydrobiologia 645:125–133Google Scholar
  122. Spangenberg DB (1965) Cultivation of the life stages of Aurelia aurita under controlled conditions. J Exp Zool 159:303–318Google Scholar
  123. Spaulding JG (1972) The life cycle of Peachia quinquecapitata, an anemone parasitic on medusae during its larval development. Biol Bull 143:440–453Google Scholar
  124. Sun S, Lin Y, Sun X (2012) Changes in the small-jellyfish community in recent decades in Jiaozhou Bay, China. Chin J Oceanol Limnol 30:507–513Google Scholar
  125. Svendsen YS (1990) Hosts of third stage larvae of Hysterothylacium sp. (Nematoda, Anisakidae) in zooplankton from outer Oslofjord, Norway. Sarsia 75:161–167Google Scholar
  126. Tinta T, Kogovšek T, Malej A, Turk V (2012) Jellyfish modulate bacterial dynamic and community structure. PLoS One 7:e39274PubMedGoogle Scholar
  127. Towanda T, Thuesen EV (2006) Ectosymbiotic behavior of Cancer gracilis and its trophic relationships with its host Phacellophora camtschatica and the parasitoid Hyperia medusarum. Mar Ecol Prog Ser 315:221–236Google Scholar
  128. Vannuci-Mendes M (1944) Sobre a larva de Dibothriorhynchus dinoi, sp. n. parasita dos Rhizostomata. Arquivos do Museu Paranaense 4:47–81Google Scholar
  129. Williams R, Robins D (1981) Seasonal variability in abundance and vertical-distribution of Parathemisto gaudichaudi (Amphipoda: Hyperiidea) in the North East Atlantic Ocean. Mar Ecol Prog Ser 4:289–298Google Scholar
  130. Wintzer AP, Meek MH, Moyle PB (2011) Life history and population dynamics of Moerisia sp., a non-native hydrozoan, in the upper San Francisco Estuary (U.S.A). Estuar Coast Shelf Sci 94:48–55Google Scholar
  131. Yamamoto J, Hirose M, Ohtani T, Sugimoto K, Hirase K, Shimamoto N, Shimura T, Honda N, Fujimori Y, Mukai T (2008) Transportation of organic matter to the sea floor by carrion falls of the giant jellyfish Nemopilema nomurai in the Sea of Japan. Mar Biol 153:311–317Google Scholar
  132. Yip SY (1984) Parasites of Pleurobrachia pileus Muller, 1776 (Ctenophora), from Galway Bay, western Ireland. J Plankton Res 6:107–121Google Scholar
  133. Zahn M (1981) Wie alt können Scyphomedusen warden? Zoologische Beitraege 27:491–495Google Scholar
  134. Zeleney C (1907) The effect of degree of injury, successive injury and functional activity upon regeneration in the scyphomedusan, Cassiopea xamachana. J Exp Zool 5:265–274Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Kylie A. Pitt
    • 1
    Email author
  • Ariella Chelsky Budarf
    • 1
  • Joanna G. Browne
    • 1
  • Robert H. Condon
    • 2
    • 3
  1. 1.Australian Rivers Institute and Griffith School of EnvironmentGriffith UniversityGold CoastAustralia
  2. 2.Dauphin Island Sea LabDauphin IslandUSA
  3. 3.Department of Marine ScienceUniversity of South AlabamaMobileUSA

Personalised recommendations