Distributed MPC Under Coupled Constraints Based on Dantzig-Wolfe Decomposition

  • R. BourdaisEmail author
  • J. Buisson
  • D. Dumur
  • H. Guéguen
  • P-D. Moroşan
Part of the Intelligent Systems, Control and Automation: Science and Engineering book series (ISCA, volume 69)


In this chapter, we propose a distributed model predictive control scheme based on the Dantzig-Wolfe decomposition to control a collection of linear dynamical systems coupled by linear global constraints. The resulting structure is composed of one optimization agent for each system, and another one that has to ensure that the global constraints are fulfilled. The global solution of the problem is found in a finite number of iterations.


  1. 1.
    M.S. Bazaraa, J.J. Jarvis, H.D. Sherali. Linear Programming and Network Flows, (Wiley, New York, 1990)Google Scholar
  2. 2.
    S.P. Bradley, A.C. Hax, T.L. Magnanti, Applied Mathematical Programming (Addison-Wesley Publishing Company, Reading, 1997)Google Scholar
  3. 3.
    E.F. Camacho, C. Bordons, Model Predictive Control in the Process Industry, 2nd edn. (Springer-Verlag, London, England, 2004)Google Scholar
  4. 4.
    V. Chvátal, Linear Programming (Freeman and Company, New York, 1983)zbMATHGoogle Scholar
  5. 5.
    A.J. Conejo, E. Castillo, R. Mínguez, R. García-Bertrand. Decomposition Techniques in Mathematical Programming. (Springer, London, 2006)Google Scholar
  6. 6.
    G.B. Dantzig. Linear Programming and Extensions. (Princeton University Press, NJ, 1963)Google Scholar
  7. 7.
    A. Lefort, R. Bourdais, G. Ansannay-Alex, H. Guéguen. Planification de la consommation énergétique d’un bâtiment par une méthode d’optimisation linéaire distribuée, In Proceedings of CIFA 2012, (2012)Google Scholar
  8. 8.
    P-D. Moroşan, R. Bourdais, D. Dumur, J. Buisson. Distributed model predictive control for building temperature regulation. In American Control Conference, pp. 3174–3179, Jun. 2010Google Scholar
  9. 9.
    P.-D. Moroşan, R. Bourdais, D. Dumur, J. Buisson. In Distributed MPC for multi-zone temperature regulation with coupled constraints, IFAC World Congress, Aug, 2011Google Scholar
  10. 10.
    P.-D. Moroşan, R. Bourdais, D. Dumur, J. Buisson, A distributed MPC strategy based on Benders’ decomposition applied to multi-source multi-zone temperature regulation. J. Process Control 21(5), 729–737 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • R. Bourdais
    • 1
    Email author
  • J. Buisson
    • 1
  • D. Dumur
    • 2
  • H. Guéguen
    • 1
  • P-D. Moroşan
    • 3
  1. 1.IETR (UMR-CNRS 6164), SUPELECCesson-SévignéFrance
  2. 2.E3S, SUPELECGif sur YvetteFrance
  3. 3.AcsystèmeRennesFrance

Personalised recommendations