Skip to main content

Scaling Light Harvesting from Moss “Leaves” to Canopies

  • Chapter
  • First Online:

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 37))

Summary

This review provides an overview of chemical, anatomical and morphological changes in bryophytes in response to changes in light availability and assesses the role of these changes in altering bryophyte canopy performance. As a key chemical change, the concentration of chlorophyll increases in response to reduced light availability. Apart from light, within-canopy patterns in chlorophyll are importantly driven by the age of foliage that increases with decreasing light availability, resulting in reduced foliage chlorophyll contents in lower light. In addition, foliage is less strongly aggregated and the density of plants decreases in lower light resulting in greater efficiency of light interception per unit leaf area formed. There is large species variability in canopy architecture, accompanied by species differences in light gradients. Species also differ in structural acclimation to within-canopy light gradients. The species forming new leaves and branches from lateral buds and extending existing lateral branches, in particular, pleurocarpous mosses, can structurally adapt to reductions in light during moss growth, while non-branching, in particular, acrocarpous mosses, are inherently less plastic in their acclimation to light. The degree of aggregation also depends importantly on moss water content with greater degree of aggregation under low water availability, suggesting that changes in aggregation play a dual role in enhancing light interception under wet conditions and decreasing light harvesting under dry conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

\( {\overline{A}}_{\text{L}}\) :

– average leaf area;

A M :

– moss leaf area per shoot section mass;

A S :

– leaf area on the shoot;

\( {\overline{F}}_{\text{N}}\) :

– average number of leaves on the stem;

h :

– depth in the canopy;

k(θ):

– canopy extinction coefficient (Eq. 9.1);

k depth :

– apparent light extinction coefficient characterizing reduction in R Q with canopy depth (h);

L :

– canopy leaf area index;

L C :

– cumulative leaf area index from the canopy top to given location in the canopy;

N S :

– number of shoots per area (shoot density);

Q :

– photosynthetic quantum flux density at given location in the canopy;

Q 0 :

– Q at canopy top;

R Q :

– relative quantum flux density (transmittance of light from canopy top to given position in the canopy, Q/Q 0);

S :

– shoot area index;

S c :

– cumulative shoot area index;

Ω:

– clumping index (Eq. 9.2);

ζ:

– leaf absorptance;

θ:

– solar zenith angle;

χA :

– chlorophyll content per leaf area;

χM :

– chlorophyll content per leaf dry mass

References

  • Aan A, Hallik L, Kull O (2006) Photon flux partitioning among species along a productivity gradient of an herbaceous plant community. J Ecol 94:1143–1155

    Article  Google Scholar 

  • Adams WW III, Winter K, Schreiber U, Schramel P (1990) Photosynthesis and chlorophyll fluorescence characteristics in relationship to changes in pigment and element composition of leaves of Platanus occidentalis L. during autumnal leaf senescence. Plant Physiol 93:1184–1190

    Article  Google Scholar 

  • Anderson JM, Chow WS, Park Y-I, Franklin LA, Robinson SPA, van Hasselt PR (2001) Response of Tradescantia albiflora to growth irradiance: change versus changeability. Photosynth Res 67:103–112

    Article  PubMed  CAS  Google Scholar 

  • Anten NPR, Hirose T (1999) Interspecific differences in above-ground growth patterns result in spatial and temporal partitioning of light among species in a tall-grass meadow. J Ecol 87:583–597

    Article  Google Scholar 

  • Anten NPR, Hirose T (2003) Shoot structure, leaf physiology, and daily carbon gain of plant species in a tallgrass meadow. Ecology 84:955–968

    Article  Google Scholar 

  • Arkimaa H, Laitinen J, Korhonen R, Moisanen M, Hirvasniemi T, Kuosmanen V (2009) Spectral reflectance properties of Sphagnum moss species in Finnish mires. In: 6th EARSeL SIG IS workshop, Imaging Spectroscopy: Innovative tool for scientific and commercial environmental applications, 16–19 March 2009, Tel-Aviv University, Tel-Aviv, Israel, 5 pp

    Google Scholar 

  • Asner GP, Wessman CA (1997) Scaling PAR absorption from the leaf to landscape level in spatially heterogeneous ecosystems. Ecol Model 103:81–97

    Article  Google Scholar 

  • Baker NR, Oxborough K, Lawson T, Morison JIL (2001) High resolution imaging of photosynthetic activities of tissues, cells and chloroplasts in leaves. J Exp Bot 52:615–621

    Article  PubMed  CAS  Google Scholar 

  • Baldini E, Facini O, Nerozzi F, Rossi F, Rotondi A (1997) Leaf characteristics and optical properties of different woody species. Trees Struct Funct 12:73–81

    Article  Google Scholar 

  • Baldocchi DD, Bowling DR (2003) Modelling the discrimination of 13CO2 above and within a temperate broad-leaved forest canopy on hourly to seasonal time scales. Plant Cell Environ 26:231–244

    Article  Google Scholar 

  • Barker DH, Stark LR, Zimpfer JF, Mcletchie ND, Smith SD (2005) Evidence of drought-induced stress on biotic crust moss in the Mojave Desert. Plant Cell Environ 28:939–947

    Article  Google Scholar 

  • Bassi R, Caffarri S (2000) Lhc proteins and the regulation of photosynthetic light harvesting function by xanthophylls. Photosynth Res 64:243–256

    Article  PubMed  CAS  Google Scholar 

  • Bates JW (1998) Is ‘life-form’ a useful concept in bryophyte ecology? Oikos 82:223–237

    Article  Google Scholar 

  • Bayfield NG (1973) Notes on water relations of Polytrichum commune Hedw. J Bryol 7:607–617

    Google Scholar 

  • Bergamini A, Peintinger M (2002) Effects of light and nitrogen on morphological plasticity of the moss Calliergonella cuspidata. Oikos 96:355–363

    Article  Google Scholar 

  • Bond-Lamberty B, Gower ST (2007) Estimation of stand-level leaf area for boreal bryophytes. Oecologia 151:584–592

    Article  PubMed  Google Scholar 

  • Boonman A, Prinsen E, Gilmer F, Schurr U, Peeters AJM, Voesenek LACJ, Pons TL (2007) Cytokinin import rate as a signal for photosynthetic acclimation to canopy light gradients. Plant Physiol 143:1841–1852

    Article  PubMed  CAS  Google Scholar 

  • Boonman A, Prinsen E, Voesenek LACJ, Pons TL (2009) Redundant roles of photoreceptors and cytokinins in regulating photosynthetic acclimation to canopy density. J Exp Bot 60:1179–1190

    Article  PubMed  CAS  Google Scholar 

  • Brakke TW (1994) Specular and diffuse components of radiation scattered by leaves. Agric For Meteorol 71:283–295

    Article  Google Scholar 

  • Bryant RG, Baird AJ (2003) The spectral behaviour of Sphagnum canopies under varying hydrological conditions. Geophys Res Lett 30:1134

    Article  Google Scholar 

  • Bubier JL, Rock BN, Crill PM (1997) Spectral reflectance measurements of boreal wetland and forest mosses. J Geophys Res – Atm 102:29483–29494

    Article  Google Scholar 

  • Carter GA, Knapp AK (2001) Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration. Am J Bot 88:677–684

    Article  PubMed  CAS  Google Scholar 

  • Cescatti A, Niinemets Ü (2004) Sunlight capture. Leaf to landscape. In: Smith WK, Vogelmann TC, Chritchley C (eds) Photosynthetic adaptation: chloroplast to landscape, Ecological Studies, vol 178. Springer, Berlin, pp 42–85

    Chapter  Google Scholar 

  • Chaerle L, Leinonen I, Jones HG, Van Der Straeten D (2007) Monitoring and screening plant populations with combined thermal and chlorophyll fluorescence imaging. J Exp Bot 58:773–784

    Article  PubMed  CAS  Google Scholar 

  • Crandall-Stotler BJ, Bartholomew-Began SE (2007) Morphology of mosses (phylum Bryophyta). In: Zander RH, Eckel PM (eds) Flora of North America north of Mexico (FNA), vol 27. www.efloras.org. Flora of North America Editorial Committee New York, Oxford, pp 3–13

  • Davey MC, Ellis-Evans JC (1996) The influence of water content on the light climate within Antarctic mosses characterized using an optical microprobe. J Bryol 19:235–242

    Google Scholar 

  • Davey ML, Nybakken L, Kauserud H, Ohlson M (2009) Fungal biomass associated with the phyllosphere of bryophytes and vascular plants. Mycol Res 113:1254–1260

    Article  PubMed  CAS  Google Scholar 

  • Dilks TJK, Proctor MCF (1979) Photosynthesis, respiration and water content in bryophytes. New Phytol 82:97–114

    Article  Google Scholar 

  • Duursma RA, Falster DS, Valladares F, Sterck FJ, Pearcy RW, Lusk CH, Sendall KM, Nordenstahl M, Houter NC, Atwell BJ, Kelly N, Kelly JWG, Liberloo M, Tissue DT, Medlyn BE, Ellsworth DS (2012) Light interception efficiency explained by two simple variables: a test using a diversity of small- to medium-sized woody plants. New Phytol 193:397–408

    Article  PubMed  CAS  Google Scholar 

  • Evans JR (1993a) Photosynthetic acclimation and nitrogen partitioning within a lucerne canopy. I. Canopy characteristics. Aust J Plant Physiol 20:55–67

    Article  CAS  Google Scholar 

  • Evans JR (1993b) Photosynthetic acclimation and nitrogen partitioning within a lucerne canopy. II. Stability through time and comparison with a theoretical optimum. Aust J Plant Physiol 20:69–82

    Article  CAS  Google Scholar 

  • Evans JR, Poorter H (2001) Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell Environ 24:755–767

    Article  CAS  Google Scholar 

  • Frego KA, Carleton TJ (1995) Microsite tolerance of four bryophytes in a mature black spruce stand: reciprocal transplants. Bryologist 98:452–458

    Article  Google Scholar 

  • Gabrielsen EK (1948) Effects of different chlorophyll concentrations on photosynthesis in foliage leaves. Physiol Plant 1:5–37

    Article  CAS  Google Scholar 

  • Glime J (2007) Bryophyte ecology. E-book sponsored by Michigan Technological University and the International Association of Bryologists

    Google Scholar 

  • Goudriaan J (1977) Crop micrometeorology: a simulation study. Pudoc, Wageningen

    Google Scholar 

  • Green TGA, Lange OL (1994) Photosynthesis in pokilohydric plants: a comparison of lichens and bryophytes. In: Schulze E-D, Caldwell MM (eds) Ecophysiology of photosynthesis, Ecological Studies, vol 100. Springer, Berlin, pp 319–341

    Google Scholar 

  • Gutschick VP, Wiegel FW (1988) Optimizing the canopy photosynthetic rate by patterns of investment in specific leaf mass. Am Nat 132:67–86

    Article  Google Scholar 

  • Hallik L, Kull O, Niinemets Ü, Aan A (2009a) Contrasting correlation networks between leaf structure, nitrogen and chlorophyll in herbaceous and woody canopies. Basic Appl Ecol 10:309–318

    Article  CAS  Google Scholar 

  • Hallik L, Kull O, Nilson T, Peñuelas J (2009b) Spectral reflectance of multispecies herbaceous and moss canopies in the boreal forest understory and open field. Can J Remote Sens 35:474–485

    Article  Google Scholar 

  • Hallik L, Niinemets Ü, Kull O (2012) Photosynthetic acclimation to light in woody and herbaceous species: a comparison of leaf structure, pigment content and chlorophyll fluorescence characteristics measured in the field. Plant Biol 14:88–99

    PubMed  CAS  Google Scholar 

  • Hamerlynck EP, Tuba Z, Csintalan Z, Nagy Z, Henebry G, Goodin D (2000) Diurnal variation in photochemical dynamics and surface reflectance of the desiccation-tolerant moss, Tortula ruralis. Plant Ecol 151:55–63

    Article  Google Scholar 

  • Harris A (2008) Spectral reflectance and photosynthetic properties of Sphagnum mosses exposed to progressive drought. Ecohydrology 1:35–42

    Article  CAS  Google Scholar 

  • Hill MO, Preston CD, Bosanquet SDS, Roy DB (2007) BRYOATT: attributes of British and Irish mosses, liverworts and hornworts with information on native status, size, life form, life history, geography and habitat. NERC Centre for Ecology and Hydrology and Countryside Council for Wales, Cambridgeshire

    Google Scholar 

  • Hirose T, Werger MJA (1987) Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy. Oecologia 72:520–526

    Article  Google Scholar 

  • Johansson LG, Linder S (1980) Photosynthesis of Sphagnum in different microhabitats on a subarctic mire. In: Sonesson M (ed) Ecology of a subarctic mire, Ecological Bulletins, vol 30. Swedish Natural Science Research Council, Stockholm, pp 181–190

    Google Scholar 

  • Krumnikl M, Sojka E, Gaura J, Motyka O (2008) A new method for bryophyte canopy analysis based on 3D surface reconstruction. In: 7th computer information systems and industrial management applications, IEEE, pp 210–211

    Google Scholar 

  • Lechowicz MJ (1983) Age dependence of photosynthesis in the caribou lichen Cladina stellaris. Plant Physiol 71:893–895

    Article  PubMed  CAS  Google Scholar 

  • Lovelock CE, Robinson SA (2002) Surface reflectance properties of Antarctic moss and their relationship to plant species, pigment composition and photosynthetic function. Plant Cell Environ 25:1239–1250

    Article  Google Scholar 

  • Martin CE, Churchill SP (1982) Chlorophyll concentrations and a/b ratios in mosses collected from exposed and shaded habitats in Kansas. J Bryol 12:297–304

    Google Scholar 

  • Martin G, Myers DA, Vogelmann TC (1991) Characterization of plant epidermal lens effects by a surface replica technique. J Exp Bot 42:581–587

    Article  Google Scholar 

  • Masarovičová E, Eliáshš P (1987) Some ecophysiological features in woodland mosses in SW Slovakia. 2. Chlorophyll content and photosynthesis. In: Pócs T, Simon T, Tuba Z, Podani J (eds) Proceedings of the IAB conference of bryoecology. Akadémiai Kiadó, Budapest-Vacratot, Hungary, pp 113–123

    Google Scholar 

  • Masoni A, Ercoli L, Mariotti M, Barberi P (1994) Changes in spectral properties of ageing and senescing maize and sunflower leaves. Physiol Plant 91:334–338

    Article  Google Scholar 

  • Mesarch MA, Walter-Shea EA, Asner GP, Middleton EM, Chan SS (1999) A revised measurement methodology for conifer needles spectral optical properties: evaluating the influence of gaps between elements. Remote Sens Environ 68:177–192

    Article  Google Scholar 

  • Monsi M, Saeki T (1953) Über den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion. Jap J Bot 14:22–52

    Google Scholar 

  • Myers DA, Vogelmann TC, Bornman JF (1994) Epidermal focussing and effects on light utilization in Oxalis acetosella. Physiol Plant 91:651–656

    Article  CAS  Google Scholar 

  • Niinemets Ü (2007) Photosynthesis and resource distribution through plant canopies. Plant Cell Environ 30:1052–1071

    Article  PubMed  CAS  Google Scholar 

  • Niinemets Ü (2010) A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecol Res 25:693–714

    Article  Google Scholar 

  • Niinemets Ü, Anten NPR (2009) Packing the photosynthesis machinery: from leaf to canopy. In: Laisk A, Nedbal L, Govindjee (eds) Photosynthesis in silico: understanding complexity from molecules to ecosystems, Advances in photosynthesis and respiration, vol 29. Springer, Berlin, pp 363–399

    Google Scholar 

  • Niinemets Ü, Kull O, Tenhunen JD (2004) Within canopy variation in the rate of development of photosynthetic capacity is proportional to integrated quantum flux density in temperate deciduous trees. Plant Cell Environ 27:293–313

    Article  CAS  Google Scholar 

  • Niinemets Ü, Tobias M, Cescatti A, Sparrow AD (2006) Size-dependent variation in shoot light-harvesting efficiency in shade-intolerant conifers. Int J Plant Sci 167:19–32

    Article  Google Scholar 

  • Niinemets Ü, García-Plazaola JI, Tosens T (2012) Photosynthesis during leaf development and ageing. In: Flexas J, Loreto F, Medrano H (eds) Terrestrial photosynthesis in a changing environment. The molecular, physiological and ecological bases of photosynthesis driving its response to the environmental changes. Cambridge University Press, Cambridge, pp 357–376

    Google Scholar 

  • Nilson T (1971) A theoretical analysis of the frequency of gaps in plant stands. Agric Meteorol 8:25–38

    Article  Google Scholar 

  • Nilson T, Ross J (1997) Modeling radiative transfer through forest canopies: implications for canopy photosynthesis and remote sensing. In: Gholz HL, Nakane K, Shimoda H (eds) The use of remote sensing in the modeling of forest productivity, Forestry sciences, vol 50. Kluwer Academic, Dordrecht, pp 23–60

    Chapter  Google Scholar 

  • Osmond CB, Anderson JM, Ball MC, Egerton JG (1999) Compromising efficiency: the molecular ecology of light-resource utilization in plants. In: Press MC, Scholes JD, Barker MG (eds) Physiological plant ecology. The 39th Symposium of the British Ecological Society held at the University of York, 7–9 September 1998. Blackwell Science, Oxford, pp 1–24

    Google Scholar 

  • Pedersen B, Hanslin HM, Bakken S (2001) Testing for positive density-dependent performance in four bryophyte species. Ecology 82:70–88

    Article  Google Scholar 

  • Peñuelas J, Sardans J, Llusià J, Owen SM, Carnicer J, Giambelluca TW, Rezende E, Waite M, Niinemets Ü (2010) Faster returns on ‘leaf economics’ and different biogeochemical niche in invasive compared with native plant species. Global Change Biol 16:2171–2185

    Article  Google Scholar 

  • Pons TL, Anten NPR (2004) Is plasticity in partitioning of photosynthetic resources between and within leaves important for whole-plant carbon gain in canopies? Funct Ecol 18:802–811

    Article  Google Scholar 

  • Proctor MC (1979) Structure and eco-physiological adaptations in bryophytes. In: Clarke G, Duckett J (eds) Bryophyte systematics. Academic, New York, pp 479–509

    Google Scholar 

  • Proctor MCF (1984) Structure and ecological adaptation. In: Dyer AF, Duckett JG, Cronshaw J (eds) The experimental biology of bryophytes, Experimental botany: an international series of monographs. Academic, London, pp 9–37

    Google Scholar 

  • Proctor MCF (1990) The physiological bases for bryophyte production. Bot J Linn Soc 104:61–77

    Article  Google Scholar 

  • Rice SK, Schneider N (2004) Cushion size, surface roughness, and the control of water balance and carbon flux in the cushion moss Leucobryum glaucum (Leucobryaceae). Am J Bot 91:1164–1172

    Article  PubMed  Google Scholar 

  • Rice SK, Collins D, Anderson AM (2001) Functional significance of variation in bryophyte canopy structure. Am J Bot 88(9):1568–1576

    Article  PubMed  CAS  Google Scholar 

  • Rice SK, Gutman C, Krouglicof N (2005) Laser scanning reveals bryophyte canopy structure. New Phytol 166:695–704

    Article  PubMed  Google Scholar 

  • Rice SK, Neal N, Mango J, Black K (2011) Relationships among shoot tissue, canopy and photosynthetic characteristics in the feathermoss Pleurozium schreberi. Bryologist 114:367–378

    Article  Google Scholar 

  • Rincón E (1993) Growth responses of six bryophyte species to different light intensities. Can J Bot 71:661–665

    Article  Google Scholar 

  • Rincon E, Grime JP (1989) Plasticity and light interception by six bryophytes of contrasted ecology. J Ecol 77:439–446

    Article  Google Scholar 

  • Ross J (1981) The radiation regime and architecture of plant stands. Dr. W. Junk, The Hague

    Book  Google Scholar 

  • Sands PJ (1995) Modelling canopy production. I. Optimal distribution of photosynthetic resources. Aust J Plant Phys 22:593–601

    Article  CAS  Google Scholar 

  • Schwartz A-M, Markager S (1999) Light absorption and photosynthesis of a benthic moss community: importance of spectral quality of light and implications of changing light attenuation in the water column. Freshw Biol 42:609–623

    Article  Google Scholar 

  • Seel WE, Baker NR, Lee JA (1992) Analysis of the decrease in photosynthesis on desiccation of mosses from xeric and hydric environments. Physiol Plant 86:451–458

    Article  Google Scholar 

  • Siebke K, Weis E (1995) Imaging of chlorophyll-a-fluorescence in leaves: topography of photosynthetic oscillations in leaves of Glechoma hederacea. Photosynth Res 45:225–237

    Article  CAS  Google Scholar 

  • Simon T (1987) The leaf-area index of three moss species (Tortula ruralis, Ceratodon purpureus, and Hypnum cupressiforme). In: Pócs T, Simon T, Tuba Z, Podani J (eds) Proceedings of the IAB conference of bryoecology, Symposia Biologica Hungarica, 35. Akadémiai Kiadó, Budapest-Vacratot, Hungary, pp 699–706

    Google Scholar 

  • Skré O, Oechel WC, Miller PM (1983) Moss leaf water content and solar radiation at the moss surface in a mature black spruce forest in central Alaska. Can J For Res 13:860–868

    Article  Google Scholar 

  • Smith AJE (1982) Bryophyte ecology. Chapman & Hall, London/New York

    Book  Google Scholar 

  • Sonesson M, Gehrke C, Tjus M (1992) CO2 environment, microclimate and photosynthetic characteristics of the moss Hylocomium splendens in a subarctic habitat. Oecologia 92:23–29

    Article  Google Scholar 

  • Staples GW, Imada CT (2006) Checklist of Hawaiian Anthocerotes and Hepatics. Trop Bryol 28:15–47

    Google Scholar 

  • Staples GW, Imada CT, Hoe WJ, Smith CW (2004) A revised checklist of Hawaiian mosses. Trop Bryol 25:35–69

    Google Scholar 

  • Thomas SC, Liguori DA, Halpern CB (2001) Corticolous bryophytes in managed Douglas-fir forests: habitat differentiation and responses to thinning and fertilization. Can J Bot 79:886–896

    Google Scholar 

  • Tobias M, Niinemets Ü (2010) Acclimation of moss Pleurozium schreberi photosynthetic characteristics to among-habitat and within-canopy light gradients. Plant Biol 12:743–754

    Article  PubMed  CAS  Google Scholar 

  • Tobias M, Niinemets Ü (2005) Acclimation to within-canopy light gradient in four moss species of contrasting architecture In: Abstracts. XVII International Botanical Congress, Vienna, Austria, 17–23 July 2005, pp 105–106

    Google Scholar 

  • van der Hoeven EC, Huynen CIJ, During HJ (1993) Vertical profiles of biomass, light intercepting area and light intensity in chalk grassland mosses. J Hatt Bot Lab 74:261–270

    Google Scholar 

  • Van Gaalen KE, Flanagan LB, Peddle DR (2007) Photosynthesis, chlorophyll fluorescence and spectral reflectance in Sphagnum moss at varying water content. Oecologia 153:19–28

    Article  PubMed  Google Scholar 

  • Vitt DH (1990) Growth and production dynamics of boreal mosses over climatic, chemical and topographic gradients. Biol J Linn Soc 104:35–59

    Article  Google Scholar 

  • Vogelmann TC (1993) Plant tissue optics. Ann Rev Plant Physiol Plant Mol Biol 44:231–252

    Article  Google Scholar 

  • Vogelmann JE, Moss DM (1993) Spectral reflectance measurements in the genus Sphagnum. Remote Sens Environ 45:273–279

    Article  Google Scholar 

  • Vogelmann TC, Bornman JF, Yates DJ (1996a) Focusing of light by leaf epidermal cells. Physiol Plant 98:43–56

    Article  CAS  Google Scholar 

  • Vogelmann TC, Nishio JN, Smith WK (1996b) Leaves and light capture: light propagation and gradients of carbon fixation within leaves. Trends Plant Sci 1:65–70

    Article  Google Scholar 

  • Waite M, Sack L (2010) How does moss photosynthesis relate to leaf and canopy structure? Trait relationships for 10 Hawaiin species of contrasting light habitats. New Phytol 185:156–172

    Article  PubMed  CAS  Google Scholar 

  • Williams WE, Gorton HL, Witiak SM (2003) Chloroplast movements in the field. Plant Cell Environ 26:2005–2014

    Article  Google Scholar 

  • Zotz G, Kahler H (2007) A moss “canopy” – small-scale differences in microclimate and physiological traits in Tortula ruralis. Flora 202:661–666

    Article  Google Scholar 

Download references

Acknowledgements

Authors work on mosses has been supported by the Estonian Ministry of Science and Education (grant IUT 8-3), and the European Commission through European Regional Fund (the Center of Excellence in Environmental Adaptation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ülo Niinemets .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Niinemets, Ü., Tobias, M. (2014). Scaling Light Harvesting from Moss “Leaves” to Canopies. In: Hanson, D., Rice, S. (eds) Photosynthesis in Bryophytes and Early Land Plants. Advances in Photosynthesis and Respiration, vol 37. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6988-5_9

Download citation

Publish with us

Policies and ethics