Skip to main content

Best Practices for Measuring Photosynthesis at Multiple Scales

  • Chapter
  • First Online:
Photosynthesis in Bryophytes and Early Land Plants

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 37))

Summary

Studies of bryophyte photosynthetic performance have generally adapted techniques developed for use in vascular plants and relied on underlying vascular plant functional models as guides. Within this context, bryophytes present intellectual and methodological challenges, but also opportunities relative to their vascular plant counterparts. For example, although the leaf is clearly a functional unit for vascular plants, the comparable bryophyte structure may or may not serve a similar purpose. Instead, shoot systems and their organization into canopies are often employed as the functional equivalent. Unfortunately, due to issues of scale and alternative functional demands on bryophyte shoots like external transport and nutrient uptake, neither the methodologies nor the underlying models that lead to an integrated understanding of photosynthesis in vascular plants apply well to bryophytes. This chapter will consider the appropriate functional units for studies of bryophyte photosynthesis and relate it to the growth form and life form literature. Methods to characterize photosynthetic “leaf” area, water content, and canopy structure will be evaluated relative to their use in characterizing rates of photosynthesis. In addition, various methods are used to study photosynthetic function and these will be considered in light of their appropriate spatial and temporal domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

LAI – :

Leaf area index;

Pmax :

Maximum rate of net photosynthesis;

ϕPSII :

Quantum yield of photosystem II;

SAI:

Shoot area index;

STAR:

Shoot silhouette to needle leaf area ratio

References

  • Alpert P, Oechel WC (1987) Comparative patterns of net photosynthesis in an assemblage of mosses with contrasting distributions. Am J Bot 74:1787–1796

    Article  Google Scholar 

  • Bader MY, Zotz G, Lange OL (2009) How to minimize the sampling effort for obtaining reliable estimates of diel and annual CO2 budgets in lichens. Lichenologist 42:97–111

    Article  Google Scholar 

  • Barnes BV, Zak DR, Denton SR, Spurr SH (1998) Forest ecology, 4th edn. Wiley, New York

    Google Scholar 

  • Bates JW (1998) Is “life-form” a useful concept in bryophyte ecology? Oikos 82:223–237

    Article  Google Scholar 

  • Benscoter BW, Vitt DH (2007) Evaluating feathermoss growth: a challenge to traditional methods and implications for the boreal carbon budget. J Ecol 95:151–158

    Article  CAS  Google Scholar 

  • Bond-Lamberty B, Gower ST (2007) Estimation of stand-level leaf area for boreal bryophytes. Oecologia 151:584–592

    Article  PubMed  Google Scholar 

  • Buck WR, Goffinet B (2000) Morphology and classification of mosses. In: Shaw AJ, Goffinet G (eds) Bryophyte biology. Cambridge University Press, Cambridge, pp 71–123

    Chapter  Google Scholar 

  • Clark DL, Nadkarni NM, Gholz HL (1998) Growth, net production, litter decomposition, and net nitrogen accumulation by epiphytic bryophytes in a tropical montane forest. Biotropica 30:12–23

    Article  Google Scholar 

  • Clymo RS (1963) Ion exchange in Sphagnum and its relation to bog ecology. Ann Bot 27:309–324

    CAS  Google Scholar 

  • Clymo RS, Hayward PM (1982) The ecology of Sphagnum. In: Smith AJE (ed) Bryophyte ecology. Chapman and Hall, New York, pp 229–289

    Chapter  Google Scholar 

  • Coley PD (1988) Effects of plant growth rate and leaf lifetime on the amount and type of antiherbivore defense. Oecologia 74:531–536

    Article  Google Scholar 

  • Cornelissen JHC, Thompson K (1997) Functional leaf attributes predict litter decomposition rate in herbaceous plants. New Phytol 135:109–114

    Article  Google Scholar 

  • Cornelissen JHC, Lang SI, Soudzilovskaia NA, During HJ (2007) Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeochemistry. Ann Bot 99:987–1001

    Article  PubMed  CAS  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071

    Article  PubMed  Google Scholar 

  • Crandall-Stotler B, Stotler RE (2000) Morphology and classification of the Marchantiophyta. In: Shaw AJ, Goffinet G (eds) Bryophyte biology. Cambridge University Press, Cambridge, pp 21–70

    Chapter  Google Scholar 

  • Dilks TJK, Proctor MCF (1979) Photosynthesis, respiration and water content in bryophytes. New Phytol 82:97–114

    Article  Google Scholar 

  • Dorrepaal E, Cornelissen JHC, Aerts R, Wallen B, Van Logtestijn RSP (2005) Are growth forms consistent predictors of leaf litter quality and decomposability across peatlands along a latitudinal gradient? J Ecol 93:817–828

    Article  Google Scholar 

  • During HJ (1979) Life strategies of bryophytes – preliminary review. Lindbergia 5:2–18

    Google Scholar 

  • During HJ (1992) Ecological classification of bryophytes and lichens. In: Bates JW, Farmer AM (eds) Bryophytes and lichens in a changing environment. Clarendon Press, Oxford, pp 1–31

    Google Scholar 

  • Elumeeva TG, Soudzilovskaia NA, During HJ, Cornelissen JHC (2011) The importance of colony structure versus shoot morphology for the water balance of 22 subarctic bryophyte species. J Veg Sci 22:152–164

    Article  Google Scholar 

  • Fowbert JA (1996) An experimental study of growth in relation to morphology and shoot water content in maritime Antarctic mosses. New Phytol 133:363–373

    Article  Google Scholar 

  • Furness SB, Grime JP (1982) Growth rate and temperature responses in bryophytes II. A comparative study of species of contrasted ecology. J Ecol 70:525–536

    Article  Google Scholar 

  • Gimingham CH, Birse EM (1957) Ecological studies on growth-form in bryophytes: I. Correlation between growth-form and habitat. J Ecol 45:533–545

    Article  Google Scholar 

  • Gimingham CH, Smith RIL (1971) Growth form and water relations of mosses in the maritime Antarctic. Br Antarct Surv Bull 25:1–21. http://www.antarctica.ac.uk/documents/bas_bulletins/bulletin25_02.pdf

  • Glime JM (2006) Bryophytes and herbivory. Cryptogam Bryol 27:191–203

    Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195

    Article  Google Scholar 

  • Green TGA, Lange OL (1995) Photosynthesis in poikilohydric plants: a comparison of lichens and bryophytes. In: Schulze E-D, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer, Berlin

    Google Scholar 

  • Griffiths H, Maxwell K, Richardson D, Robe W (2004) Turning the land green: inferring photosynthetic physiology and diffusive limitations in early bryophytes. In: Hemsley AR, Poole I (eds) The evolution of plant physiology: from whole plants to ecosystems, chapter 1. Elsevier Academic Press, Amsterdam

    Google Scholar 

  • Gunnarsson U (2005) Global patterns of Sphagnum productivity. J Bryol 27:269–279

    Article  Google Scholar 

  • Hájek T, Beckett RP (2008) Water content components on desiccation and recovery in Sphagnum. Ann Bot 101:165–173

    Article  PubMed  Google Scholar 

  • Hajek T, Ballance T, Limpens J, Zijlstra M, Verhoeven JTA (2011) Cell-wall polysaccharides play an important role in decay resistance of Sphagnum and actively depressed decomposition in vitro. Biogeochemistry 103:1–3

    Article  Google Scholar 

  • Hayward PM, Clymo RS (1983) The growth of Sphagnum: experiments on, and simulation of, some effects of light flux and water-table depth. J Ecol 71:845–863

    Article  Google Scholar 

  • Hedderson TA, Longton RE (1996) Life history variation in mosses: water relations, size and phylogeny. Oikos 77:31–43

    Article  Google Scholar 

  • Hedenäs L (2002) Important complexes of intercorrelated character states in pleurocarpous mosses. Lindbergia 27:104–121

    Google Scholar 

  • Hikosaka K (2004) Interspecific difference in the photosynthetic-nitrogen relationship: patterns, physiological causes, and ecological consequences. J Plant Res 117:481–494

    Article  PubMed  Google Scholar 

  • Hobbie SE (1996) Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr 66:503–522

    Article  Google Scholar 

  • Johansson LG, Linder S (1980) Photosynthesis in Sphagnum in different microhabitats on a Subarctic mire. In: Sonesson M (ed) Ecology of a subarctic mire, vol 30, Ecol bull., pp 181–190

    Google Scholar 

  • Johnson LC, Damman AWH (1991) Species-controlled Sphagnum decay on a South Swedish raised bog. Oikos 61:234–242

    Article  Google Scholar 

  • Kremer C, Pettolino F, Bacic A, Drinnan A (2004) Distribution of cell wall components in Sphagnum hyaline cells and in liverwort and hornwort elaters. Planta 219:1023–1035

    Article  PubMed  CAS  Google Scholar 

  • Krumnikl M, Sojka E, Gaura J, Motyka O (2010) Three-dimensional reconstruction of macroscopic features in biological materials. Comm Com Inf Sc 52:225–234

    Article  Google Scholar 

  • Krupa J (1984) Anatomical structure of moss leaves and their photosynthetic rate. Acta Soc Bot Pol 53:43–51

    CAS  Google Scholar 

  • Kuhry P (1994) The role of fire in the development of Sphagnum-dominated peatlands in western boreal Canada. J Ecol 82:899–910

    Article  Google Scholar 

  • Kürschner H, Frey W, Parolly G (1999) Patterns and adaptive trends of life forms, life strategies and ecomorphological structures in tropical epiphytic bryophytes—a pantropical synopsis. Nova Hedwigia 69:73–99

    Google Scholar 

  • Lang SI, Cornelissen JHC, Klahn T, van Logtestijn RSP, Broekman R, Schweikert W, Aerts R (2009) An experimental comparison of chemical traits and litter decomposition rates in a diverse range of subarctic bryophyte, lichen and vascular plant species. J Ecol 97:886–900

    Article  CAS  Google Scholar 

  • Limpens J, Berendse F (2003) How litter quality affects mass loss and N loss from decomposing Sphagnum. Oikos 103:537–547

    Article  CAS  Google Scholar 

  • Limpens J, Berendse F, Blodau C, Canadell JG, Freeman C, Holden J, Roulet N, Rydin H, Schaepman-Strub G (2008) Peatlands and the carbon cycle: from local processes to global implications – a synthesis. Biogeosciences 5:1475–1491

    Article  CAS  Google Scholar 

  • Magdefrau K (1982) Life-forms of bryophytes. In: Smith I (ed) Bryophyte ecology. Chapman and Hall, New York, pp 45–57

    Chapter  Google Scholar 

  • Martin CE, Adamson VJ (2001) Photosynthetic capacity of mosses relative to vascular plants. J Bryol 23:319–323

    Google Scholar 

  • Meyer M, Seibt U, Griffiths H (2008) To concentrate or ventilate? Carbon acquisition, isotope discrimination and physiological ecology of early land plant life forms. Philos T Roy Soc B 363:2767–2778

    Article  CAS  Google Scholar 

  • Mishler BD, Oliver MJ (2009) Putting Physcomitrella patens on the tree of life: the evolution and ecology of mosses. Ann Plant Rev 36:1–15

    CAS  Google Scholar 

  • Newton AE (2007) Branching architecture in pleurocarpous mosses. In: Newton AE, Tangney S (eds) Pleurocarpous mosses: systematics and evolution. CRC Press, Boca Raton, pp 287–306

    Chapter  Google Scholar 

  • Nobel PS (1977) Internal leaf area and cellular CO2 resistance: photosynthetic implications of variations with growth conditions and plant species. Physiol Plant 40:137–144

    Article  CAS  Google Scholar 

  • Nobel PS, Walker DB (1985) Structure of leaf photosynthetic tissue. In: Barber J, Baker NR (eds) Photosynthetic mechanisms and the environment. Elsevier Science Publishers BV, Amsterdam, pp 501–531

    Google Scholar 

  • Popper ZA, Fry SC (2003) Primary cell wall composition of bryophytes and charophytes. Ann Bot 91:1–12

    Article  PubMed  CAS  Google Scholar 

  • Proctor MCF (1980) Diffusion resistance in bryophytes. In: Grace J, Ford ED, Jarvis PG (eds) Plants and their atmospheric environment. Blackwell Scientific, Oxford, pp 219–229

    Google Scholar 

  • Proctor MCF (1990) The physiological basis of bryophyte production. Bot J Linn Soc 104:61–77

    Article  Google Scholar 

  • Proctor MCF (1999) Water-relations parameters of some bryophytes evaluated by thermocouple psychrometry. J Bryol 21:263–270

    Google Scholar 

  • Proctor MCF (2000) Physiological ecology. In: Shaw AJ, Goffinet B (eds) Bryophyte biology. Cambridge University Press, Cambridge, pp 225–247

    Chapter  Google Scholar 

  • Proctor MCF, Nagy Z, Csintalan Z, Tuba Z (1998) Water-content components in bryophytes: analysis of pressure-volume relationships. J Exp Bot 49:1845–1854

    CAS  Google Scholar 

  • Proctor MCF, Oliver MJ, Wood AJ, Alpert P, Stark LR, Cleavitt NL, Mishler BD (2007) Desiccation-tolerance in bryophytes: a review. Bryologist 110:595–621

    Article  CAS  Google Scholar 

  • Rice SK (2009) Mosses (Bryophytes). In: Likens GE (ed) Encyclopedia of inland waters, vol 1. Elsevier, Oxford, pp 88–96

    Chapter  Google Scholar 

  • Rice SK, Schneider N (2004) Cushion size, surface roughness, and the control of water balance and carbon flux in the cushion moss Leucobryum glaucum (Leucobryaceae). Am J Bot 91:1164–1172

    Article  PubMed  Google Scholar 

  • Rice SK, Gutman C, Krouglicof N (2005) Laser scanning reveals bryophyte canopy structure. New Phytol 166:695–704

    Article  PubMed  Google Scholar 

  • Rice SK, Aclander L, Hanson DT (2008) Do bryophyte shoot systems function like vascular plant leaves or canopies? Functional trait relationships in Sphagnum mosses (Sphagnaceae). Am J Bot 95:1366–1374

    Article  PubMed  Google Scholar 

  • Rice SK, Neal N, Mango J, Black K (2011a) Modeling bryophyte productivity across gradients of water availability using canopy form-function relationships. In: Tuba Z, Slack NG, Stark LR (eds) Bryophyte ecology and global change. Cambridge University Press, Cambridge, pp 441–457

    Google Scholar 

  • Rice SK, Neal N, Mango J, Black K (2011b) Relationships among shoot tissue, canopy and photosynthetic characteristics in the feathermoss Pleurozium schreberi. Bryologist 114:367–378

    Article  Google Scholar 

  • Rydin H, Gunnarsson U, Sundberg S (2006) The role of Sphagnum in peatland development and persistence. In: Wieder RK, Vitt DH (eds) Boreal peatland ecosystems, Ecological Studies Series. Springer, Berlin, pp 47–65

    Chapter  Google Scholar 

  • Scheffer RA, van Logtestijn RSP, Verhoeven JTA (2001) Decomposition of Carex and Sphagnum litter in two mesotrophic fens differing in dominant plant species. Oikos 92:44–54

    Article  Google Scholar 

  • Scholfield WB (1981) Ecological significance of morphological characters in the moss gametophyte. Bryologist 84:149–165

    Article  Google Scholar 

  • Simon T (1987) The leaf-area index of three moss species (Tortula ruralis, Ceratodon purpureus, and Hypnum cupressiforme). Symp Biol Hung 35:699–706

    Google Scholar 

  • Skre O, Oechel WC (1981) Moss functioning in different taiga ecosystems in interior Alaska. I. Seasonal, phenotypic, and drought effects on photosynthesis and response patterns. Oecologia 48:50–59

    Article  Google Scholar 

  • Smith WK, Hughes NM (2009) Progress in coupling plant form and photosynthetic function. Castanea 74:1–26

    Article  Google Scholar 

  • Stenberg P, Palmroth S, Bond BJ, Sprugel DG, Smolander H (2001) Shoot structure and photosynthetic efficiency along the light gradient in a Scots pine canopy. Tree Physiol 21:805–814

    Article  PubMed  CAS  Google Scholar 

  • Thérézein M, Palmroth S, Brady R, Oren R (2007) Estimation of light interception properties of conifer shoots by an improved photographic method and a 3D model of shoot structure. Tree Physiol 27:1375–1387

    Article  Google Scholar 

  • Tobias M, Niinemets Ü (2010) Acclimation of photosynthetic characteristics of the moss Pleurozium schreberi to among-habitat and within-canopy light gradients. Plant Biol 12:743–754

    Article  PubMed  CAS  Google Scholar 

  • Turetsky MR, Crow SE, Evans RJ, Vitt DH, Wieder RK (2008) Trade-offs in resource allocation among moss species control decomposition in boreal peatlands. J Ecol 96:1297–1305

    Article  Google Scholar 

  • Van Altena C, van Logtestijn RSP, Cornwell WK, Cornelissen JHC (2012) Species composition and fire: non-additive mixture effects on ground fuel flammability. Front Funct Plant Ecol 3:1–10

    Google Scholar 

  • Van der Hoeven EC, Huynen CIJ, During HJ (1993) Vertical profiles of biomass, light intercepting area and light intensity in chalk grassland mosses. J Hattori Bot Lab 74:261–270

    Google Scholar 

  • Vanderpoorten A, Goffinet B (2009) Introduction to bryophytes. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Verhoeven JTA, Liefveld WM (1997) The ecological significance of organochemical compounds in Sphagnum. Acta Bot Neerl 46:117–130

    CAS  Google Scholar 

  • Vitt DH (1990) Growth and production dynamics of boreal mosses over climatic, chemical and topographic gradients. Bot J Linn Soc 104:35–59

    Article  Google Scholar 

  • Waite M, Sack L (2010) How does moss photosynthesis relate to leaf and canopy structure? Trait relationships for 10 Hawaiian species of contrasting light habitats. New Phytol 185:156–172

    Article  PubMed  CAS  Google Scholar 

  • Williams TG, Flanagan LB (1998) Measuring and modeling environmental influences on photosynthetic gas exchange in Sphagnum and Pleurozium. Plant Cell Environ 21:555–564

    Article  CAS  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  PubMed  CAS  Google Scholar 

  • Zotz G, Kahler H (2007) A moss “canopy”—small scale differences in microclimate and physiological traits in Tortula ruralis. Flora 202:661–666

    Article  Google Scholar 

  • Zotz G, Rottenberger S (2001) Seasonal changes in Diel CO2 exchange of three central European moss species: a one-year field study. Plant Biol 3:661–669

    Article  Google Scholar 

  • Zotz G, Schweikert A, Jetz W, Westerman H (2000) Water relations and carbon gain are closely related to cushion size in the moss Grimmia pulvinata. New Phytol 148:59–67

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Heinjo During, Nadia Soudzilovskaia, Tanya Elumeeva and Simone Lang for discussions and collaboration and acknowledge support of NWO (Dutch Science Foundation) through grants ALW 852.00.070 and N-047.018.003 to HCC, National Science Foundation grant 0922883 to SKR and to Union College for sabbatical leave for SKR to complete this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven K. Rice .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rice, S.K., Cornelissen, J.H.C. (2014). Best Practices for Measuring Photosynthesis at Multiple Scales. In: Hanson, D., Rice, S. (eds) Photosynthesis in Bryophytes and Early Land Plants. Advances in Photosynthesis and Respiration, vol 37. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6988-5_5

Download citation

Publish with us

Policies and ethics