Advertisement

Distributed MPC Based on a Team Game

  • J. M. MaestreEmail author
  • F. J. Muros
  • F. Fele
  • D. Muñoz de la Peña
  • E. F. Camacho
Chapter
Part of the Intelligent Systems, Control and Automation: Science and Engineering book series (ISCA, volume 69)

Abstract

In this chapter we present a distributed scheme based on a team game for the particular case in which the system is controlled by two agents. The main features of the proposed scheme are the limited amount of global information that the agents share and the low communication burden that it requires. For this reason, this scheme is a good candidate to be implemented in systems with reduced capabilities, for example in wireless sensor and actuator networks.

Keywords

Linear Matrix Inequality Manipulate Variable Local Controller Neighbor Agent Team Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Financial support from the HYCON2 EU-project from the ICT-FP7 and MEC-Spain, DPI2008-05818, and F.P.I. grants is gratefully acknowledged.

References

  1. 1.
    I. Alvarado, D. Limón, W.M. Garca, T. Álamo, E.F. Camacho, An educational plant based on the quadruple-tank process, in Preprints of the 7th IFAC Symposium on Advances in Control Education, Madrid, Spain, June 2006Google Scholar
  2. 2.
    I. Alvarado, D. Limón, D. Muñoz de la Peña, J.M. Maestre, F. Valencia, H. Scheu, R.R. Negenborn, M.A. Ridao, B. De Schutter, J. Espinosa, W. Marquardt, A comparative analysis of distributed MPC techniques applied to the HD-MPC four tank benchmark. J. Process Control 21(5), 800–815 (June 2011)CrossRefGoogle Scholar
  3. 3.
    E.F. Camacho, C. Bordóns, Model Predictive Control in the Process Industry, 2nd edn. (Springer, London, England, 2004)Google Scholar
  4. 4.
    K.H. Johansson, The quadruple-tank process: a multivariable laboratory process with an adjustable zero. IEEE Trans. Control Syst. Technol. 8(3), 456–465 (May 2000)MathSciNetCrossRefGoogle Scholar
  5. 5.
    J.M. Maestre, Distributed Model Predictive Control Based on Game Theory, PhD thesis, Departamento de Ingeniería de Sistemas y Automática, Universidad de Sevilla, Seville, Spain, Nov 2010Google Scholar
  6. 6.
    J.M. Maestre, D. Muñoz de la Peña, E.F. Camacho, Distributed MPC: a supply chain case study, in Proceedings of the joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Dec 2009Google Scholar
  7. 7.
    J.M. Maestre, D. Muñoz de la Peña, E.F. Camacho, Distributed model predictive control based on a cooperative game. Optimal Control Appl. Methods 32(2), 153–176, Mar/Apr 2011Google Scholar
  8. 8.
    J.M. Maestre, D. Muñoz de la Peña, E.F. Camacho, A distributed MPC scheme with low communication requirements, in Proceedings of the American Control Conference, pp. 2797–2802, June 2009Google Scholar
  9. 9.
    J.M. Maestre, D. Muñoz de la Peña, E.F. Camacho, T. Álamo, Distributed model predictive control based on agent negotiation. J. Process Control 21(5), 685–697 (June 2011)CrossRefGoogle Scholar
  10. 10.
    F.J. Muros, J.M. Maestre, E.F. Camacho, Estudio de robustez frente a retardos y pérdida de datos de una estrategia dmpc basada en pocos ciclos de comunicación (In Actas de las XXIX Jornadas de Automática, Tarragona, Spain, Sept, 2008)Google Scholar
  11. 11.
    S. Rakovic, E. De Santis, P. Caravani, Invariant equilibria of polytopic games via optimized robust control invariance, in Proceedings of the 44th IEEE Conference on Decision and Control and the European Control Conference, pp. 7686–7691, Seville, Spain, Dec 2005Google Scholar
  12. 12.
    S. Rakovic, E. Kerrigan, K. Kouramas, D. Mayne, Robust MPC for nonlinear discrete-time systems. IEEE Trans. Automat. Control 50, 406–410 (2005)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • J. M. Maestre
    • 1
    Email author
  • F. J. Muros
    • 1
  • F. Fele
    • 1
  • D. Muñoz de la Peña
    • 1
  • E. F. Camacho
    • 1
  1. 1.Departamento de Ingeniería de Sistemas y AutomáticaUniversidad de SevillaSevilleSpain

Personalised recommendations