Skip to main content

Introduction to Marine Pollution

  • Chapter
  • First Online:
  • 2592 Accesses

Abstract

The ocean plays a key role in cycles of carbon, nitrogen, phosphorus and a variety of other important chemicals. Ocean chemistry has been changing due to human activities, both regionally in coastal waters and in the open ocean. Some of the greatest impacts are on carbon, nitrogen, and dissolved oxygen, which affect biological productivity. The rate of primary production is determined primarily by light and nutrients. Decades of pollution of marine waters, along with coastal habitat destruction, overfishing and bottom trawling have had devastating impacts on biodiversity and habitats. The increasing demand for seafood worldwide has depleted fish populations and devastated the economic well-being of coastal communities. At the same time, climate change is altering the oceans in major ways that we are only beginning to understand.

Land-based sources pollute estuaries and coastal waters with nutrients, sediments, pathogens as well as many thousands of toxic chemicals, including metals, pesticides, industrial products, pharmaceuticals and more. Following the industrial revolution, increasing amounts of materials have been discharged into the environment from chemical industries, sewage treatment plants, and agriculture, eventually reaching marine ecosystems. Highly visible events such as the Exxon Valdez, and the Gulf of Mexico “gusher” have raised public awareness of marine pollution in recent decades. There is growing scientific evidence demonstrating serious, sometimes disastrous, impacts of pollution in the marine environment. Pollutants of major concern are those that are widespread and persistent in the environment, accumulate in biota, and induce effects at low concentrations. Toxic chemicals are varied and often difficult to detect. In recent years, attention is being devoted to new or newly recognized threats to the environment – contaminants of emerging concern (CEC), ocean acidification, and noise pollution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alzieu C, Sanjuan J, Deltreil JP, Borel M (1986) Tin contamination in Arcachon Bay: effects on oyster shell anomalies. Mar Pollut Bull 17:494–498

    Article  CAS  Google Scholar 

  • Anderson DM, Glibert P, Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25:704–726

    Article  Google Scholar 

  • Anderson BS, Arenella-Parkerson D, Phillips BM, Tjeerdema RS, Crane D (2009) Preliminary investigation of the effects of dispersed Prudhoe Bay Crude Oil on developing topsmelt embryos, Atherinops affinis. Environ Pollut 157:1058–1061

    Article  CAS  Google Scholar 

  • André M et al (2011) Low-frequency sounds induce acoustic trauma in cephalopods. Front Ecol Environ 9:489–493

    Article  Google Scholar 

  • Ankley GT, Di Toro DM, Hansen DJ, Berry WJ (1996) Technical basis and proposal for deriving sediment quality criteria for metals. Environ Toxicol Chem 15:2056–2066

    Article  CAS  Google Scholar 

  • Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci USA 105:17442–17446

    Article  CAS  Google Scholar 

  • Asharani PV, Wu YL, Gong Z, Vallyavettil S (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnol 19:255102. doi:10.1088/0957-4484/19/25/255102

  • Avery-Gomm S, O’Hara PD, Kleine L, Bowes V, Wilson LK, Barry KL (2012) Northern fulmars as biological monitors of trends of plastic pollution in the eastern North Pacific. Mar Pollut Bull 64:1776–1781

    Article  CAS  Google Scholar 

  • Banks JL, Ross DJ, Keough MJ, Eyre BD, Macleod CK (2012) Measuring hypoxia induced metal release from highly contaminated estuarine sediments during a 40 day laboratory incubation experiment. Sci Total Environ 420:229–237

    Article  CAS  Google Scholar 

  • Bell PR (1992) Eutrophication and coral reefs – some examples in the Great Barrier Reef lagoon. Wat Res 26:553–568

    Article  CAS  Google Scholar 

  • Berry WJ et al (1996) Predicting the toxicity of metals-spiked laboratory sediments using acid-volatile sulfide and interstitial water normalization. Environ Toxicol Chem 15:2067–2079

    Article  CAS  Google Scholar 

  • Bhattacharyya S, Klerks PL, Nyman JA (2003) Toxicity to freshwater organisms from oils and oil spill chemical treatments in laboratory microcosms. Environ Pollut 122:205–215

    Article  CAS  Google Scholar 

  • Browne MA, Crump P, Nivens SJ, Teuten E, Tonkin A, Galloway T, Thompson R (2011) Accumulation of microplastic on shorelines worldwide: sources and sinks. Environ Sci Technol 45:9175–9179

    Article  CAS  Google Scholar 

  • Cai WJ et al (2011) Acidification of subsurface coastal waters enhanced by eutrophication. Nat Geosci 4:766–770. doi:10.1038/ngeo1297

    Article  CAS  Google Scholar 

  • Calabrese EJ, Baldwin LA (1997) A quantitatively-based methodology of the evaluation of chemical hormesis. Hum Ecol Risk Assess 3:545–554

    Article  Google Scholar 

  • Camilli R, Reddy CM, Yoerger DR, Van Mooy BA, Jakuba MV, Kinsey JC, McIntyre CP, Sylva SP, Maloney JV (2010) Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon. Science 330:201–204

    Article  CAS  Google Scholar 

  • Chapman H, Purnell K, Law RJ, Kirby MF (2007) The use of chemical dispersants to combat oil spills at sea: a review of practice and research needs in Europe. Mar Pollut Bull 54:827–838

    Article  CAS  Google Scholar 

  • Cleveland CJ (Lead Author), NOAA (Content Source), Saundry P (Topic Editor) (2010) Exxon Valdez oil spill. In: Cleveland CJ (ed) Encyclopedia of earth. Environmental Information Coalition, National Council for Science and the Environment, Washington, DC

    Google Scholar 

  • Cleveland D, Long SE, Pennington PL, Cooper E, Fulton MH, Scott GI, Brewer T, Davis J, Petersen EJ, Wood L (2012) Pilot estuarine mesocosm study on the environmental fate of silver nanomaterials leached from consumer products. Sci Total Environ 421–422:267–272

    Article  Google Scholar 

  • Couillard CM, Lee K, Légaré B, King TL (2005) Effect of dispersant on the composition of the water-accommodated fraction of crude oil and its toxicity to larval marine fish. Environ Toxicol Chem 24:496–1504

    Google Scholar 

  • Depledge M, Aagaard A, Györkös P (1995) Assessment of trace metal toxicity using molecular, physiological, and behavioral biomarkers. Mar Pollut Bull 31:19–27

    Article  CAS  Google Scholar 

  • Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929

    Article  CAS  Google Scholar 

  • Diaz-Pulido G, Gouezo M, Tilbrook B, Dove S, Anthony KR (2011) High CO2 enhances the competitive strength of seaweeds over corals. Ecol Lett 14:156–162

    Article  Google Scholar 

  • Eakin CM, Lough JM, Heron SF (2009) Climate variability and change: monitoring data and evidence for increased coral bleaching Stress. In: Van Oppen MJH, Lough JM (eds) Coral bleaching: patterns, processes, causes and consequences. Springer, Berlin, pp 41–67

    Chapter  Google Scholar 

  • Epstein N, Bak RP, Rinkevich B (2000) Toxicity of third generation dispersants and dispersed Egyptian crude oil on Red Sea coral Larvae. Mar Pollut Bull 40:497–503

    Google Scholar 

  • Feely RA, Sabine CL, Lee K, Berelson W, Kelpas JA, Fabry VJ, Millero FJ (2004) Impact of anthropogenic CO2 on the CaC03 system in the oceans. Science 305:362–366

    Article  CAS  Google Scholar 

  • Fisher WS, Foss SS (1993) A simple test for toxicity of Number 2 fuel oil and oil dispersants to embryos of grass shrimp, Palaemonetes pugio. Mar Pollut Bull 26:385–391

    Article  CAS  Google Scholar 

  • Friedrich T et al (2012) Detecting regional anthropogenic trends in ocean acidification against natural variability. Nat Clim Change. doi:10.1038/NCLIMATE1372

    Google Scholar 

  • Gagné F, Auclair J, Turcotte P, Fournier M, Gagnon C, Sauvé S, Balise C (2008) Ecotoxicity of CdTe quantum dots to freshwater mussels: impacts on immune system, oxidative stress and genotoxicity. Aquat Toxicol 86:333–340

    Article  Google Scholar 

  • Goldstein MC, Rosenberg M, Cheng L (2012) Increased oceanic microplastic debris enhances oviposition in an endemic pelagic insect. Biol Lett. doi:10.1098/rsbl.2012.0298

    Google Scholar 

  • Griffitt RJ, Luo J, Gao J, Bonzonga J-C, Barber DS (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27:1972–1978

    Article  CAS  Google Scholar 

  • Harley CD (2011) Climate change, keystone predation, and biodiversity loss. Science 334:1124–1127

    Article  CAS  Google Scholar 

  • Hazen T et al (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330:204–208

    Article  CAS  Google Scholar 

  • Hebel DK, Jones MB, Depledge MH (1997) Responses to crustaceans to contaminant exposure: a holistic approach. Estuar Coast Shelf Sci 44:177–184

    Article  CAS  Google Scholar 

  • Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328

    Google Scholar 

  • Jovanović B, Palić D (2012) Immunotoxicology of non-functionalized engineered nanoparticles in aquatic organisms with special emphasis on fish–review of current knowledge, gap identification, and call for further research. Aquat Toxicol 118–119:141–151

    Article  Google Scholar 

  • Kessler JD et al (2011) A persistent oxygen anomaly reveals the fate of spilled methane in the deep Gulf of Mexico. Science 331:312–315

    Article  CAS  Google Scholar 

  • Kujawinski E, Soule MC, Valentine D, Boysen AK, Longnecker K, Redmond MC (2011) Fate of dispersants associated with the Deepwater Horizon oil spill. Environ Sci Technol 45:1298–1306

    Article  CAS  Google Scholar 

  • Kukulka T, Proskurowski G, Morét-Ferguson S, Meyer DW, Law KL (2012) The effect of wind mixing on the vertical distribution of buoyant plastic debris. Geophys Res Lett 39(7):L07601. doi:10.1029/2012GL051116

    Article  Google Scholar 

  • Laughlin RB, Ng J, Guard HE (1981) Hormesis: a response to low environmental concentrations of petroleum hydrocarbons. Science 213:705–707

    Article  Google Scholar 

  • Miller RJ, Bennett S, Keller AA, Pease S, Lenihan HS (2012) TiO2 nanoparticles are phototoxic to marine phytoplankton. PLoS One 7(1):e30321. doi:10.1371/journal.pone.0030321

    Article  CAS  Google Scholar 

  • Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976

    Article  CAS  Google Scholar 

  • National Transportation Safety Board (1990) Marine accident report: grounding of the U.S. Tankship Exxon Valdez: on Bligh Reef, Prince William Sound, near Valdez, Alaska, 24 March 1989. Washington, DC, NTSB. NTSB/MAR-90/04, 255 p

    Google Scholar 

  • Negri AP, Heyward AJ (2000) Inhibition of fertilization and larval metamorphosis of the coral Acropora millepora (Ehrenberg 1834) by petroleum products. Mar Pollut Bull 41:420–427

    Google Scholar 

  • Peterson CH, Rice SD, Short JW, Esler D, Bodkin JL, Ballachey BE, Irons DB (2003) Long-term ecosystem response to the Exxon Valdez oil spill. Science 302:2082–2086

    Article  CAS  Google Scholar 

  • Ramachandran SD, Hodson PV, Khan CW, Lee K (2004) Oil dispersant increases PAH uptake by fish exposed to crude oil. Ecotoxicol Environ Saf 59:300–308

    Article  CAS  Google Scholar 

  • Rhoton SL, Perkins RA, Richter ZD, Behr-Andres C, Lindstrom JE, Braddock JF (1998) Toxicity of dispersants and dispersed oil to an Alaskan marine organism. In: International oil spill conference, Proceedings of the 1998 Oil Spill Conference, American Petroleum Institute, Washington, DC, pp 8485–8488

    Google Scholar 

  • Rowe C (2008) “The calamity of so long life”: life histories, contaminants, and potential emerging threats to long-lived vertebrates. BioScience 58:623–631

    Article  Google Scholar 

  • Sanders BM, Martin LS, Nelson WG, Phelps DK, Welch W (1991) Relationships between accumulation of 60 kDa stress protein and scope-for-growth in Mytilus edulis exposed to a range of copper concentrations. Mar Environ Res 31:81–97

    Article  CAS  Google Scholar 

  • Scarlett A, Galloway TS, Canty M, Smith EL, Nilsson J, Rowland SJ (2005) Comparative toxicity of two oil dispersants, Superdispersant-25 and Corexit 9527, to a range of coastal species. Environ Toxicol Chem 24:1219–1227

    Article  CAS  Google Scholar 

  • Schofield O, Ducklow HW, Martinson DG, Meredith MP, Moline MA, Frazer WR (2010) How do polar marine ecosystems respond to rapid climate change? Science 328:1520–1523

    Article  CAS  Google Scholar 

  • Shafir S, van Rihn J, Rinkevich B (2007) Short and long term toxicity of crude oil and oil dispersants to two representative coral species. Environ Sci Tech 41:5571–5574

    Google Scholar 

  • Shi D, Xu Y, Hopkinson BM, Morel FMM (2010) Effect of ocean acidification on iron availability to marine phytoplankton. Science 327:676–679

    Article  CAS  Google Scholar 

  • Smith CJ, Shaw BJ, Handy RD (2007) Toxicity of single-walled carbon nanotubes to rainbow trout, (Oncorhynchus mykiss): respiratory toxicity, organ pathologies, and other physiological effects. Aquat Toxicol 82:94–109

    Article  CAS  Google Scholar 

  • Stebbing ARD (1981) Hormesis – stimulation of in Campanularia flexuosa (hydrozoa) by copper, cadmium and other toxicants. Aquat Toxicol 1:227–238

    Article  CAS  Google Scholar 

  • Stegeman J, Lech JJ (1991) Cytochrome P-450 monooxygenase systems in aquatic species: carcinogen metabolism and biomarkers for carcinogen and pollutant exposure. Environ Health Perspect 90:101–109

    Article  CAS  Google Scholar 

  • Sunda WG, Lewis JA (1978) Effect of complexation by natural organic ligands on the toxicity of copper to the unicellular alga Monochrisis lutheri. Limnol Oceanogr 23:870–876

    Article  CAS  Google Scholar 

  • Sunda WG, Engel DW, Thuotte RM (1978) Effect of chemical speciation on toxicity of cadmium to the grass shrimp, Palaemonetes pugio: importance of free cadmium ion. Environ Sci Technol 12:409–413

    Article  CAS  Google Scholar 

  • U.S.E.P.A (2010) EPA response to BP spill in the Gulf of Mexico. http://www.epa.gov/bpspill/dispersants-qanda.html#general2

  • Valentine D, Mezić I, Maćešić S, Črnjarić-Žic N, Ivić S, Hogan PJ, Fonoberov VA, Loire S (2012) Dynamic autoinoculation and the microbial ecology of a deep water hydrocarbon irruption. Proc Nat Acad Sci USA. doi:10.1073/pnas.1108820109

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Weis, J.S. (2014). Introduction to Marine Pollution. In: Physiological, Developmental and Behavioral Effects of Marine Pollution. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6949-6_1

Download citation

Publish with us

Policies and ethics