Skip to main content

Physiological Ecology of Tropical Bryophytes

  • Chapter
  • First Online:

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 37))

Summary

Bryophytes in the tropics occur from cool alpine grasslands to warm lowland sites and from cloud forests to dry forests, varying markedly in abundance and diversity in these habitats. This chapter deals with the current knowledge of the ecophysiology of tropical bryophytes attempting to explain some of these abundance patterns, in particular the marked increase in bryophyte biomass with altitude in rain and cloud forests. As data are scarce, we include data on, physiologically rather similar, lichens in our account where appropriate. We focus mostly on carbon relations, and water, nutrients, light, CO2 and temperature are discussed as co-determinants of the carbon balance. In particular, we address the hypothesis that the surprisingly low bryophyte abundance in lowland rainforests is due to the limitation of net carbon gain by fast drying and low light levels during the day combined with moist and warm conditions at night, which promote high respiration rates. The timing of hydration is crucial in determining this diel balance between photosynthesis and respiration. Temperature is important in determining moisture loss rates and nocturnal carbon loss through respiration – if respiration does not acclimatize to higher temperatures. Since carbon balance precariously depends on daily hydration patterns, future climate change may pose a serious problem to tropical lowland bryophytes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amthor JS (1995) Higher plant respiration and its relationships to photosynthesis. In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer, Berlin, pp 71–101

    Google Scholar 

  • Atkin OK, Tjoelker MG (2003) Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci 8:343–351

    PubMed  CAS  Google Scholar 

  • Atkin OK, Bruhn D, Hurry VM, Tjoelker MG (2005) The hot and the cold: unravelling the variable response of plant respiration to temperature. Funct Plant Biol 32:87–105

    Google Scholar 

  • Bader MY, Zotz G, Lange OL (2010) How to minimize the sampling effort for obtaining reliable estimates of diel and annual CO2 budgets in lichens. Lichenologist 42:97–111

    Google Scholar 

  • Bader MY, Reich T, Wagner S, González AS, Zotz G (2013) Differences in desiccation tolerance do not explain altitudinal distribution patterns of tropical bryophytes. J Bryol 35:47–56

    Google Scholar 

  • Bates JW (1998) Is ‘life-form’ a useful concept in bryophyte ecology? Oikos 82:223–237

    Google Scholar 

  • Belnap J, Lange OL (2001) Biological soil crusts: structure, function, and management. Springer, Berlin

    Google Scholar 

  • Benner JW, Conroy S, Lunch CK, Toyoda N, Vitousek PM (2007) Phosphorus fertilization increases the abundance nitrogenase activity of the cyanolichen Pseudocyphellaria crocata in Hawaiian montane forests. Biotropica 39:400–405

    Google Scholar 

  • Biebl R (1962) Protoplasmatische Ökologie der Pflanzen. Springer, Wien

    Google Scholar 

  • Biebl R (1964) Austrocknungsresistenz tropischer Urwaldmoose auf Puerto Rico. Protoplasma 59:277–297

    Google Scholar 

  • Biebl R (1967) Temperaturresistenz tropischer Urwaldmoose. Flora 157:25–30

    Google Scholar 

  • Bosman AF, Van Der Molen PC, Young R, Cleef AM (1993) Ecology of a paramo cushion mire. J Veg Sci 4:633–640

    Google Scholar 

  • Castaldo R, Ligrone R, Gambardella R (1979) A light and electron microscope study on the phylloids of Leucobryum candidum (P. Beauv.) Wils. Rev Bryol Lichenol 45:345–360

    Google Scholar 

  • Cavelier J, Solis D, Jaramillo MA (1996) Fog interception in montane forests across the Central Cordillera of Panamá. J Trop Ecol 12:357–369

    Google Scholar 

  • Chen L, Liu WY, Wang GS (2010) Estimation of epiphytic biomass and nutrient pools in the subtropical montane cloud forest in the Ailao Mountains, south-western China. Ecol Res 25:315–325

    Google Scholar 

  • Clark KL, Nadkarni NM, Gholz HL (1998) Growth, net production, litter decomposition, and net nitrogen accumulation by epiphytic bryophytes in a tropical montane forest. Biotropica 30:12–23

    Google Scholar 

  • Clark KL, Nadkarni NM, Gholz HL (2005) Retention of inorganic nitrogen by epiphytic bryophytes in a tropical montane forest. Biotropica 37:328–336

    Google Scholar 

  • Coxson DS (1991) Nutrient release from epiphytic bryophytes in tropical montane rain forest (Guadeloupe). Can J Bot 69:2129

    Google Scholar 

  • Coxson DS, McIntyre DD, Vogel HJ (1992) Pulse release of sugars and polyols from canopy bryophytes in tropical montane rain forest (Guadeloupe, French West Indies). Biotropica 24:121–133

    Google Scholar 

  • Davey MC (1997) Effect of continuous and repeated dehydration on carbon fixation by bryophytes from the martime Antarctic. Oecologia 110:25–31

    Google Scholar 

  • Frahm J-P (1987a) Ökologische Studien über die epiphytische Moosvegetation in Regenwäldern NO-Perus. Beih Nova Hedwig 88:143–158

    Google Scholar 

  • Frahm J-P (1987b) Which factors control the growth of epiphytic bryophytes in tropical rainforests? Symp Biol Hung 35:639–648

    Google Scholar 

  • Frahm J-P (1990a) Bryophyte phytomass in tropical ecosystems. Bot J Linn Soc 104:23–33

    Google Scholar 

  • Frahm J-P (1990b) The effect of light and temperature on the growth of the bryophytes of tropical rain forests. Nova Hedwig 51:151–164

    Google Scholar 

  • Frahm J-P (1997) Welche Funktion haben die Hyalocyten in den Blättern der Dicranaceae? Cryptogam Bryol Lichénol 1997:235–242

    Google Scholar 

  • Godínez-Alvarez H, Morín V, Rivera-Aguilar C (2012) Germination, survival and growth of three vascular plants on biological soil crusts from a Mexican tropical desert. Plant Biol 14(1):157–162

    PubMed  Google Scholar 

  • Goward T, Arsenault A (2000) Cyanolichen distribution in young unmanaged forests: a dripzone effect? Bryologist 103:28–37

    Google Scholar 

  • Gradstein SR, Pócs T (1989) Bryophytes. In: Lieth H, Werger MJA (eds) Tropical rainforest ecosystems. Elsevier, Amsterdam, pp 311–325

    Google Scholar 

  • Gradstein SR, Churchill SP, Salazar N (2001) Guide to the bryophytes of tropical America. Mem N Y Bot Gard 86:1–577

    Google Scholar 

  • Gradstein SR, Obregon A, Gehrig C, Bendix J (2010) Tropical lowland cloud forest: a neglected forest type. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests. Cambridge University Press, New York, pp 130–133

    Google Scholar 

  • Grau O, Grytnes J-A, Birks HJB (2007) A comparison of altitudinal species richness patterns of bryophytes with other plant groups in Nepal, Central Himalaya. J Biogeogr 34:1907–1915

    Google Scholar 

  • Green TGA, Lange OL (1994) Photosynthesis in poikilohydric plants: a comparison of lichens and bryophytes. In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer, Berlin, pp 319–341

    Google Scholar 

  • Green TGA, Schroeter B, Kappen L, Seppelt RD, Maseyk K (1998) An assessment of the relationship between chlorophyll a fluorescence and CO2 gas exchange from field measurements on a moss and lichen. Planta 206:611–618

    CAS  Google Scholar 

  • Green TGA, Sancho LG, Pintado A (2011) Ecophysiology of desiccation/rehydration cycles in mosses and lichens. In: Lüttge U, Beck E, Bartels D (eds) Plant desiccation tolerance. Springer, Berlin/Heidelberg, pp 89–119

    Google Scholar 

  • Hennessey TL, Field CB (1991) Circadian-rhythms in photosynthesis – oscillations in carbon assimilation and stomatal conductance under constant conditions. Plant Physiol 96:831–836

    PubMed  CAS  Google Scholar 

  • Hicklenton PR, Oechel WC (1976) Physiological aspects of the ecology of Dicranum fuscescens in the subarctic. I. Acclimation and acclimation potential of CO2 exchange in relation to habitat, light and temperature. Can J Bot 54:1104–1119

    CAS  Google Scholar 

  • Hietz P, Wanek W, Wania R, Nadkarni NM (2002) Nitrogen-15 natural abundance in a montane cloud forest canopy as an indicator of nitrogen cycling and epiphyte nutrition. Oecologia 131:350–355

    Google Scholar 

  • Hofstede RGM, Wolf JHD, Benzing DH (1993) Epiphytic biomass and nutrient status of a Colombian upper montane rain forest. Selbyana 14:37–45

    Google Scholar 

  • Holm K, Kallman T, Gyllenstrand N, Hedman H, Lagercrantz U (2010) Does the core circadian clock in the moss Physcomitrella patens (Bryophyta) comprise a single loop? BMC Plant Biol 10:14

    Google Scholar 

  • Hölscher D, Köhler L, van Dijk A, Bruijnzeel LA (2004) The importance of epiphytes to total rainfall interception by a tropical montane rain forest in Costa Rica. J Hydrol 292:308–322

    Google Scholar 

  • Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15:56–61

    PubMed  Google Scholar 

  • Jácome J, Gradstein SR, Kessler M (2011) Responses of epiphytic bryophyte communities to simulated climate change in the tropics. In: Tuba Z, Slack NG, Stark LR (eds) Bryophyte ecology and climate change. Cambridge University Press, Cambridge, pp 191–207

    Google Scholar 

  • Jauhiainen J, Silvola J, Vasander H (1998) The effects of increased nitrogen deposition and CO2 on Sphagnum angustifolium and S. warnstorfii. Ann Bot Fennici 35:247–256

    Google Scholar 

  • Johnson A, Kokila P (1970) The resistance to desiccation of ten species of tropical mosses. Bryologist 73:682–686

    Google Scholar 

  • Karger DN, Kluge J, Abrahamczyk S, Salazar L, Homeier J, Lehnert M, Amoroso VB, Kessler M (2012) Bryophyte cover on trees as proxy for air humidity in the tropics. Ecol Indic 20:277–281

    Google Scholar 

  • Körner C, Allison A, Hilscher H (1983) Altitudinal variation of leaf diffusive conductance and leaf anatomy in heliophytes of montane New Guinea and their interrelation with microclimate. Flora 174:91–135

    Google Scholar 

  • Kürschner H, Frey W, Parolly G (1999) Patterns and adaptive trends of life forms, life strategies and ecomorphological structures in tropical epiphytic bryophytes – a pantropical synopsis. Nova Hedwig 69:73–99

    Google Scholar 

  • Lakatos M (2011) Lichens and bryophytes: habitats and species. In: Lüttge U, Beck E, Bartels D (eds) Plant desiccation tolerance. Springer, Berlin/Heidelberg, pp 65–87

    Google Scholar 

  • Lakatos M, Obregón A, Büdel B, Bendix J (2012) Midday dew – an overlooked factor enhancing photosynthetic activity of corticolous epiphytes in a wet tropical rain forest. New Phytol 194:245–253

    PubMed  Google Scholar 

  • Lange OL (1969) CO2-Gaswechsel von Moosen nach Wasserdampfaufnahme aus dem Luftraum. Planta 89:90–94

    Google Scholar 

  • Lange OL (1980) Moisture content and CO2 exchange of lichens. I. Influence of temperature on moisture-dependent net photosynthesis and dark respiration in Ramalina maciformis. Oecologia 45:82–87

    Google Scholar 

  • Lange OL (2003) Photosynthetic productivity of the epilithic lichen Lecanora muralis: long-term field monitoring of CO2 exchange and its physiological interpretation – III. Diel, seasonal, and annual carbon budgets. Flora 198:277–292

    Google Scholar 

  • Lange OL, Green TGA (2006) Nocturnal respiration of lichens in their natural habitat is not affected by preceding diurnal net photosynthesis. Oecologia 148:396–404

    PubMed  Google Scholar 

  • Lange OL, Büdel B, Zellner H, Zotz G, Meyer A (1994) Field measurements of water relations and CO2 exchange of the tropical, cyanobacterial basidiolichen Dictyonema glabratum in a Panamanian rainforest. Bot Acta 107:279–290

    Google Scholar 

  • Lange OL, Büdel B, Meyer A, Zellner H, Zotz G (2000) Lichen carbon gain under tropical conditions: water relations and CO2 exchange of three Leptogium species of a lower montane rain forest in Panama. Flora 195:172–190

    Google Scholar 

  • Lange OL, Büdel B, Meyer A, Zellner H, Zotz G (2004) Lichen carbon gain under tropical conditions: water relations and CO2 exchange of Lobariaceae species of a lower montane rain forest in Panama. Lichenologist 36:329–342

    Google Scholar 

  • Larcher W (2001) Ökologie der Pflanzen. Ulmer, Stuttgart

    Google Scholar 

  • León-Vargas Y, Engwald S, Proctor MCF (2006) Microclimate, light adaptation and desiccation tolerance of epiphytic bryophytes in two Venezuelan cloud forests. J Biogeogr 33:901–913

    Google Scholar 

  • Lewis SL, Brando PM, Phillips OL, van der Heijden GMF, Nepstad D (2011) The 2010 Amazon drought. Science 331:554–554

    PubMed  CAS  Google Scholar 

  • Longton RE (ed) (1988) The biology of polar bryophytes and lichens. Cambridge University Press, Cambridge

    Google Scholar 

  • Lösch R, Mülders P (2000) Heat and cold resistance of central African bryophytes. Bibl Lichenol 75:253–263

    Google Scholar 

  • Lösch R, Mülders P, Fischer E, Frahm J-P (1994) Scientific results of the BRYOTROP expedition to Zaire and Rwanda. 3. Photosynthetic gas exchange of bryophytes from different forest types in eastern Central Africa. Trop Bryol 9:169–185

    Google Scholar 

  • Mägdefrau K (1969) Die Lebensformen der Laubmoose. Veg Acta Geobot 16:285–297

    Google Scholar 

  • Mägdefrau K (1982) Life-forms of bryophytes. In: Smith AJE (ed) Bryophyte ecology. Chapman & Hall, London/New York, pp 45–58

    Google Scholar 

  • Nadkarni NM, Solano R (2002) Potential effects of climate change on canopy communities in a tropical cloud forest: an experimental approach. Oecologia 131:580–586

    Google Scholar 

  • Nadkarni NM, Schaefer D, Matelson TJ, Solano R (2004) Biomass and nutrient pools of canopy and terrestrial components in a primary and a secondary montane cloud forest, Costa Rica. For Ecol Manage 198:223–236

    Google Scholar 

  • Norris DH (1990) Bryophytes in perennial moist forests of Papua New Guinea: ecological orientation and predictions of disturbance effects. Bot J Linn Soc 104:281–291

    Google Scholar 

  • Oechel WC, Sveinbjörnsson B (1978) Primary production processes in arctic bryophytes at Barrow, Alaska. In: Tieszen LL (ed) Vegetation and production ecology of an Alaskan arctic tundra. Springer, New York, pp 269–298

    Google Scholar 

  • Pannewitz S, Green TGA, Maysek K, Schlensog M, Seppelt R, Sancho LG, Turk R, Schroeter B (2005) Photosynthetic responses of three common mosses from continental Antarctica. Antarct Sci 17:341–352

    Google Scholar 

  • Pócs T (1980) The epiphytic biomass and its effect on the water balance of two rain forest types in the Uluguru Mountains (Tanzania, East Africa). Acta Bot Acad Sci Hung 26:143–167

    Google Scholar 

  • Pócs T (1982) Tropical forest bryophytes. In: Smith AJE (ed) Bryophyte ecology. Chapman & Hall, London/New York, pp 59–104

    Google Scholar 

  • Proctor MCF (1981) Physiological ecology of bryophytes. Adv Bryol 1:79–166

    CAS  Google Scholar 

  • Proctor MCF (1982) Physiological ecology: water relations, light and temperature responses, carbon balance. In: Smith AJE (ed) Bryophyte ecology. Chapman & Hall, London/New York, pp 333–381

    Google Scholar 

  • Proctor MCF (1990) The physiological basis of bryophyte production. Bot J Linn Soc 104:61–77

    Google Scholar 

  • Proctor MCF (2000a) The bryophyte paradox: tolerance of desiccation, evasion of drought. Plant Ecol 151:41–49

    Google Scholar 

  • Proctor MCF (2000b) Physiological ecology. In: Shaw AJ, Goffinet B (eds) Bryophyte biology. Cambridge University Press, Cambridge, pp 225–247

    Google Scholar 

  • Proctor MCF (2001) Patterns of desiccation tolerance and recovery in bryophytes. Plant Growth Regul 35:147–156

    CAS  Google Scholar 

  • Proctor MCF (2002) Ecophysiological measurements on two pendulous forest mosses from Uganda, Pilotrichella ampullacea and Floribundaria floribunda. J Bryol 24:223–232

    Google Scholar 

  • Proctor MCF (2004a) How long must a desiccation-tolerant moss tolerate desiccation? Some results of 2 years’ data logging on Grimmia pulvinata. Physiol Plant 122:21–27

    CAS  Google Scholar 

  • Proctor MCF (2004b) Light and desiccation responses of Weymouthia mollis and W. cochlearifolia, two pendulous rainforest epiphytes from Aust N Z. J Bryol 26:173

    Google Scholar 

  • Proctor MCF, Ligrone R, Duckett JG (2007a) Desiccation tolerance in the moss Polytrichum formosum: physiological and fine-structural changes during desiccation and recovery. Ann Bot 99:75–93

    CAS  Google Scholar 

  • Proctor MCF, Oliver MJ, Wood AJ, Alpert P, Stark LR, Cleavitt NL, Mishler BD (2007b) Desiccation-tolerance in bryophytes: a review. Bryologist 110:595–621

    CAS  Google Scholar 

  • Richards PW (1984) The ecology of tropical forest bryophytes. In: Schuster RM (ed) New manual of bryology. The Hattori Botanical Laboratory, Nichinan, pp 1233–1270

    Google Scholar 

  • Richards PW (1996) The tropical rain forest – an ecological study. Cambridge University Press, Cambridge

    Google Scholar 

  • Robinson SA, Wasley J, Popp M, Lovelock CE (2000) Desiccation tolerance of three moss species from continental Antarctica. Aust J Plant Physiol 27:379–388

    CAS  Google Scholar 

  • Romero C, Putz FE, Kitajima K (2006) Ecophysiology in relation to exposure of pendant epiphytic bryophytes in the canopy of a tropical montane oak forest. Biotropica 38:35–41

    Google Scholar 

  • Ruinen J (1953) Epiphytosis. A second view on epiphytism. Ann Bogor 1:101–157

    Google Scholar 

  • Seifriz W (1924) The altitudinal distribution of lichens and mosses on Mt. Gedeh, Java. J Ecol 12:307–313

    Google Scholar 

  • Shaw AJ, Goffinet B (eds) (2000) Bryophyte biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Silvola J (1985) CO2 dependence of photosynthesis in certain forest and peat mosses and simulated photosynthesis at various actual and hypothetical CO2 concentrations. Lindbergia 11:86–93

    Google Scholar 

  • Silvola J (1990) Combined effects of varying water content and CO2 concentration on photosynthesis in Sphagnum fuscum. Holarct Ecol 13:224–228

    Google Scholar 

  • Skre O, Oechel WC (1981) Moss functioning in different taiga ecosystems in interior Alaska. I. Seasonal, phenotypic, and drought effects on photosynthesis and response patterns. Oecologia 48:50–59

    Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) (2007) II TEIL climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Solomon S, Plattner G-K, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci 106:1704–1709

    PubMed  CAS  Google Scholar 

  • Tarnawski MG, Melick D, Roser D, Adamson E, Adamson H, Seppelt RD (1992) In situ CO2 levels in cushion and turf forms of Grimmia antarctici at Casey Station, East Antarctica. J Bryol 17:241–249

    Google Scholar 

  • Tarnawski MG, Green TGA, Büdel B, Meyer A, Zellner H, Lange OL (1994) Diel changes of atmospheric CO2 concentrations within, and above, cryptogam stands in a New Zealand temperate rainforest. N Z J Bot 32:329–336

    Google Scholar 

  • Tozer WC, Hackell D, Miers DB, Silvester WB (2005) Extreme isotopic depletion of nitrogen in New Zealand lithophytes and epiphytes; the result of diffusive uptake of atmospheric ammonia? Oecologia 144:628–635

    PubMed  CAS  Google Scholar 

  • Tuba Z, Proctor MCF, Takács Z (1999) Desiccation-tolerant plants under elevated air CO2: a review. Z Naturforsch [C] 54:788–796

    CAS  Google Scholar 

  • Tuba Z, Ötvös E, Jócsák I (2011) Effects of elevated air CO2 concentration on bryophytes: a review. In: Tuba Z, Slack NG, Stark LR (eds) Bryophyte ecology and climate change. Cambridge University Press, Cambridge, pp 55–70

    Google Scholar 

  • Veneklaas EJ, Zagt RJ, Van Leerdam A, Van Ek R, Broekhoven AJ, Van Genderen M (1990) Hydrological properties of the epiphyte mass of a montane tropical rain forest, Colombia. Vegetatio 89:183–192

    Google Scholar 

  • Wagner S, Zotz G, Salazar Allen N, Bader MY (2013) Altitudinal changes in temperature responses of net photosynthesis and dark respiration in tropical bryophytes. Ann Bot 111(3):455–465

    PubMed  CAS  Google Scholar 

  • Waite M, Sack L (2010) How does moss photosynthesis relate to leaf and canopy structure? Trait relationships for 10 Hawaiian species of contrasting light habitats. New Phytol 185:156–172

    PubMed  CAS  Google Scholar 

  • Waite M, Sack L (2011a) Does global stoichiometric theory apply to bryophytes? Tests across an elevation x soil age ecosystem matrix on Mauna Loa, Hawaii. J Ecol 99:122–134

    Google Scholar 

  • Waite M, Sack L (2011b) Shifts in bryophyte carbon isotope ratio across an elevation x soil age matrix on Mauna Loa, Hawaii: do bryophytes behave like vascular plants? Oecologia 166:11–22

    PubMed  Google Scholar 

  • Wolf JHD (1993) Diversity patterns and biomass of epiphytic bryophytes and lichens along an altitudinal gradient in the northern Andes. Ann Mo Bot Gard 80:928–960

    Google Scholar 

  • Wright SJ, Muller-Landau HC, Schipper J (2009) The future of tropical species on a warmer planet. Conserv Biol 23:1418–1426

    PubMed  Google Scholar 

  • Zotz G (1999) Altitudinal changes in diversity and abundance of non-vascular epiphytes in the tropics – an ecophysiological explanation. Selbyana 20:256–260

    Google Scholar 

  • Zotz G (2004) The resorption of phosphorus is greater than that of nitrogen in senescing leaves of vascular epiphytes from lowland Panama. J Trop Ecol 20:693–696

    Google Scholar 

  • Zotz G, Bader MY (2009) Epiphytic plants in a changing world: global change effects on vascular and non-vascular epiphytes. Prog Bot 70:147–170

    CAS  Google Scholar 

  • Zotz G, Rottenberger S (2001) Seasonal changes in diel CO2 gas exchange of three Central European cushion mosses: a one-year in situ study. Plant Biol 3:661–669

    Google Scholar 

  • Zotz G, Winter K (1994) Photosynthesis and carbon gain of the lichen, Leptogium azureum, in a lowland tropical forest. Flora 189:179–186

    Google Scholar 

  • Zotz G, Büdel B, Meyer A, Zellner H, Lange OL (1997) Water relations and CO2 exchange of tropical bryophytes in a lower montane rain forest in Panama. Bot Acta 110:9–17

    Google Scholar 

  • Zotz G, Büdel B, Meyer A, Zellner H, Lange OL (1998) In situ studies of water relations and CO2 exchange of the tropical macrolichen, Sticta tomentosa. New Phytol 139:525–535

    Google Scholar 

  • Zotz G, Schweikert A, Jetz W, Westerman H (2000) Water relations and carbon gain are closely related to cushion size in the moss Grimmia pulvinata. New Phytol 148:59–67

    Google Scholar 

  • Zotz G, Schultz S, Rottenberger S (2003) Are tropical lowlands a marginal habitat for macrolichens? Evidence from a field study with Parmotrema endosulphureum in Panama. Flora 198:71–77

    Google Scholar 

Download references

Acknowledgements

We thank O. Lange, B. Büdel, A. Meyer and H. Zellner (Würzburg and Kaiserslautern, Germany) for permission to use unpublished microclimate data, and S. Rottenberger (Würzburg) for permission to used unpublished acclimatization data. Our own current studies are funded by the German Research Foundation, (Deutsche Forschungsgemeinschaft: BA 3843/3-1). Permission to work in Panama was granted by the local authorities (Autoridad Nacional del Ambiente; SC/P-7-11, SEX/P-62-11, SEX/P-7-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maaike Y. Bader .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wagner, S., Bader, M.Y., Zotz, G. (2014). Physiological Ecology of Tropical Bryophytes. In: Hanson, D., Rice, S. (eds) Photosynthesis in Bryophytes and Early Land Plants. Advances in Photosynthesis and Respiration, vol 37. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6988-5_15

Download citation

Publish with us

Policies and ethics