Skip to main content
  • 2085 Accesses

Abstract

After hatching, an organism leaves a relatively closed and protected system for life in a larger environment. Many studies have been performed exposing larval stages directly to contaminants or examining larvae after embryonic exposure. Larvae may be more sensitive than embryonic stages of the same organism, since embryos are protected by an outer membrane that may reduce contaminant uptake (e.g. chorion) that is no longer present in larvae. Larvae also must usually swim and obtain food. Most benthic invertebrates have planktonic larvae, which at a certain stage of development settle to the bottom to metamorphose into a juvenile stage in an appropriate habitat. Larval exposures to contaminants can lead to impaired settlement in the benthic environment and/or to delayed physiological disturbances as juveniles or adults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albright R, Langdon C (2011) Ocean acidification impacts multiple early life history processes of the Caribbean coral Porites astreoides. Glob Change Biol 17:2478–2487

    Google Scholar 

  • Anderson BS, Middaugh DP, Hunt JW, Turpen SL (1991) Copper toxicity to sperm, embryos and larvae of topsmelt Atherinops affinis, with notes on induced spawning. Mar Environ Res 31:17–35

    CAS  Google Scholar 

  • Anderson HR, Wollenberger L, Halling-Sørensen B, Kusk KO (2001) Development of copepod nauplii to copepodites—a parameter for chronic toxicity including endocrine disruption. Environ Toxicol Chem 20:2821–2829

    Google Scholar 

  • Arnold KE, Findlay HS, Spicer JI, Daniels CL, Boothroyd D (2009) Effect of CO2-related acidification on aspects of the larval development of the European lobster, Homarus gammarus (L.). Biogeosci Discuss 6:3087–3107

    Google Scholar 

  • Arukwe A, Cangialosi MV, Letcher RJ, Rocha E, Mortensen AS (2013) Changes in morphometry and association between whole-body fatty acids and steroid hormone profiles in relation to bioaccumulation patterns in salmon larvae exposed to perfluorooctane sulfonic or perfluorooctane carboxylic acids. Aquat Toxicol 130–131:219–230, http://dx.doi.org/10.1016/j.aquatox.2012.12.026

    Google Scholar 

  • Baker SM, Mann R (1992) Effects of hypoxia and anoxia on larval settlement, juvenile growth, and juvenile survival of the oyster Crassostrea virginica. Biol Bull 182:265–269

    Google Scholar 

  • Baker SM, Mann R (1994) Feeding ability during settlement and metamorphosis in the oyster Crassostrea virginica (Gmelin, 1791) and the effects of hypoxia on post-settlement ingestion rates. J Exp Mar Biol Ecol 181:239–253

    Google Scholar 

  • Barton A, Hales B, Waldbusser GG, Langdon C, Feeley RA (2012) The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: implications for near-term ocean acidification effects. Limnol Oceanogr 57:698–710

    CAS  Google Scholar 

  • Béguer M, Pasquaud S, Noël P, Girardin M, Boët P (2008) First description of heavy skeletal deformations in Palaemon shrimp populations of European estuaries: the case of the Gironde (France). Hydrobiologia 607:225–229

    Google Scholar 

  • Beiras R, His E (1994) Effects of dissolved mercury on embryogenesis, survival and metamorphosis of Crassostrea gigas oyster larvae. Mar Ecol Prog Ser 113:95–103

    Google Scholar 

  • Bengtsson BE, Bengtsson Ã…, Himberg M (1985) Fish deformities and pollution in some Swedish waters. Ambio 14:32–35

    CAS  Google Scholar 

  • Bergey L, Weis JS (2008) Aspects of population ecology in two populations of fiddler crabs, Uca pugnax. Mar Biol 154:435–442

    Google Scholar 

  • Bookhout CG, Costlow JD Jr (1974) Crab development and effects of pollutants. Thalassia Jugoslavica 10:77–87

    Google Scholar 

  • Bookhout CG, Monroe RJ (1977) Effects of malathion on the development of crabs. In: Vernberg FJ, Calabrese A, Thurberg FP, Vernberg WB (eds) Physiological responses of marine biota to pollutants. Academic, New York, pp 3–19

    Google Scholar 

  • Bookhout CG, Monroe RJ, Forward RB, Costlow JD (1984) Effects of hexavalent chromium on development of crabs Rhithropanopeus harrisii and Callinectes sapidus. Water Air Soil Pollut 21:199–216

    CAS  Google Scholar 

  • Breitholtz M, Wollenberger L (2003) Effects of three PBDEs on development, reproduction and population growth rate of the harpacticoid copepod Nitocra spinipes. Aquat Toxicol 64:85–96

    CAS  Google Scholar 

  • Brereton A, Lord H, Webb JS (1973) Effect of zinc on growth and development of larvae of the Pacific oyster, Crassostrea gigas. Mar Biol 19:96–101

    CAS  Google Scholar 

  • Brix KV, Gillette P, Pourmand A, Capo TR, Grosell M (2012) The effects of dietary silver on larval growth in the echinoderm Lytechinus variegates. Arch Environ Contam Toxicol 63:95–100

    CAS  Google Scholar 

  • Byrne M, Ho M, Wong E, Soars NA, Selvakumaraswamy P, Shepard-Brennand H, Dworjanyn SA, Davis AR (2011) Unshelled abalone and corrupted urchins: development of marine calcifiers in a changing ocean. Proc R Soc B Biol Sci 278:2376–2383

    Google Scholar 

  • Calabrese A, Macinnes JR, Nelson DA, Miller JE (1977) Survival and growth of bivalve larvae under heavy metal stress. Mar Biol 41:179–184

    CAS  Google Scholar 

  • Cao L, Huang W, Shan X, Xiao Z, Wang Q, Dou S (2009) Cadmium toxicity to embryonic–larval development and survival in red sea bream Pagrus major. Ecotoxicol Environ Saf 72:1966–1974

    CAS  Google Scholar 

  • Catarino A, De Ridder C, Gonzalez M, Gallardo P, Dubois P (2012) Sea urchin Arbacia dufresnei (Blainville 1825) larvae response to ocean acidification. Polar Biol 35:455–461

    Google Scholar 

  • Chan HY, Xu WZ, Shin PKS, Cheung SG (2008) Prolonged exposure to low dissolved oxygen affects early development and swimming behaviour in the gastropod Nassarius festivus (Nassariidae). Mar Biol 153:735–743

    CAS  Google Scholar 

  • Chan KYK, Grünbaum D, O’Donnell MJ (2011) Effects of ocean-acidification-induced morphological changes on larval swimming and feeding. J Exp Biol 214:3857–3867

    Google Scholar 

  • Chandler GT, Scott GI (1991) Effects of sediment-bound endosulfan on survival, reproduction and larval settlement of meiobenthic polychaetes and copepods. Environ Toxicol Chem 10:375–382

    CAS  Google Scholar 

  • Chandler GT, Shipp MR, Donelan TL (1997) Bioaccumulation, growth and larval settlement effects of sediment-associated polynuclear aromatic hydrocarbons on the estuarine polychaete, Streblospio benedicti (Webster). J Exp Mar Biol Ecol 213:95–110

    CAS  Google Scholar 

  • Chiu JM, Po B, Chan CY, Lam MH, Qian PY, Wu RS (2012) Polybrominated diphenyl ethers (PBDEs) alter larval settlement of marine intertidal organisms across three phyla via reducing bacterial abundance on the biofilms. Environ Sci Technol 46:7772–7781

    CAS  Google Scholar 

  • Cigliano M, Gambi MC, Rodolfo-Metalpa R, Patti FP, Hall-Spencer JM (2010) Effects of ocean acidification on invertebrate settlement at volcanic CO2 vents. Mar Biol 157:2489–2502

    Google Scholar 

  • Costlow JD (1979) Effect of Dimilin® on development of larvae of the stone crab Menippe mercenaria and blue crab Callinectes sapidus. In: Vernberg WB, Thurberg FP, Calabrese A, Vernberg FJ (eds) Marine pollution: functional responses. Academic, New York, pp 355–363

    Google Scholar 

  • Couillard CM, Lee K, Légaré B, King TL (2005) Effect of dispersant on the composition of the water-accommodated fraction of crude oil and its toxicity to larval marine fish. Environ Toxicol Chem 24:1496–1504

    CAS  Google Scholar 

  • Couillard CM, Lebeuf M, Legaré B, Trottier S (2008) Effects of diazinon on mummichog (Fundulus heteroclitus) larvae produced from eggs differentially treated with PCB126. Arch Environ Contam Toxicol 54:283–291

    CAS  Google Scholar 

  • Crim RN, Sunday JM, Harley CD (2011) Elevated seawater CO2 concentrations impair larval development and reduce larval survival in endangered northern abalone (Haliotis kamtschatkana). J Exp Mar Biol Ecol 400:272–277

    CAS  Google Scholar 

  • Cross J, Hardy JY, Hose JE, Hershelman GP, Antrim LD, Gossett RW, Crecelius EA (1987) Contaminant concentrations and toxicity in sea surface microlayer near Los Angeles California. Mar Environ Res 23:307–323

    CAS  Google Scholar 

  • Dethlefsen V, von Westernhagen H, Rosenthal H (1975) Cadmium uptake by marine fish larvae. Helgolander Wiss Meeresunters 27:396–407

    CAS  Google Scholar 

  • Doropoulos C, Ward S, Diaz-Pulido G, Hoegh-Guldberg O, Mumby PJ (2012) Ocean acidification reduces coral recruitment by disrupting intimate larval-algal settlement interactions. Ecol Lett 15:338–346

    Google Scholar 

  • Dupont S, Havenhand J, Thorndyke W, Peck L, Thorndyke M (2008) Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis. Mar Ecol Prog Ser 373:285–294

    CAS  Google Scholar 

  • Epstein N, Bak RP, Rinkevich J (2000) Toxicity of third generation dispersants and dispersed Egyptian crude oil on Red Sea coral larvae. Mar Pollut Bull 40:497–503

    CAS  Google Scholar 

  • Faulk CK, Fuiman L, Thomas P (1999) Parental exposure to ortho, para-dichlorodiphenyltrichloroethane impairs survival skills of atlantic croaker (Micropogonias undulatus) larvae. Environ Toxicol Chem 18:254–262

    CAS  Google Scholar 

  • Foekema EM, Deerenberg CM, Murk AJ (2008) Prolonged ELS test with the marine flatfish sole (Solea solea) shows delayed toxic effects of previous exposure to PCB 126. Aquat Toxicol 90:197–203

    CAS  Google Scholar 

  • Foekema EM, Fischer A, Lopez Parron M, Kwadijk C, de Vries P, Murk AJ (2012) Toxic concentrations in fish early life stages peak at a critical moment. Environ Toxicol Chem 31:1381–1390

    CAS  Google Scholar 

  • Frommel AY, Maneja R, Lowe D, Malzahn AM, Geffen AJ, Folkvord A, Piatkowski U, Reusch TBH, Clemmesen C (2012) Severe tissue damage in Atlantic cod larvae under increasing ocean acidification. Nat Clim Change 2:42–46

    CAS  Google Scholar 

  • Gazeau F, Quiblier C, Jansen JM, Gattuso J-P, Middelburg JJ, Heip CHR (2007) Impact of elevated CO2 on shellfish calcification. Geophys Res Lett 34(L07603):1–5

    Google Scholar 

  • Gazeau F, Gattuso JP, Dawber C, Pronker AE, Peene F, Peene J, Heip CHR, Middelburg JJ (2010) Effect of ocean acidification on the early life stages of the blue mussel Mytilus edulis. Biogeosciences 7:2051–2060

    CAS  Google Scholar 

  • Geffard O, Geffard A, His E, Budzinski H (2003) Assessment of the bioavailability and toxicity of sediment-associated polycyclic aromatic hydrocarbons and heavy metals applied to Crassostrea gigas embryos and larvae. Mar Pollut Bull 46:481–490

    CAS  Google Scholar 

  • Gorski J, Nugegoda D (2006) Sublethal toxicity of trace metals to larvae of the blacklip abalone, Haliotis rubra. Environ Toxicol Chem 25:1360–1367

    CAS  Google Scholar 

  • Hanson B, Fotel FL, Jensen NJ, Wittrup L (1997) Physiological effects of the detergent linear alkylbenzene sulphonate on blue mussel larvae (Mytilus edulis) in laboratory and mesocosm experiments. Mar Biol 128:627–637

    Google Scholar 

  • Hardy J, Kiesser S, Antrim L, Stubin A, Kocan R, Strand J (1987) The sea-surface microlayer of Puget Sound: Part I. Toxic effects on fish eggs and larvae. Mar Environ Res 23:227–249

    CAS  Google Scholar 

  • Hettinger A, Sanford E, Hill TM, Russell AD, Sato KN, Hoey J, Forsch M, Page HN, Gaylord B (2012) Persistent carry-over effects of planktonic exposure to ocean acidification in the Olympia oyster. Ecology 93:2758–2768

    Google Scholar 

  • His E, Seaman MNL, Beiras R (1997) A simplification of the bivalve embryogenesis and larval development bioassay method for water quality assessment. Water Res 31:351–355

    CAS  Google Scholar 

  • His E, Heyvang I, Geffard O, de Montaudouin X (1999) A comparison between oyster (Crassostrea gigas) and sea urchin (Paracentrotus lividus) larval bioassays for toxicological studies. Water Res 33:1706–1718

    CAS  Google Scholar 

  • Hoare K, Davenport J, Beaumont AR (1995) Effects of exposure and previous exposure to copper on growth of veliger larvae and survivorship of Mytilus edulis juveniles. Mar Ecol Prog Ser 120:163–168

    CAS  Google Scholar 

  • Holdway DA, Barry MJ, Logan DC, Robertson D, Young V, Ahokas JT (1994) Toxicity of pulse-exposed fenvalerate and esfenvalerate to larval Australian crimson-spotted rainbow fish (Melanotaenia fluviatilis). Aquat Toxicol 28:169–187

    CAS  Google Scholar 

  • Hutchinson TH, Williams TD, Eales GJ (1994) Toxicity of cadmium, hexavalent chromium and copper to marine fish larvae (Cyprinodon variegatus) and copepods (Tisbe battagliai). Mar Environ Res 38:275–290

    CAS  Google Scholar 

  • Ingvarsdóttir A, Bjørkblom C, Ravagnan E, Godal BF, Arnberg M, Joachim DL, Sanni S (2012) Effects of different concentrations of crude oil on first feeding larvae of Atlantic herring (Clupea harengus). J Mar Syst 93:69–76

    Google Scholar 

  • Ishibashi Y, Inoue K, Nakatsukasa H, Ishitani Y, Miyashita S, Murata O (2005) Ontogeny of tolerance to hypoxia and oxygen consumption of larval and juvenile red sea bream, Pagrus major. Aquaculture 244:331–340

    Google Scholar 

  • Johns M, Pechenik J (1980) Influence of water-accommodated fraction of Number 2 fuel oil on energetics of Cancer irroratus larvae. Mar Biol 55:247–254

    CAS  Google Scholar 

  • Kawaguchi M, Song J-Y, Irie K, Murakami Y, Nakayama K, Kitamura S-I (2011) Disruption of Sema3A expression causes abnormal neural projection in heavy oil exposed Japanese flounder larvae. Mar Pollut Bull 63:356–361

    CAS  Google Scholar 

  • Kessabi K, Annabi A, Hassine A, Bazin I, Mnif W, Said K, Messaoudi I (2013) Possible chemical causes of skeletal deformities in natural populations of Aphanius fasciatus collected from the Tunisian coast. Chemosphere 90(11):2683–2689, http://dx.doi.org/10.1016/j.chemosphere.2012.11.047

    CAS  Google Scholar 

  • Key PB, Fulton MH, Scott GI, Layman SL, Worth EF (1998) Lethal and sublethal effects of malathion on three life stages of the grass shrimp Palaemonetes pugio. Aquat Toxicol 40:311–322

    CAS  Google Scholar 

  • Key PB, Chung KW, Hoguet J, Shaddrix B, Fulton MH (2008) Toxicity and physiological effects of brominated flame retardant PBDE-47 on two life stages of grass shrimp, Palaemonetes pugio. Sci Total Environ 399:28–32

    CAS  Google Scholar 

  • Kurihara H, Kato S, Ishimatsu A (2007) Effects of increased seawater pCO2 on early development of the oyster Crassostrea gigas. Aquat Biol 1:91–98

    CAS  Google Scholar 

  • Kurihara H, Asai T, Kato S, Ishimatsu A (2008) Effects of elevated pCO2 on early development in the mussel Mytilus galloprovincialis. Aquat Biol 4:225–233

    Google Scholar 

  • Kurihara H, Takano Y, Kurokawa D, Akasaka K (2012) Ocean acidification reduces biomineralization-related gene expression in the sea urchin, Hemicentrotus pulcherrimus. Mar Biol 159:2819–2826

    Google Scholar 

  • LaBreche TM, Dietrich AM, Gallagher DL, Shepherd N (2002) Copper toxicity to larval Mercenaria mercenaria (hard clam). Environ Toxicol Chem 21:760–766

    CAS  Google Scholar 

  • Lang WH, Miller DC, Ritacco PJ, Marcy M (1981) The effects of copper and cadmium on the behavior and development of barnacle larvae. In: Vernberg FJ, Calabrese A, Thurberg FP, Vernberg WB (eds) Biological monitoring of marine pollutants. Academic, New York, pp 165–203

    Google Scholar 

  • Laughlin R, Neff JM (1979) Interactive effects of salinity, temperature, and polycyclic aromatic hydrocarbons on survival and development rate of larvae of the mud crab, Rhithropanopeus harrissi. Mar Biol 53:281–291

    CAS  Google Scholar 

  • Laughlin R, Ng J, Guard N (1981) Hormesis: a response to low environmental concentrations of petroleum hydrocarbons. Science 211:705–707

    CAS  Google Scholar 

  • Lee WY, Winters K, Nicol JAC (1970) The biological effects of the water-soluble fractions of a no. 2 fuel oil on the planktonic shrimp, Lucifer faxoni. Environ Pollut 15:167–183

    Google Scholar 

  • Liem K (1981) Larvae of air-breathing fishes as countercurrent flow devices in hypoxic environments. Science 211:1177–1179

    CAS  Google Scholar 

  • Liu Y, Tam N, Guan Y, Yasojima M, Zhou J, Gao B (2011) Acute toxicity of nonylphenols and bisphenol A to the embryonic development of the abalone Haliotis diversicolor supertexta. Ecotoxicology 20:233–1245

    Google Scholar 

  • Lopez Greco L, Bolanos J, Rodriguez EM, Hernandez G (2001) Survival and molting of the pea crab larvae Tunicotheres moseri Rathbun 1918 (Brachyura, Pinnotheridae) exposed to copper. Arch Environ Contam Toxicol 40:505–510

    CAS  Google Scholar 

  • MacInnes JA, Calabrese A (1979) Combined effects of salinity, temperature, and copper on embryos and early larvae of the American oyster, Crassostrea virginica. Arch Environ Contam Toxicol 8:553–562

    CAS  Google Scholar 

  • Markey KL, Baird AH, Humphrey C, Negri AP (2007) Insecticides and a fungicide affect multiple coral life stages. Mar Ecol Prog Ser 330:127–137

    CAS  Google Scholar 

  • McCarthy I, Fuiman LA, Alvarez MC (2003) Aroclor 1254 affects growth and survival skills of Atlantic croaker Micropogonias undulatus larvae. Mar Ecol Prog Ser 252:295–301

    CAS  Google Scholar 

  • McFadzen IRB (1992) Growth and survival of cryopreserved oyster and clam larvae along a pollution gradient in the German Bight. Mar Ecol Prog Ser 91:215–220

    Google Scholar 

  • McKenney CL (2005) The influence of insect juvenile hormone agonists on metamorphosis and reproduction in estuarine crustaceans. Integr Comp Biol 45:97–105

    CAS  Google Scholar 

  • McKenney CL, Costlow JD (1981) the effects of salinity and mercury on developing megalopae and early crab stages of the blue crab, Callinectes sapidus. In: Vernberg FJ, Calabrese A, Thurberg FP, Vernberg WB (eds) Biological monitoring of marine pollutants. Academic, New York, pp 241–262

    Google Scholar 

  • McKenney CL Jr, Matthews E (1990) Influence of an insect growth regulator on the larval development of an estuarine shrimp. Environ Pollut 64:169–178

    CAS  Google Scholar 

  • Mecklenburg TA, Rice SD, Karinen JF (1977) Molting and survival of king crab (Paralithodes camschatica) and coonstripe shrimp (Pandalus hypsinotus) larvae exposed to cook inlet crude oil water-soluble fractions. In: Wolfe DA (ed) Fate and effects of petroleum hydrocarbons in marine organisms and ecosystems. Pergamon Press, New York, pp 221–228

    Google Scholar 

  • Mhadhbi L, Fumega J, Boumaiza M, Beiras R (2012) Acute toxicity of polybrominated diphenyl ethers (PBDEs) for turbot (Psetta maxima) early life stages (ELS). Environ Sci Pollut Res Int 19:708–717

    CAS  Google Scholar 

  • Miller M-E, Graham W (2012) Environmental evidence that seasonal hypoxia enhances survival and success of jellyfish polyps in the northern Gulf of Mexico. J Exp Mar Biol Ecol 432–433:113–120

    Google Scholar 

  • Money C, Braungardt CB, Jha AN, Worsfold PJ, Achterberg EP (2011) Metal speciation and toxicity of Tamar Estuary water to larvae of the Pacific oyster, Crassostrea gigas. Mar Environ Res 72:3–12

    CAS  Google Scholar 

  • Monosson E, Fleming WJ, Sullivan CV (1994) Effects of the planar PCB 3,3′,4,4′-tetrachlorobiphenyl (TCB) on ovarian development, plasma levels of sex steroid hormones and vitellogenin, and progeny survival in the white perch (Morone americana). Aquat Toxicol 29:1–19

    CAS  Google Scholar 

  • Mortimer MR, Miller GJ (1994) Susceptibility of larval and juvenile instars of the sand crab, Portunus pelagicus (L.) to sea water contaminated by chromium, nickel or copper. Aust J Mar Freshw Res 45:1107–1121

    CAS  Google Scholar 

  • Mottier A, Kientz-Bouchart V, Serpentini A, Lebel JM, Jha AN, Costil K (2013) Effects of glyphosate-based herbicides on embryo-larval development and metamorphosis in the Pacific oyster, Crassostrea gigas. Aquat Toxicol 128–129:67–78

    Google Scholar 

  • Munday PL, Gagliano M, Donelson JM, Dixson DL, Thorrold SR (2011a) Ocean acidification does not affect the early life history development of a tropical marine fish. Mar Ecol Prog Ser 423:211–221

    Google Scholar 

  • Munday PL, Hernaman V, Dixson DL, Thorrold SR (2011b) Effect of ocean acidification on otolith development in larvae of a tropical marine fish. Biogeosciences 8:1631–1641

    CAS  Google Scholar 

  • Nakamura M, Ohki S, Suzuki A, Sakai K (2011) Coral larvae under ocean acidification: survival, metabolism, and metamorphosis. PLoS One 6(1):art.e14521

    Google Scholar 

  • Nice HE, Thorndyke MC, Morritt D, Steele S, Crane M (2000) Development of Crassostrea gigas larvae is affected by 4-nonylphenol. Mar Pollut Bull 40:491–496

    CAS  Google Scholar 

  • Olsvik PA, Hansen BH, Nordtug T, Moren M, Holen E, Lie KK (2011) Transcriptional evidence for low contribution of oil droplets to acute toxicity from dispersed oil in first feeding Atlantic cod (Gadus morhua) larvae. Comp Biochem Physiol Part C Toxicol Pharmacol 154:333–345

    CAS  Google Scholar 

  • Olufsen M, Arukwe A (2011) Developmental effects related to angiogenesis and osteogenic differentiation in Salmon larvae continuously exposed to dioxin-like 3,3′,4,4′-tetrachlorobiphenyl (congener 77). Aquat Toxicol 105:669–680

    CAS  Google Scholar 

  • Osterberg JS, Darnell KM, Blickley TM, Romano JA, Rittschof D (2012) Acute toxicity and sub-lethal effects of common pesticides in post-larval and juvenile blue crabs, Callinectes sapidus. J Exp Mar Biol Ecol 424–425:5–14

    Google Scholar 

  • Paixão JF, Nascimento IA, Pereira SA, Leite MBL, Carvalho GC, Silveira JSC Jr, Rebouças M, Matias GRA, Rodrigues ILP (2007) Estimating the gasoline components and formulations toxicity to microalgae (Tetraselmis chuii) and oyster (Crassostrea rhizophorae) embryos: an approach to minimize environmental pollution risk. Environ Res 103:365–374

    Google Scholar 

  • Pansch C, Nasrolahi A, Appelhans YS, Wahl M (2012) Impacts of ocean warming and acidification on the larval development of the barnacle Amphibalanus improvisus. J Exp Mar Biol Ecol 420–421:48–55

    Google Scholar 

  • Parker LM, Ross PM, O’Connor WA, Borysko L, Raftos DA, Pörtner HO (2012) Adult exposure influences offspring response to ocean acidification in oysters. Glob Change Biol 18:82–92

    Google Scholar 

  • Pfeiler E (2001) Changes in hypoxia tolerance during metamorphosis of bonefish leptocephali. J Fish Biol 59:1677–1681

    Google Scholar 

  • Reichelt-Brushett AJ, Harrison PL (2000) The effect of copper on the settlement success of larvae from the Scleractinian Coral Acropora tenuis. Mar Pollut Bull 41:385–391

    CAS  Google Scholar 

  • Roesijadi G, Petrocelli S, Anderson JW, Giam S, Neff J (1976) Toxicity of polychlorinated biphenyls (Aroclor 1254) to adult, juvenile, and larval stages of the shrimp, Palaemonetes pugio. Bull Environ Contam Toxicol 15:297–304

    CAS  Google Scholar 

  • Rosenberg R, Costlow JD (1976) Synergistic effects of cadmium and salinity combined with constant and cycling temperatures on the larval development of two estuarine crab species. Mar Biol 38:291–303

    CAS  Google Scholar 

  • Ryan RL, Lachmayr KL, Jay JA, Ford TE (2001) Developmental effects of PCBs on the hard clam (Mercenaria mercenaria). J Toxicol Environ Health A 36:1571–1578

    CAS  Google Scholar 

  • Simith D, Diele K, Abrunhosa FA (2013) Carry-over effects of delayed larval metamorphosis on early juvenile performance in the mangrove crab Ucides cordatus (Ucididae). J Exp Mar Biol Ecol 440:61–68

    Google Scholar 

  • Snyder MJ, Mulder EP (2001) Environmental endocrine disruption in decapod crustacean larvae: hormone titers, cytochrome P450, and stress protein responses to heptachlor exposure. Aquat Toxicol 55:177–190

    CAS  Google Scholar 

  • Soffientino B, Nacci DE, Specker JL (2010) Effects of the dioxin-like PCB 126 on larval summer flounder (Paralichthys dentatus). Comp Biochem Physiol C 152:9–17

    Google Scholar 

  • Somasundaram B, King PE, Shackley SE (1984) Some morphological effects of zinc upon the yolk-sac larvae of Clupea harengus L. J Fish Biol 25:333–343

    CAS  Google Scholar 

  • Spicer JI, Eriksson SP (2003) Does the development of respiratory regulation always accompany the transition from pelagic larvae to benthic fossorial postlarvae in the Norway lobster Nephrops norvegicus (L.)? J Exp Mar Biol Ecol 295:219–243

    Google Scholar 

  • Talmage SC, Gobler CJ (2011) Effects of elevated temperature and carbon dioxide on the growth and survival of larvae and juveniles of three species of northwest Atlantic bivalves. PLoS One 6(10):art.e26941

    Google Scholar 

  • Walker AN, Bush P, Puritz J, Wilson T, Chang ES, Miller T, Holloway K, Horst MN (2005) Bioaccumulation and metabolic effects of the endocrine disruptor methoprene in the lobster, Homarus americanus. Integr Comp Biol 45:118–126

    CAS  Google Scholar 

  • Walther K, Anger K, Pörtner HO (2010) Effects of ocean acidification and warming on the larval development of the spider crab Hyas araneus from different latitudes (54° vs. 79°N). Mar Ecol Prog Ser 417:159–170

    Google Scholar 

  • Wang WX, Widdows J (1991) Physiological responses of mussel larvae Mytilus edulis to environmental hypoxia and anoxia. Mar Ecol Prog Ser 70:223–236

    Google Scholar 

  • Wang C, Zhang F (1995) Effects of environmental oxygen deficiency on embryos and larvae of bay scallop, Argopecten irradians irradians. Chin J Oceanol Limnol 13:362–369

    CAS  Google Scholar 

  • Wang Q, Yang H, Liu B, Wang X (2012) Toxic effects of benzo[a]pyrene (Bap) and Aroclor1254 on embryogenesis, larval growth, survival and metamorphosis of the bivalve Meretrix meretrix. Ecotoxicology 21:1617–1624

    CAS  Google Scholar 

  • Weltzien F, Doving KB, Carr WE (1999) Avoidance reaction of yolk-sac larvae of the inland silverside Menidia beryllina (Atherinidae) to hypoxia. J Exp Biol 202:2869–2876

    Google Scholar 

  • Williams ND, Holdway DA (2000) The effects of pulse-exposed cadmium and zinc on embryo hatchability, larval development, and survival of Australian crimson spotted rainbow fish (Melanotaenia fluviatilis). Environ Toxicol 15:165–173

    CAS  Google Scholar 

  • Wong CK, Cheung JK, Chu KH (1995) Effects of copper on survival, development and growth of Metapenaeus ensis larvae and postlarvae (Decapoda: Penaeidae). Mar Pollut Bull 31:416–419

    CAS  Google Scholar 

  • Zippay ML, Hofmann GE (2010) Effect of pH on gene expression and thermal tolerance of early life history stages of red abalone (Haliotis rufescens). J Shellfish Res 29:429–439

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Weis, J.S. (2014). Larval Development. In: Physiological, Developmental and Behavioral Effects of Marine Pollution. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6949-6_7

Download citation

Publish with us

Policies and ethics