Skip to main content

Acoustic Microscopy of Cells

  • Chapter
  • First Online:

Abstract

Acoustic microscopy has proven to be a versatile biological tool since it was first developed nearly 40 years ago. It can be used to create ultrasound images with a resolution that approach conventional optical microscopy, or provide quantitative data about the mechanical properties of the material being investigated. This chapter focuses on acoustic microscopy methods to investigate how single cells change during biological processes such as mitosis and chemotherapy-induced apoptosis. Using ultrasound frequencies at 375 MHz, various properties of cells (such as the thickness, sound speed, acoustic impedance, density, bulk modulus and attenuation) were calculated during these biological processes. Significant differences in these properties were observed between cells in their normal resting state and late-stage apoptosis. C-scan and B-scan imaging of apoptotic cells using 375 and 1,000 MHz provided information that could not be obtained using other scanning methods. Variations in the ultrasound backscatter were observed over time, which suggests that rapid changes in the ultrasound scattering structures occur within seconds. In contrast, non-apoptotic cells did not show the same activity. Finally, high resolution attenuation imaging of cells using frequencies up to 1.2 GHz clearly showed organelles such as the nucleus, nucleolus and vacuoles. During apoptosis, the nucleus became highly attenuating and was several times more attenuating than the surrounding cytoplasm. In summary, this chapter describes acoustic microscopy methods and techniques for a qualitative and quantitative analysis of biological material.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Atalar A, Quate CF, Wickramasinghe HK (1977) Phase imaging in reflection with the acoustic microscope. Appl Phys Lett 31(12):791–793

    Article  CAS  Google Scholar 

  • Briggs A, Kolosov O (2009) Acoustic microscopy. Oxford University Press, USA

    Book  Google Scholar 

  • Briggs GAD, Wang J, Gundle R (1993) Quantitative acoustic microscopy of individual living human cells. J Microsc 172(1):3–12

    Article  PubMed  CAS  Google Scholar 

  • Czarnota GJ, Kolios MC (2010) Ultrasound detection of cell death. Imaging Med 2(1):17–28

    Article  Google Scholar 

  • Czarnota G, Kolios M, Vaziri H, Benchimol S (1997) Ultrasonic biomicroscopy of viable, dead and apoptotic cells. Ultrasound med 23(6):961–965

    Article  CAS  Google Scholar 

  • Czarnota GJ, Kolios MC, Abraham J, Portnoy M, Ottensmeyer FP, Hunt JW, Sherar MD (1999) Ultrasound imaging of apoptosis: high-resolution non-invasive monitoring of programmed cell death in vitro, in situ and in vivo. Br J Cancer 81(3):520–527

    Article  PubMed  CAS  Google Scholar 

  • Daft CM, Briggs GA, O’Brien WD (1989) Frequency dependence of tissue attenuation measured by acoustic microscopy. J Acoust Soc Am 85(5):2194–2201

    Article  PubMed  CAS  Google Scholar 

  • Davidovich L, Makhkamov S, Pulatova L, Khabibullaev PK, Khaliulin MG (1972) Acoustical properties of certain organic liquids at frequencies from 0.3. Sov Phys Acoust 18(2):264

    Google Scholar 

  • Dini L, Coppola S, Ruzittu MT, Ghibelli L (1996) Multiple pathways for apoptotic nuclear fragmentation. Exp Cell Res 223(2):340–347

    Article  PubMed  CAS  Google Scholar 

  • Duck FA (1990) Physical properties of tissue: a comprehensive reference book. Academic Press, San Diego

    Google Scholar 

  • Faridian F, Wickramasinghe HK (1983) Simultaneous scanning optical and acoustic microscopy. Electron Lett 19(5):159–160

    Article  Google Scholar 

  • Foster DR, Arditi M, Foster FS, Patterson MS, Hunt JW (1983) Computer simulations of speckle in B-scan images. Ultrason Imaging 5(4):308–330

    Article  PubMed  CAS  Google Scholar 

  • Hadimioglu B, Foster JS (1984) Advances in superfluid helium acoustic microscopy. J Appl Phys 56(7):1976–1980

    Article  CAS  Google Scholar 

  • Hellier C (2001) Handbook of nondestructive evaluation. McGraw-Hill Professional, New York

    Google Scholar 

  • Hildebrand JA (1985) Observation of cell-substrate attachment with the acoustic microscope. IEEE Trans Sonics Ultrason 32(2):332–340

    Article  Google Scholar 

  • Hildebrand JA, Rugar D (1984) Measurement of cellular elastic properties by acoustic microscopy. J Microsc 134(3):245–260

    Article  PubMed  CAS  Google Scholar 

  • Hildebrand JA, Rugar D, Johnston RN, Quate CF (1981) Acoustic microscopy of living cells. Proc Natl Acad Sci 78(3):1656–1660

    Article  PubMed  CAS  Google Scholar 

  • Hill CR, Bamber JC, Haar G (2004) Physical principles of medical ultrasonics. Wiley, Hoboken

    Book  Google Scholar 

  • Jipson V, Quate CF (1978) Acoustic microscopy at optical wavelengths. Appl Phys Lett 32(12):789–791

    Article  CAS  Google Scholar 

  • Johnston RN, Atalar A, Heiserman J, Jipson V, Quate CF (1979) Acoustic microscopy: resolution of subcellular detail. Proc Natl Acad Sci 76(7):3325–3329

    Article  PubMed  CAS  Google Scholar 

  • Kanngiesser H, Anliker M (1992) Ultrasound microscopy of biological structures with weak reflecting properties. In: Ermert H, Harjes HP (eds) Acoustical Imaging, vol 19, Plenum Press, New York, p 517–22

    Google Scholar 

  • Kay RR, Langridge P, Traynor D, Hoeller O (2008) Changing directions in the study of chemotaxis. Nat Rev Mol Cell Biol 9(6):455–463

    PubMed  CAS  Google Scholar 

  • Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4):239

    Article  PubMed  CAS  Google Scholar 

  • Kessler LW, Korpel A, Palermo PR (1972) Simultaneous acoustic and optical microscopy of biological specimens. Nature 239(5367):111–112

    Article  PubMed  CAS  Google Scholar 

  • Kolios M (2009) Biomedical ultrasound imaging: from 1 to 1,000 mhz. Canadian Acoustics-Acoustique Canadienne 37(3):35–43

    Google Scholar 

  • Kolios MC, Czarnota GJ (2009) Potential use of ultrasound for the detection of cell changes in cancer treatment. Future Oncol 5(10):1527–1532

    Article  PubMed  Google Scholar 

  • Kolios MC, Czarnota GJ, Lee M, Hunt JW, Sherar MD (2002) Ultrasonic spectral parameter characterization of apoptosis. Ultrasound Med Biol 28(5):589–597

    Article  PubMed  CAS  Google Scholar 

  • Kundu T (2004) Ultrasonic nondestructive evaluation: engineering and biological material characterization. CRC Press, Boca Raton

    Google Scholar 

  • Kundu T, Bereiter-Hahn J, Hillmann K (1991) Measuring elastic properties of cells by evaluation of scanning acoustic microscopy V(Z) values using simplex algorithm. Biophys J 59(6):1194–1207

    Article  PubMed  CAS  Google Scholar 

  • Kundu T, Bereiter-Hahn J, Karl I (2000) Cell property determination from the acoustic microscope generated voltage versus frequency curves. Biophys J 78(5):2270–2279

    Article  PubMed  CAS  Google Scholar 

  • Lacroix M, Leclercq G (2004) Relevance of Breast Cancer Cell Lines as Models for Breast Tumours: an Update. Breast Cancer Res Treat 83(3):249–289

    Article  PubMed  CAS  Google Scholar 

  • Lemons RA, Quate CF (1974) Acoustic microscope—scanning version. Appl Phys Lett 24(4):163

    Article  Google Scholar 

  • Lemons R, Quate C (1975) Acoustic microscopy: biomedical applications. Science 188(4191):905–911

    PubMed  CAS  Google Scholar 

  • Lemor RM, Weiss EC, Pilarczyk G, Zinin PV (2003) Measurements of elastic properties of cells using high-frequency time-resolved acoustic microscopy. In: IEEE Ultrasonics Symposium, vol 1, p 762–765 2003

    Google Scholar 

  • Linder A, Winkelhaus S, Hauser M (1992) Acoustic imaging of the mitotic spindle in dividing XTH2-cells. In: Ermert H, Harjes HP (eds) Acoustical Imaging, vol 19, Plenum Press, New York, p 523–28

    Google Scholar 

  • Litniewski J, Bereiter-Hahn J (1990) Measurements of cells in culture by scanning acoustic microscopy. J Microsc 158(1):95–107

    Article  PubMed  CAS  Google Scholar 

  • Lüers H, Hillmann K, Litniewski J, Bereiter-Hahn J (1991) Acoustic microscopy of cultured cells. Cell Biochem Biophys 18(3):279–293

    Google Scholar 

  • Maev RG (2008) Acoustic microscopy: fundamentals and applications. Wiley, Weinheim

    Book  Google Scholar 

  • Nakamura Y, Yamamoto S, Sakai M, Uchino F (1986) Ultrasonic microscope. US Patent 462153111,Nov 1986

    Google Scholar 

  • Pelling AE, Veraitch FS, Chu CP-K, Mason C, Horton MA (2009) Mechanical dynamics of single cells during early apoptosis. Cell motil cytoskelet 66(7):409–422

    Article  CAS  Google Scholar 

  • Ratner BD, Bankman I (2009) Biomedical Engineering Desk Reference. Academic Press, Oxford

    Google Scholar 

  • Rose JL (2004) Ultrasonic waves in solid media. Cambridge University Press, New York

    Google Scholar 

  • Rugar D, Heiserman J, Minden S, Quate CF (1980) Acoustic microscopy of human metaphase chromosomes. J Microsc 120(2):193–199

    Article  PubMed  CAS  Google Scholar 

  • Rui M, Narashimhan S, Bost W, Stracke F, Weiss E, Lemor R, Kolios MC (2010) Gigahertz optoacoustic imaging for cellular imaging. In: SPIE, vol. 7564, pp 756411–756411-6 2010

    Google Scholar 

  • Rui M, Bost W, Weiss EC, Lemor R, Kolios MC (2010) Photoacoustic microscopy and spectroscopy of Individual red blood cells. OSA - Optics and Photonics Congress BIOMED/DH, pp 3–5

    Google Scholar 

  • Shull PJ (2002) Nondestructive evaluation: theory, techniques, and applications. CRC Press, New York

    Book  Google Scholar 

  • Sokolov S (1929) On the problem of the propagation of ultrasonic oscillations in various bodies. Elek Nachr Tech 6:454–460

    Google Scholar 

  • Sokolov S (1939) Means for indicating flaws in materials. US Patent 216412527, Jun 1939

    Google Scholar 

  • Spector DL, Goldman RD (2006) Basic methods in microscopy: protocols and concepts from Cells: a laboratory manual. CSHL Press, New York

    Google Scholar 

  • Strohm EM, Kolios MC (2011) Sound velocity and attenuation measurements of perfluorocarbon liquids using photoacoustic methods. In: IEEE International Ultrasonics Symposium, p 2368–2371 2011

    Google Scholar 

  • Strohm EM, Pasternak M, Mercado M, Rui M, Kolios MC, Czarnota GJ (2010) A comparison of cellular ultrasonic properties during apoptosis and mitosis using acoustic microscopy. In: IEEE International Ultrasonics Symposium, 608–611 2010

    Google Scholar 

  • Strohm EM, Czarnota GJ, Kolios MC (2010b) Quantitative measurements of apoptotic cell properties using acoustic microscopy. IEEE Trans Ultrason, Ferroelectr, Freq Control 57(10):2293–2304

    Article  Google Scholar 

  • Strohm EM, Rui M, Gorelikov I, Matsuura N, Kolios M (2011) Vaporization of perfluorocarbon droplets using optical irradiation. Biomed Opt Express 2(6):1432–1442

    Article  PubMed  CAS  Google Scholar 

  • Strohm E, Gorelikov I, Matsuura N, Kolios M (2012) Photoacoustic spectral characterization of perfluorocarbon droplets In: Proceedings of SPIE, vol 8223, pp 82232F–82232F-8 2012

    Google Scholar 

  • Strohm EM, Berndl E, Kolios MC (2013) Probing red blood cell morphology using high frequency Photoacoustics. Biophysical Journal 105(1) (In Press)

    Google Scholar 

  • Szabo TL (1995) Causal theories and data for acoustic attenuation obeying a frequency power law. J Acoustical Soc Am 97(1):14

    Article  Google Scholar 

  • Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9(3):231–241

    Article  PubMed  CAS  Google Scholar 

  • Tittmann BR, Miyasaka C, Mastro AM, Mercer RR (2007) Study of cellular adhesion with scanning acoustic microscopy. IEEE Trans Ultrason Ferroelectr Freq Control 54(8):1502–1513

    Article  PubMed  Google Scholar 

  • Veselý P, Lüers H, Riehle M, Bereiter-Hahn J (1994) Subtraction scanning acoustic microscopy reveals motility domains in cells in vitro. Cell Motil Cytoskelet 29(3):231–240

    Article  Google Scholar 

  • Weiss EC, Anastasiadis P, Pilarczyk G, Lernor RM, Zinin PV (2007a) Mechanical properties of single cells by high-frequency time-resolved acoustic microscopy. IEEE Trans Ultrason Ferroelectr Freq Control 54(11):2257–2271

    Article  PubMed  Google Scholar 

  • Weiss EC, Wehner F, Lemor RM (2007) Measuring Cell Volume Regulation with Time Resolved Acoustic Microscopy. In: Andre MP (ed) Acoustical Imaging, vol 28, Springer, Dordrecht, Netherlands, p 73–80

    Google Scholar 

  • Weiss EC, Lemor RM, Pilarczyk G, Anastasiadis P, Zinin PV (2007c) Imaging of focal contacts of chicken heart muscle cells by high-frequency acoustic microscopy. Ultrasound Med Biol 33(8):1320–1326

    Article  PubMed  Google Scholar 

  • Wickramasinghe HK (1979) Contrast and imaging performance in the scanning acoustic microscope. J Appl Phys 50(2):664

    Article  CAS  Google Scholar 

  • Yao D-K, Maslov K, Shung KK, Zhou Q, Wang LV (2010) In vivo label-free photoacoustic microscopy of cell nuclei by excitation of DNA and RNA. Opt Lett 35(24):4139–4141

    Article  PubMed  CAS  Google Scholar 

  • Zoller J, Brandle K, Bereiter-Hahn J (1997) Cellular motility in vitro as revealed by scanning acoustic microscopy depends on cell-cell contacts. Cell Tissue Res 290(1):43–50

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Maurice Pasternak for his help in data acquisition and signal processing and Arthur Worthington for his help in general laboratory issues. Support and scientific discussions with Drs. Eike Weiss, Robert Lemor and Sebastian Brand are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Kolios .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kolios, M.C., Strohm, E.M., Czarnota, G.J. (2013). Acoustic Microscopy of Cells. In: Mamou, J., Oelze, M. (eds) Quantitative Ultrasound in Soft Tissues. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6952-6_13

Download citation

Publish with us

Policies and ethics