Cooperative Distributed MPC Integrating a Steady State Target Optimizer

  • A.  FerramoscaEmail author
  • D.  Limon
  • A.  H.  González
Part of the Intelligent Systems, Control and Automation: Science and Engineering book series (ISCA, volume 69)


In this chapter, a distributed MPC strategy suitable for changing setpoints is described. Based on a cooperative distributed control structure, an extended-cost MPC formulation is proposed, which integrates the problem of computing feasible steady state targets—usually known as Steady State Target Optimizer (SSTO) optimization problem—and the dynamic control problem into a single optimization problem. The proposed controller is able to drive the system to any admissible setpoint in an admissible way, ensuring feasibility under any change of setpoint. It also provides a larger domain of attraction than standard MPC for regulation, due to the particular terminal constraint. Moreover, the controller ensures convergence to the centralized optimum, even in case of coupled constraints. This is possible thanks to the design of the cost function, which integrates the SSTO, and to the warm start algorithm used to initialize the optimization algorithm. A numerical simulation illustrates the benefits of the proposal.



This work has been funded by the National Plan Project (DPI2010-21589-C05-01) of the Spanish Ministry of Science and Innovation, FEDER funds, and ANPCYT, Argentina (PICT 2008, contract number 1833).


  1. 1.
    D.P. Bertsekas, J.N. Tsitsiklis, Parallel and Distributed Computation (Athena Scientific, Belmont, 1997)Google Scholar
  2. 2.
    S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge, 2006)Google Scholar
  3. 3.
    S. Engell, Feedback control for optimal process operation. J. Process Control 17, 203–219 (2007)CrossRefGoogle Scholar
  4. 4.
    A. Ferramosca. Model Predictive Control for Systems with Changing Setpoints. PhD thesis, Université de sevilla de Sevilla, 2011.
  5. 5.
    A. Ferramosca, D. Limon, I. Alvarado, T. Alamo, E.F. Camacho, MPC for tracking with optimal closed-loop performance. Automat. 45, 1975–1978 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    A. Ferramosca, D. Limon, I. Alvarado, T. Alamo, F. Castaño, and E. F. Camacho, Optimal MPC for tracking of constrained linear systems. Int. J. Syst. Sci. 42(8), Aug (2011). Accepted for publicationGoogle Scholar
  7. 7.
    A. Ferramosca, D. Limon, A.H. González, D. Odloak, E.F. Camacho, MPC for tracking zone regions. J. Process Control 20, 506–516 (2010)CrossRefGoogle Scholar
  8. 8.
    A. Ferramosca, D. Limon, J. B. Rawlings, and E. F. Camacho, Cooperative distributed MPC for tracking, in Proceedings of the 18th IFAC World Congress (2011)Google Scholar
  9. 9.
    J. V. Kadam, W. Marquardt, Integration of economical optimization and control for intentionally transient process operation, in International Workshop on Assessment and Future Direction of Nonlinear Model Predictive Control, ed. by R. Findeisen, F. Allgöwer, L.T. Biegler (Springer, Berlin, 2007), pp. 419–434Google Scholar
  10. 10.
    D. Limon, I. Alvarado, T. Alamo, E.F. Camacho, MPC for tracking of piece-wise constant references for constrained linear systems. Automat. 44, 2382–2387 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    D. Limon, I. Alvarado, T. Alamo, E.F. Camacho, Robust tube-based MPC for tracking of constrained linear systems with additive disturbances. JPC 20, 248–260 (2010)Google Scholar
  12. 12.
    K. Muske, Steady-state target optimization in linear model predictive control, in Proceedings of the ACC (1997)Google Scholar
  13. 13.
    C.V. Rao, J.B. Rawlings, Steady states and constraints in model predictive control. AIChE J. 45, 1266–1278 (1999)CrossRefGoogle Scholar
  14. 14.
    J.B. Rawlings, D. Q. Mayne, Model Predictive Control: Theory and Design, 1st edn. (Nob-Hill Publishing, Madison, 2009)Google Scholar
  15. 15.
    B.T. Stewart, A.N. Venkat, J.B. Rawlings, S.J. Wright, G. Pannocchia, Cooperative distributed model predictive control. Syst. Control Lett. 59, 460–469 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    M.N. Zeilinger, Real-time Model Predictive Control. PhD thesis, ETH Zurich (2011)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Institute of Technological Development for the Chemical IndustryCONICET-Universidad Nacional del LitoralSanta FeArgentina
  2. 2. Departamento de Ingeniería de Sistemas y AutomáticaUniversidad de Sevilla, Escuela Superior de IngenierosSevillaSpain

Personalised recommendations