Skip to main content

Rate Analysis of Inexact Dual Fast Gradient Method for Distributed MPC

  • Chapter
  • First Online:

Part of the book series: Intelligent Systems, Control and Automation: Science and Engineering ((ISCA,volume 69))

Abstract

In this chapter we propose a dual decomposition method based on inexact dual gradient information and constraint tightening for solving distributed model predictive control (MPC) problems for network systems with state-input constraints. The coupling constraints are tightened and moved in the cost using the Lagrange multipliers. The dual problem is solved by a fast gradient method based on approximate gradients for which we prove sublinear rate of convergence. We also provide estimates on the primal and dual suboptimality of the generated approximate primal and dual solutions and we show that primal feasibility is ensured by our method. Our analysis relies on the Lipschitz property of the dual MPC function and inexact dual gradients. We obtain a distributed control strategy that has the following features: state and input constraints are satisfied, stability of the plant is guaranteed, whilst the number of iterations for the suboptimal solution can be precisely determined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. I. Alvarado, D. Limon, D. Munoz de la Pena, J.M. Maestre, M.A. Ridao, H. Scheu, W. Marquardt, R.R. Negenborn, B. De Schutter, F. Valencia, J. Espinosa, A comparative analysis of distributed MPC techniques applied to the HD-MPC four-tank benchmark. J. Process Control 21(5), 800–815 (2011)

    Article  Google Scholar 

  2. D.P. Bertsekas, J.N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods (Prentice Hall, Englewood, 1989)

    Google Scholar 

  3. E. Camponogara, H.F. Scherer, Distributed optimization for model predictive control of linear dynamic networks with control-input and output constraints. IEEE Trans. Autom. Sci. Eng. 8(1), 233–242 (2011)

    Article  Google Scholar 

  4. O. Devolder, F. Glineur, Y. Nesterov. First-order methods of smooth convex optimization with inexact oracle. Technical report, CORE Discussion Paper 2011/02, UCL, Belgium (2011)

    Google Scholar 

  5. M.D. Doan, T. Keviczky, B. De Schutter, A distributed optimization-based approach for hierarchical model predictive control of large-scale systems with coupled dynamics and constraints, in Proceedings of 50th IEEE Conference on Decision and, Control, pp. 5236–5241 (2011)

    Google Scholar 

  6. M. Farina, R. Scattolini, Distributed predictive control: a non-cooperative algorithm with neighbor-to-neighbor communication for linear systems. Automatica 48(6), 1088–1096 (2012)

    Google Scholar 

  7. K.C. Kiwiel, T. Larsson, P.O. Lindberg, Lagrangian relaxation via ballstep subgradient methods. Math. Oper. Res. 32(3), 669–686 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Y. Kuwata, A. Richards, T. Schouwenaars, J.P. How, Distribted robust receding horizon control for multivariable guidance. IEEE Trans. Control Syst. Technol. 15(4), 627–641 (2007)

    Article  Google Scholar 

  9. T. Larsson, M. Patriksson, A. Stromberg, Ergodic convergence in subgradient optimization. Optim. Methods Softw. 9, 93–120 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. I. Necoara, D. Clipici. An efficient parallel coordinate descent algorithm for distributed MPC. J. Process Control 23(3), 243–253 (2013)

    Google Scholar 

  11. I. Necoara, V. Nedelcu, I. Dumitrache, Parallel and distributed optimization methods for estimation and control in networks. J. Process Control 21, 756–766 (2011)

    Article  Google Scholar 

  12. I. Necoara, J. Suykens, Application of a smoothing technique to decomposition in convex optimization. IEEE Trans. Autom. Control 53(11), 2674–2679 (2008)

    Article  MathSciNet  Google Scholar 

  13. A. Nedic, A. Ozdaglar, Approximate primal solutions and rate analysis for dual subgradient methods. SIAM J. Optim. 19, 1757–1780 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. R.R. Negenborn, B. De Schutter, J. Hellendoorn, Multi-agent model predictive control for transportation networks: serial versus parallel schemes. Eng. Appl. Artif. Intell. 21(3), 353–366 (2008)

    Article  Google Scholar 

  15. Y. Nesterov, Smooth minimization of non-smooth functions. Math. Program. 103(1), 127–152 (2004)

    Article  MathSciNet  Google Scholar 

  16. Y. Nesterov, Efficiency of coordinate descent methods on huge-scale optimization problems. Technical report, CORE Discussion Paper 2010/2, UCL, Belgium (2010)

    Google Scholar 

  17. A. Richards, J.P. How, Robust distributed model predictive control. Int. J. Control 80(9), 1517–1531 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Richter, M. Morari, C.N. Jones, Towards computational complexity certification for constrained MPC based on lagrange relaxation and the fast gradient method, in Proceedings of 50th IEEE Conference on Decision and, Control, pp. 5223–5229 (2011)

    Google Scholar 

  19. P.O.M. Scokaert, D.Q. Mayne, J.B. Rawlings, Suboptimal model predictive control (feasibility implies stability). IEEE Trans. Autom. Control 44(3), 648–654 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. B.T. Stewart, A.N. Venkat, J.B. Rawlings, S.J. Wright, G. Pannocchia, Cooperative distributed model predictive control. Syst. Control Lett. 59, 460–469 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from: the European Union (FP7/2007–2013) under Grant agreement no 248940; CNCS (project TE-231, 19/11.08. 2010); ANCS (project PN II, 80EU/2010); POSDRU/89/1.5/S/62557.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Necoara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Necoara, I. (2014). Rate Analysis of Inexact Dual Fast Gradient Method for Distributed MPC. In: Maestre, J., Negenborn, R. (eds) Distributed Model Predictive Control Made Easy. Intelligent Systems, Control and Automation: Science and Engineering, vol 69. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7006-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7006-5_10

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7005-8

  • Online ISBN: 978-94-007-7006-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics