Advertisement

Mixed-Integer Programming Techniques in Distributed MPC Problems

  • I. ProdanEmail author
  • F. Stoican
  • S. Olaru
  • C. Stoica
  • S.-I. Niculescu
Chapter
Part of the Intelligent Systems, Control and Automation: Science and Engineering book series (ISCA, volume 69)

Abstract

This chapter proposes a distributed approach for the resolution of a multi-agent problem under collision and obstacle avoidance conditions. Using hyperplane arrangements and mixed integer programming, we provide an efficient description of the feasible region verifying the avoidance constraints. We exploit geometric properties of hyperplane arrangements and adapt this description to the distributed scheme in order to provide an efficient Model Predictive Control (MPC) solution. Furthermore, we prove constraint validation for a hierarchical ordering of the agents.

Keywords

Feasible Region Mixed Integer Programming Model Predictive Control Prediction Horizon Hyperplane Arrangement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The research of Ionela Prodan is financially supported by the EADS Corporate Foundation (091-AO09-1006).

References

  1. 1.
    D. Grundel, R. Murphey, P.M. Pardalos, Cooperative Systems, Control and Optimization, vol. 588 (Springer, New York, 2007)Google Scholar
  2. 2.
    M. Jünger, M. Junger, T.M. Liebling, D. Naddef, G. Nemhauser, W.R. Pulleyblank, 50 Years of Integer Programming 1958–2008: From the Early Years to the State-of-the-Art (Springer, New York, 2009)Google Scholar
  3. 3.
    T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman, A.Y. Wu, An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002)CrossRefGoogle Scholar
  4. 4.
    S. Lin, B. De Schutter, Y. Xi, H. Hellendoorn, Model predictive control for urban traffic networks via milp, in Proceedings of the 29th American Control Conference, pp. 2272–2277, Baltimore, 30 June–2 July 2010Google Scholar
  5. 5.
    R. Olfati-Saber, R.M. Murray, Distributed cooperative control of multiple vehicle formations using structural potential functions, in Proceedings of the 15th IFAC World Congress, pp. 346–352, Barcelona, 21–26 July 2002Google Scholar
  6. 6.
    P.M. Pardalos, Hyperplane arrangements in optimization, in Encyclopedia of Optimization (Springer, New York, 2009), pp. 1547–1548Google Scholar
  7. 7.
    I. Prodan, S. Olaru, C. Stoica, S.-I. Niculescu, Predictive control for tight group formation of multi-agent systems, in Proceedings of the 18th IFAC World Congress, pp. 138–143, Milano, 28 Aug–2 Sept 2011Google Scholar
  8. 8.
    I. Prodan, S. Olaru, C. Stoica, S.-I. Niculescu, On the tight formation for multi-agent dynamical systems, in KES—Agents and Multi-agent Systems, Technologies and Applications, LNAI 7327. (Springer, New York, 2012), pp. 554–565Google Scholar
  9. 9.
    I. Prodan, F. Stoican, S. Olaru, S.-I. Niculescu, Enhancements on the hyperplanes arrangements in mixed-integer techniques. J. Optim. Theory Appl. 154(2):549–572 (2012). doi: 10.1007/s10957-012-0022-9 Google Scholar
  10. 10.
    E. Rimon, D.E. Koditschek, Exact robot navigation using artificial potential functions. IEEE Trans. Robot. Autom. 8(5), 501–518 (1992)CrossRefGoogle Scholar
  11. 11.
    R. Scattolini, Architectures for distributed and hierarchical model predictive control—a review. J. Process Control 19(5), 723–731 (2009)CrossRefGoogle Scholar
  12. 12.
    F. Stoican, S. Olaru, M.M. Seron, J.A. De Doná, Reference governor design for tracking problems with fault detection guarantees. J. Process Control 22(5), 829–836 (2012)CrossRefGoogle Scholar
  13. 13.
    J.P. Vielma, G.L. Nemhauser, Modeling disjunctive constraints with a logarithmic number of binary variables and constraints. Math. Program. 128(1), 49–72 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    M.P. Vitus, V. Pradeep, G. Hoffmann, S.L. Waslander, C.J. Tomlin, Tunnel-milp: path planning with sequential convex polytopes, in Proceedings of the 26th AIAA Guidance, Navigation, and Control Conference, Honolulu, 18–21 Aug 2008Google Scholar
  15. 15.
    G.M. Ziegler, Lectures on Polytopes, vol. 152. (Springer, New York, 1995)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • I. Prodan
    • 1
    • 3
    Email author
  • F. Stoican
    • 2
  • S. Olaru
    • 1
  • C. Stoica
    • 1
  • S.-I. Niculescu
    • 3
  1. 1.Automatic Control DepartmentSUPELEC Systems Sciences (E3S)Gif Sur YvetteFrance
  2. 2.Department of Engineering CyberneticsNorwegian University of Science and Technology (NTNU)TrondheimNorway
  3. 3.Signals and Systems Laboratory SUPELEC Systems Sciences (E3S)Gif Sur YvetteFrance

Personalised recommendations