Skip to main content

The Diversification of Bryophytes and Vascular Plants in Evolving Terrestrial Environments

  • Chapter
  • First Online:

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 37))

Summary

This chapter covers the basic needs of plants and the constraints of the physical environment on a pioneer land flora, including acquisition of CO2, nutrients, and coping with the intermittent availability of water. The radiation climate, heat and mass transfer, laminar and turbulent boundary layers, heat budgets, and the control of evaporation and temperature are briefly discussed. The importance of scale is emphasized; the vascular-plant strategy is optimal at large scales (> a few cm), but the poikilohydric strategy is optimal at smaller scales. A scenario is envisaged for evolution of the “vascular-plant package”, allowing a transition from reliance on evaporative cooling close to the ground surface, to convective cooling of erect axes. The changing physical environment and vegetation through successive periods of geological time is briefly sketched in relation to the evolution of bryophyte diversity. Vascular - plants have been an important part of the environment for bryophyte evolution since the early history of plant life on land.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alpert P (1988) Survival of a desiccation-tolerant moss, Grimmia laevigata, beyond its observed microdistributional limit. J Bryol 15:219–227

    Google Scholar 

  • Alpert P (2005) The limits and frontiers of desiccation tolerant life. Integr Comp Biol 45:685–695

    Article  PubMed  Google Scholar 

  • Alpert P (2006) Constraints of tolerance: why are desiccation-tolerant organisms so small or rare? J Exp Biol 209:1575–1584

    Article  PubMed  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  PubMed  CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  PubMed  CAS  Google Scholar 

  • Beerling DJ, Osborne CP (2002) Physiological ecology of Mesozoic polar forests in a high CO2 environment. Ann Bot 89:329–339

    Article  PubMed  CAS  Google Scholar 

  • Beerling DJ, Osborne CP, Challoner WG (2001) Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic era. Nature 410:352–354

    Article  PubMed  CAS  Google Scholar 

  • Bell NE, Newton AE (2004) Systematic studies of non-hypnean pleurocarps: establishing a phylogenetic framework for investigating the origins of pleurocarpy. In: Goffinet B, Hollowell V, Magill R (eds) Molecular systematics of bryophytes. Missouri Botanical Garden Press, St. Louis, pp 290–319

    Google Scholar 

  • Belnap J, Lange OL (2001) Biological soil crusts: structure, function and management. In: Ecological studies, vol 150. Springer, Berlin

    Google Scholar 

  • Bergman NM, Lenton TM, Watson AJ (2004) COPSE: a new model of biogeochemical cycling over Phanerozoic time. Am J Sci 304:397–437

    Article  CAS  Google Scholar 

  • Berner RA, Kothavala Z (2001) GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. Am J Sci 301:182–204

    Article  CAS  Google Scholar 

  • Bower FO (1890) On antithetic as distinct from homologous alternation of generations in plants. Ann Bot 4:347–370

    Google Scholar 

  • Bower FO (1935) Primitive land plants. Macmillan, London

    Google Scholar 

  • Boyce CK (2008) How green was Cooksonia? The importance of size in understanding the early evolution of physiology in the vascular plant lineage. Paleobiology 34:179–194

    Article  Google Scholar 

  • Campbell DH (1918) The structure and development of the mosses and ferns. Macmillan, New York

    Google Scholar 

  • Campbell GS Norman JM (1998) Introduction to environmental biophysics. 2nd ed. Springer, New York

    Google Scholar 

  • Crane PR, Herendeen P, Friis EM (2004) Fossils and plant phylogeny. Am J Bot 91:1683–1699

    Article  PubMed  Google Scholar 

  • Davey MC, Rothery P (1997) Interspecific variation in respiratory and photosynthetic parameters in Antarctic bryophytes. New Phytol 137:231–240

    Article  Google Scholar 

  • Davis EC (2004) A molecular phylogeny of leafy liverworts (Jungermannineae: Marchntiophyta). In: Goffinet B, Hollowell V, Magill R (eds) Molecular systematics of bryophytes. Missouri Botanical Garden Press, St. Louis, pp 61–86

    Google Scholar 

  • DiMichelle W, Cecil CB, Montañez IP, Falcon-Lang HJ (2010) Cyclic changes in Pennsylvanian paleoclimate and effects on floristic dynamics in tropical Pangaea. J Coal Geol 83:329–344

    Article  Google Scholar 

  • Duckett JG, Pressel S, P’ng KMY, Renzaglia KS (2009) Exploding a myth; the capsule dehiscence mechanism and the function of pseudostomata in Sphagnum. New Phytol 183:1053–1063

    Article  PubMed  CAS  Google Scholar 

  • Eames AJ (1936) Morphology of vascular plants. McGraw-Hill, New York

    Google Scholar 

  • Edwards D (1996) New insight into early land ecosystems: a glimpse of a Liliputian world. Rev Palaeobot Palynol 90:159–174

    Article  Google Scholar 

  • Edwards D (2000) The role of Mid-Paleozoic mesofossils in the detection of early bryophytes. Phil Trans Roy Soc Lond B 355:733–755

    Article  CAS  Google Scholar 

  • Edwards D, Duckett JG, Richardson JB (1995) Hepatic characters in the earliest land plants. Nature 374:635–636

    Article  CAS  Google Scholar 

  • Edwards D, Kerp H, Hass H (1998a) Stomata in early land plants: an anatomical and ecophysiological approach. J Exp Bot 49:255–278

    Google Scholar 

  • Edwards D, Wellman CH, Axe L (1998b) The fossil record of early land plants and interrelationships between primitive embryophytes: too little and too late? In: Bates JW, Ashton NW, Duckett JG (eds) Bryology for the twenty-first century. Maney Publishing and British Bryological Society, Leeds

    Google Scholar 

  • Edwards D, Axe L, Duckett JG (2003) Diversity in conducting cells in early land plants and comparisons with extant bryophytes. Bot J Linn Soc 141:297–347

    Article  Google Scholar 

  • Frey W, Stech M (2005) A morpho-molecular classification of the liverworts (Hepaticophytina, Bryophyta). Nova Hedwigia 81:55–78

    Article  Google Scholar 

  • Gates DM (1980) Biophysical ecology. Springer, New York

    Book  Google Scholar 

  • Goffinet B, Buck W (2004) Systematics of the Bryophyta (Mosses): from molecules to a revised classification. In: Goffinet B, Hollowell V, Magill R (eds) Molecular systematics of bryophytes. Missouri Botanical Garden Press, St. Louis, pp 205–239

    Google Scholar 

  • Hearnshaw GF, Proctor MCF (1982) The effect of temperature on the survival of dry bryophytes. New Phytol 90:221–228

    Article  Google Scholar 

  • Heber U, Lange OL, Shuvalov VA (2006) Conservation and dissipation of light energy as complementary processes: homoiohydric and poikilohydric autotrophs. J Exp Bot 57:1211–1223

    Article  PubMed  CAS  Google Scholar 

  • Heinrichs J, Hentschel J, Wilson R, Feldberg K, Schneider H (2007) Evolution of leafy liverworts (Jungermanniidae, Marchantiophyta): estimating divergence times from chloroplast DNA sequences using penalized likelihood with integrated fossil evidence. Taxon 56:31–44

    Google Scholar 

  • Hemsley AR (1994) The origin of the land plant sporophyte: an interpolation scenario. Biol Rev 69:263–273

    Article  Google Scholar 

  • Hultén E (1937) Outline of the history of arctic and boreal biota during the quaternary period: their evolution during and after the glacial period as indicated by the equiformal progressive areas of present plant species. Thule, Stockholm

    Google Scholar 

  • Ingold CT (1965) Spore liberation. Clarendon, Oxford

    Google Scholar 

  • John DM (1994) Alternation of generations in algae: its complexity, maintenance and evolution. Biol Rev 69:275–291

    Article  Google Scholar 

  • Jones HG (1992) Plants and microclimate, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Kenrick P (1994) Alternation of generation in land plants: new phylogenetic and palaeobotanical evidence. Biol Rev 69:293–330

    Article  Google Scholar 

  • Ligrone R, Duckett JG, Renzaglia KS (2000) Conducting tissues and phyletic relationships of bryophytes. Phil Trans R Soc Lond B 355:795–813

    Article  CAS  Google Scholar 

  • Ligrone R, Duckett JG, Rezaglia KS (2012) Major transitions in the evolution of early land plants: a bryological perspective. Ann Bot 109:851–871

    Article  PubMed  Google Scholar 

  • Marschall M, Proctor MCF (1999) Desiccation tolerance and recovery of the leafy liverwort Porella platyphylla (L.) Pfeiff.: chlorophyll-fluorescence measurements. J Bryol 21:261–267

    Google Scholar 

  • Marschall M, Proctor MCF (2004) Are bryophytes shade plants? Photosynthetic light responses and proportions of chlorophyll a, chlorophyll b and total carotenoids. Ann Bot 94:593–603

    Article  PubMed  CAS  Google Scholar 

  • McElwain JC, Punyasena SW (2007) Mass extinction events and the plant fossil record. Trends Ecol Evol 22:548–557

    Article  PubMed  Google Scholar 

  • McElwain JC, Beerling DJ, Woodward FI (1999) Fossil plants and global warming at the Triassic-Jurassic boundary. Science 285:1386–1390

    Article  PubMed  CAS  Google Scholar 

  • Montañez IP, Tabor NJ, Niemeier D, DiMichelle W, Frank TD, Fielding CR, Isbell JL, Birgenheier LP, Rygel MC (2007) CO2-forced climate and vegetation instability during late Palaeozoic deglaciation. Science 315:87–91

    Article  PubMed  Google Scholar 

  • Monteith JL, Unsworth MH (1990) Principles of environmental physics, 2nd edn. Edward Arnold, London

    Google Scholar 

  • Newton AE, Wikström N, Bell N, Forrest LL, Ignatov M (2007) Dating the diversification of pleurocarpous mosses. In: Newton AE, Tangney R (eds) Pleurocarpous mosses. Taylor and Francis, Boca Raton, pp 337–366

    Chapter  Google Scholar 

  • Nichols DJ, Johnson KR (2008) Plants and the K–T boundary. Cambridge University Press, New York

    Book  Google Scholar 

  • Nobel PS (1977) Internal leaf area and cellular CO2 resistance: photosynthetic implications of variations with growth conditions and plant species. Physiol Plant 40:137–144

    Article  CAS  Google Scholar 

  • Oliver MJ, Velten J, Mishler BD (2005) Desiccation tolerance in bryophytes: a reflection of the primitive strategy for plant survival in dehydrating habitats. Integr Comp Biol 45:788–799

    Article  PubMed  Google Scholar 

  • Palmer JD, Soltis DE, Chase MW (2004) The plant tree of life: an overview and some points of view. Am J Bot 91:1437–1445

    Article  PubMed  Google Scholar 

  • Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proc R Soc Lond A194:120–145

    Google Scholar 

  • Pressel S, Ligrone R, Duckett JG (2006) Effects of de- and rehydration on food-conducting cells in the moss Polytrichum formosum: a cytological study. Ann Bot 98:67–76

    Article  PubMed  Google Scholar 

  • Pressel S, P’ng KMY, Duckett JG (2010) A cryo-scanning electron microscope study of the water relations of the remarkable cell wall in the moss Rhacocarpus purpurascens (Rhacocarpaceae, Bryophyta). Nova Hedwigia 91:289–299

    Article  Google Scholar 

  • Proctor MCF (1977) Evidence on the carbon nutrition of moss sporophytes from 14CO2 uptake and the subsequent movement of labelled assimilate. J Bryol 9:375–386

    Google Scholar 

  • Proctor MCF (1979a) Structure and eco-physiological adaptation in bryophytes. In: Clarke GCS, Duckett JG (eds) Bryophyte systematics. Academic, London, pp 479–509

    Google Scholar 

  • Proctor MCF (1979b) Surface wax on the leaves of some mosses. J Bryol 10:531–538

    Google Scholar 

  • Proctor MCF (1999) Water-relations parameters of some bryophytes evaluated by thermocouple psychrometry. J Bryol 21:269–277

    Google Scholar 

  • Proctor MCF (2000) The bryophyte paradox: tolerance of desiccation, evasion of drought. Plant Ecol 151:41–49

    Article  Google Scholar 

  • Proctor MCF (2004) How long must a desiccation-tolerant moss tolerate desiccation? Some results of two years’ data logging on Grimmia pulvinata. Physiol Plant 122:21–27

    Article  CAS  Google Scholar 

  • Proctor MCF (2005) Why do Polytrichaceae have lamellae? J Bryol 27:221–229

    Article  Google Scholar 

  • Proctor MCF (2007) Ferns, evolution, scale and intellectual impedimenta. New Phytol 176:504–506

    Article  PubMed  Google Scholar 

  • Proctor MCF (2009) Physiological ecology. In: Goffinet B, Shaw AJ (eds) Bryophyte biology, 2nd edn. Cambridge University Press, Cambridge, pp 237–268

    Google Scholar 

  • Proctor MCF (2010) Trait correlations in bryophytes: exploring an alternative world. New Phytol 185:1–3

    Article  PubMed  Google Scholar 

  • Proctor MCF (2011) Climatic responses and limits of bryophytes: comparisons and contrasts with vascular plants. In: Slack N, Tuba Z, Stark LR (eds) Bryophyte ecology and climatic change. Cambridge University Press, Cambridge, pp 35–54

    Google Scholar 

  • Proctor MCF (2012) Light and desiccation responses of some Hymenophyllaceae (filmy ferns) from Trinidad, Venezuela and New Zealand: poikilohydry in a light-limited but low evaporation ecological niche. Ann Bot 109:1019–1026

    Article  PubMed  CAS  Google Scholar 

  • Proctor MCF, Smirnoff N (2011) Ecophysiology of photosynthesis in bryophytes: major roles for oxygen photoreduction and non-photochemical quenching at high irradiance in mosses with unistratose leaves? Physiol Plant 141:130–140

    Article  PubMed  CAS  Google Scholar 

  • Proctor MCF, Tuba Z (2002) Poikilohydry and homoiohydry: antithesis or spectrum of possibilities? New Phytol 156:327–349

    Article  Google Scholar 

  • Proctor MCF, Nagy Z, Csintalan ZS, Takács Z (1998) Water-content components in bryophytes: analysis of pressure – volume relationships. J Exp Bot 49:1845–1854

    CAS  Google Scholar 

  • Proctor MCF, Ligrone R, Duckett JG (2007a) Desiccation tolerance in the moss Polytrichum formosum: physiological and fine-structural changes during desiccation and recovery. Ann Bot 99:75–93

    Article  CAS  Google Scholar 

  • Proctor MCF, Oliver MJ, Wood AJ, Alpert P, Stark LR, Cleavitt NL, Mishler BD (2007b) Desiccation tolerance in bryophytes: a review. Bryologist 110:595–621

    Article  CAS  Google Scholar 

  • Qiu Y-L, Li LB, Wang B, Chen ZD, Knoop V, Groth-Malonek M, Dombrovska O, Lee J, Kent L, Rest J, Estabrook GF, Hendry TA, Taylor DW, Testa CM, Ambros M, Crandall-Stotler B, Duff RJ, Stech M, Frey W, Quandt D, Davis CC (2006) The deepest divergences in land plants inferred from phylogenomic evidence. Proc Natl Acad Sci USA 103:15511–15516

    Article  PubMed  CAS  Google Scholar 

  • Raven JA (1977) The evolution of vascular land plants in relation to supracellular transport processes. Adv Bot Res 5:153–219

    Article  CAS  Google Scholar 

  • Raven JA (1984) Physiological correlates of the morphology of early vascular plants. Bot J Linn Soc 88:105–126

    Article  Google Scholar 

  • Raven JA (1996) Into the voids: the distribution, function, development and maintenance of gas spaces in plants. Ann Bot 78:137–142

    Article  Google Scholar 

  • Raven JA, Edwards D (2001) Roots: evolutionary origins and biogeochemical significance. J Exp Bot 52:381–401

    Article  PubMed  CAS  Google Scholar 

  • Raven JA, Handley LL (1987) Transport processes and water relations. New Phytol 106:217–233

    Article  Google Scholar 

  • Remy W, Hass H (1996) New information on gametophytes and sporophytes of Aglaophyton major and inferences about possible environmental adaptations. Rev Palaeobot Palynol 90:175–193

    Article  Google Scholar 

  • Remy W, Gensel PG, Hass H (1993) The gametophyte generation of some early Devonian land plants. Int J Plant Sci 154:35–58

    Article  Google Scholar 

  • Scott AC, Glasspool IJ (2006) The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proc Natl Acad Sci USA 103:10861–10865

    Article  PubMed  CAS  Google Scholar 

  • Shaw AJ (2009) Bryophyte species and speciation. In: Goffinet B, Shaw AJ (eds) Bryophyte biology, 2nd edn. Cambridge University Press, Cambridge, pp 445–485

    Google Scholar 

  • Smirnoff N (ed) (2005) Antioxidants and reactive oxygen species in plants. Blackwell Publishing Ltd., Oxford

    Google Scholar 

  • Smith GM (1938) Cryptogamic botany, vol 2, Bryophytes and pteridophytes. McGraw-Hill, New York

    Google Scholar 

  • Soltis PS, Soltis DE (2004) The origin and diversification of angiosperms. Am J Bot 91:1614–1626

    Article  PubMed  Google Scholar 

  • Stark LR, Oliver MJ, Mishler BD, McLetchie DN (2007) Generational differences in response to desiccation stress in the desert moss Tortula inermis. Ann Bot 99:53–60

    Article  PubMed  Google Scholar 

  • Steemans P, Le Hérissé A, Melvin J, Miller MA, Paris F, Verniers J, Wellman CH (2009) Origin and radiation of the earliest vascular land plants. Science 324:353

    Article  PubMed  CAS  Google Scholar 

  • Taylor TN, Kerp H, Hass H (2005) Life history biology of early land plants: deciphering the gametophyte phase. Proc Natl Acad Sci USA 102:5892–5897

    Article  PubMed  CAS  Google Scholar 

  • Watkins JE, Mack MC, Sinclair TR, Mulkey SS (2007) Ecological and evolutionary consequences of desiccation tolerance in tropical fern gametophytes. New Phytol 176:708–717

    Article  PubMed  Google Scholar 

  • Whiteside JH, Olsen PE, Eglinton T, Brookfield ME, Sambrotto RN (2010) Compound-specific carbon isotopes from Earth’s largest flood basalt eruptions directly linked to the end-Triassic mass extinction. Proc Nat Acad Science USA 107:6721–6725

    Article  CAS  Google Scholar 

  • Whittaker DL, Edwards J (2010) Sphagnum moss disperses spores with vortex rings. Science 329:406

    Article  Google Scholar 

  • Wing SL, Boucher LD (1998) Ecological aspects of the cretaceous flowering plant radiation. Annu Rev Earth Planet Sci 26:379–421

    Article  CAS  Google Scholar 

  • Zotz G, Rottenberger S (2001) Seasonal changes in diel CO2 exchange of three Central European moss species: a one-year field study. Plant Biol 3:661–669

    Article  Google Scholar 

  • Zotz G, Schweikert A, Jetz W, Westerman H (2000) Water relations and carbon gain are closely related to cushion size in the moss Grimmia pulvinata. New Phytol 148:59–67

    Article  Google Scholar 

Download references

Acknowledgments

Many people over the years have contributed to the ideas presented in this chapter, from Kenneth Sporne, Paul Richards and Harold Whitehouse who introduced me to palaeobotany and bryophytes in my student days. Many others have influenced my thoughts about bryophyte ecophysiology and evolution since, among them Tim Dilks, Janet Jenkins, Tom Revesz, Mike Patrick and Nick Smirnoff in Exeter, and John Raven, Dianne Edwards, Derek Bewley, Mel Oliver, Zoltán Tuba, Zoltán Nagy, Zsolt Csintalan, Jeff Duckett, Roberto Ligrone and Silvia Pressel elsewhere. I haven’t always agreed with them but they have all made me think. If I needed a challenge to think-through the big picture, it was the invitation to write this chapter, for which I am grateful to our two editors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. F. Proctor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Proctor, M.C.F. (2014). The Diversification of Bryophytes and Vascular Plants in Evolving Terrestrial Environments. In: Hanson, D., Rice, S. (eds) Photosynthesis in Bryophytes and Early Land Plants. Advances in Photosynthesis and Respiration, vol 37. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6988-5_4

Download citation

Publish with us

Policies and ethics