Skip to main content

Noise Reduction in (Bio-) Chemical Sensors Functionalized with Carbon Nanotube Multilayers

  • Conference paper
  • First Online:
Advanced Sensors for Safety and Security

Abstract

Low frequency noise’s investigation in (bio-)chemical sensors on the base of electrolyte-gate field-effect devices, such as capacitive electrolyte-insulator-semiconductor (EIS) structures functionalized with single-walled carbon nanotubes (SWCNT) were carried out. At frequencies below 10 Hz, noise-reduction effect has been revealed in a functionalized EIS structure. This effect depends on the applied gate voltage and is stronger in the depletion regime. The presence of an additional SWCNT multilayer leads to essential reduction (by the factor of up to 100) of the 1/f-noise in comparison to bare EIS structure. A modified charge fluctuation noise model is developed. The model is successfully used for the explanation of noise peculiarities of p-Si/SiO2/Ta2O5/electrolyte and p-Si/SiO2/Ta2O5/dendrimer/SWCNT/electrolyte bio-chemical sensors. The results of noise spectra investigation should be taken into account for sensitivity enhancement of capacitive EIS biosensors, especially to improve the lower detection limit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee C-S, Kim SK, Kim M (2009) Ion-sensitive field-effect transistors for biological sensing. Sensors 9:7111–7131

    Article  CAS  Google Scholar 

  2. Fromherz P (2006) Three levels of nanoelectronic interfacing: silicon chips with ion channels, nerve cells, and brain tissue. Ann N Y Acad Sci 1093:143–160

    Article  CAS  Google Scholar 

  3. Katz E, Willner I, Wang J (2004) Electroanalytical and bioanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis 16:19–44

    Article  CAS  Google Scholar 

  4. Gun J, Schöning MJ, Abouzar MH, Poghossian A, Katz E (2008) Field-effect nanoparticle-based glucose sensor on a chip: amplification effect of co-immobilised redox species. Electroanalysis 20:1748–1753

    Article  CAS  Google Scholar 

  5. Patolsky F, Zheng G, Lieber CM (2006) Nanowire-based biosensors. Anal Chem 78:4260–4269

    Article  CAS  Google Scholar 

  6. Balasubramanian K, Burghard M (2006) Biosensors based on carbon nanotubes. Anal Bioanal Chem 385:452–468

    Article  CAS  Google Scholar 

  7. Gasparyan FV, Poghossian A, Vitusevich SA, Petrychuk MV, Sydoruk VA, Surmalyan AV, SiqueirJR Jr, Oliveira ON Jr, Offenhausser A, Schöning MJ (2009) Low frequency noise in electrolyte-gate field-effect devices functionalized with dendrimer/carbon-nanotube multilayers. In: Proceedings of the 20th international conference noise and fluctuation, ICNF, Pisa, Italy, 14–19 June 2009, pp 133–136

    Google Scholar 

  8. Gasparyan FV, Poghossian A, Vitusevich SA, Petrychuk MV, Sydoruk VA, Siqueira JR Jr, Oliveira ON Jr, Offenhäusser A, Schöning MJ (2011) Low-frequency noise in field-effect devices functionalized with dendrimer/carbon-nanotube multilayers. IEEE Sens J 11:142–149

    Article  CAS  Google Scholar 

  9. Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289–1292

    Article  CAS  Google Scholar 

  10. Chen RJ, Bangsaruntip S, Drouvalakis KA, Kam NWS, Shim M, Li Y, Kim W, Utz PJ, Dai H (2003) Monovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Appl Phys Sci 100:4984–4989

    CAS  Google Scholar 

  11. Park S, Taton TA, Mirkin CA (2002) Array-based electrical detection of DNA with nanoparticle probes. Science 295:1503–1506

    Article  CAS  Google Scholar 

  12. Star A, Gabriel J-C, Bradley K, Gruner G (2003) Electronic detection of specific protein binding using nanotube FET devices. Nano Lett 3:459–463

    Article  CAS  Google Scholar 

  13. Aroutiounian VM, Mkhitaryan ZH, Shatveryan AA, Gasparyan FV, Ghulinyan MZ, Pavesi L, Kish LB, Granquist C-G (2008) Noise spectroscopy of gas sensors. IEEE Sens J 8:786–790

    Article  CAS  Google Scholar 

  14. Mkhitaryan Z, Gasparyan F, Surmalyan A (2009) Low frequency noises of hydrogen sensors. Sens Transducer 104:58–67

    CAS  Google Scholar 

  15. Sheehan PE, Whitman LJ (2005) Detection limits for nanoscale biosensors. Nano Lett 5:803–807

    Article  CAS  Google Scholar 

  16. Collins PG, Fuhrer MS, Zettl A (2000) 1/f noise in carbon nanotubes. Appl Phys Lett 76:894–896

    Article  CAS  Google Scholar 

  17. Mannik J, Heller I, Janssens AM, Lemay SG, Dekker C (2008) Charge noise in liquid-gated single-waal carbon nanotube transistors. Nano Lett 8:685–688

    Article  Google Scholar 

  18. Briman M, Bradley K, Gruner G (2006) Source of 1/f noise in carbon nanotube devices. J Appl Phys 100:013505

    Article  Google Scholar 

  19. Tersoff J (2007) Low-frequency noise in nanoscale ballistic transistors. Nano Lett 7:194–198

    Article  CAS  Google Scholar 

  20. Yamamoto Y, Ohno Y, Maehashi K, Matsumoto K (2008) Carbon nanotube field-effect transistor biosensors with high signal-to-noise ratio using alternating current measurement. In: Nicolini C (ed) Proceedings of the IASTED international conference on nanotechnology and applications (NANA 2008). Acta Press, A Scientific and Technical Publishing Company, Crete, Track 615–043, pp 21–26

    Google Scholar 

  21. Hooge FN, Kleinpenning TGM, Vandamme LKJ (1981) Experimental studies on 1/f noise. Rep Prog Phys 44:479–532

    Article  Google Scholar 

  22. Hung K, Ko P, Hu C, Cheng Y (1990) A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistors. IEEE Trans Electron Dev 37:654–665

    Article  Google Scholar 

  23. Gasparyan FV, Asriyan HV, Melkonyan SV, Corman CE (2010) Method of 1/f noise reduction and noise level manipulation in semiconductor based devices. US Patent Application for Letters Patent of the United States No. 61/332,408, 7 May 2010

    Google Scholar 

  24. Behnam A, Ural A, Bosman G (2009) Modeling and measurements of low frequency noise in single-walled carbon nanotube films with bulk and percolation configurations. In: Proceedings of the 20th international conference on noise and fluctuations, ICNF, Pisa, 14–19 June 2009, pp 79–84

    Google Scholar 

  25. Lin Y-M, Appenzeller J, Knoch J, Chen Z, Avouris P (2006) Low-frequency current fluctuations in individual semiconducting single-wall carbon nanotubes. Nano Lett 6:930–936

    Article  CAS  Google Scholar 

  26. Jacobson CG, Nemirovsky Y (1999) 1/f noise in ion sensitive field effect transistors from subthreshold to saturation. IEEE Trans Electron Dev 46:259–261

    Article  Google Scholar 

  27. Chim WK, Leong KK, Choi WK (2001) Random telegraphic signals and low-frequency noise in rapid-thermal-annealed silicon-silicon dioxide structures. Jpn J Appl Phys 40:1–6

    Article  CAS  Google Scholar 

  28. Hassibi A, Navid R, Dutton RW, Lee TH (2004) A comprehensive study of noise processes in electrode-electrolyte interfaces. J Appl Phys 96:1074–1082

    Article  CAS  Google Scholar 

  29. Hooge FN (1969) 1/f noise is no surface effect. Phys Lett A 29:139–140

    Article  Google Scholar 

  30. Tian H, Gamal AE (2001) Analysis of 1/f noise in switched MOSFET circuits. IEEE Trans Circuit Syst-II Analog Digit Signal Process 48:151–157

    Article  Google Scholar 

  31. Smeets RM, Dekker NH, Dekker C (2009) Low-frequency noise in solid-state nanopores. Nanotechnology 20(9):095501

    Article  CAS  Google Scholar 

  32. Gasparyan FV, Mkhitaryan ZH, Surmalyan AV (2009) Basis structure of (bio-) chemical sensors: comparative analysis of CVC and noises. In: Proceedings of the 7th international conference on semiconductor micro- and nanoelectronics, Tsakhcadzor, 3–5 July 2009, pp 101–104

    Google Scholar 

  33. Snow ES, Novak JP, Lay MD, Perkins FK (2004) 1/f noise in single-walled carbon nanotube devices. Appl Phys Lett 85:4172–4174

    Article  CAS  Google Scholar 

  34. Melkonyan SV, Aroutiounian VM, Gasparyan FV, Asriyan HV (2006) Phonon mechanism of mobility equilibrium fluctuation and properties of 1/f-noise. Phys B Phys Condens Matter 382:65–70

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. V. Gasparyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Gasparyan, F.V. (2013). Noise Reduction in (Bio-) Chemical Sensors Functionalized with Carbon Nanotube Multilayers. In: Vaseashta, A., Khudaverdyan, S. (eds) Advanced Sensors for Safety and Security. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7003-4_11

Download citation

Publish with us

Policies and ethics