Phenology in Agriculture and Horticulture

  • Frank-M. ChmielewskiEmail author


In agriculture and horticulture, phenological observations have a long tradition since many management decisions and the timing of field works (planting, fertilizing, irrigating, crop protection, harvesting, etc.) are based on plant development. This chapter deals with both the historical and modern aspects of phenology in agriculture, including the impacts of climate change on plant development. The individual paragraphs give some examples how important are phenological observations to detect changes in the duration of phenological phases, to define the length of growing season – which sets the environmental limits for crop production – to select suitable growing areas for perennial and field crops, and how these data can be used to develop phenological models in agriculture and horticulture. The chapter ends with some applications of phenological models to calculate possible shifts in the timing of ripening and blossoming stages in relation to climate change.


Spring Barley Phenological Stage Perennial Crop Chilling Requirement Grow Season Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Basler D, Körner C (2012) Photoperiod sensitivity of bud burst in 14 temperate forest tree species. Agr For Meteorol 165:73–81CrossRefGoogle Scholar
  2. Blümel K, Chmielewski FM (2012a) Shortcomings of classical phenological forcing models and a way to overcome them. Agr Forest Meteorol 164:10–15. doi: 10.1016/j.agrformet.2012.05.001
  3. Blümel K, Chmielewski FM (2012b) Climate change in Hessen – chances, risks, and costs for fruit growing and viniculture. Annual Report (in German), Hessen State Office for Environment and Geology (HLUG). Accessed 2012
  4. Broekhuizen S, Zadoks JC (1967) Proposal for a decimal code of growth stages in cereals. Stichting Netherlands Graan-Centrum, WageningenGoogle Scholar
  5. Brown JA (1976) Shortening of growing season in the U.S. corn belt. Nature 260:420–421CrossRefGoogle Scholar
  6. Bruns E (2001) Phänologie im Deutschen Wetterdienst. Mitteilungen der DMG 1–2Google Scholar
  7. Campoy JA, Ruiz D, Egea J (2011) Dormancy in temperate fruit trees in a global warming context. A Rev Scientia Horticul 130:357–372CrossRefGoogle Scholar
  8. Cevik E (2011) Einfluss von Klima und Witterung auf phänologische Merkmale der Sommergerste und ihre Beziehung zum Ertrag. BSc thesis, HU BerlinGoogle Scholar
  9. Chmielewski FM (2007) Folgen des Klimawandels für die Land- und Forstwirtschaft. In: Endlicher W, Gerstengarbe FW (eds) Der Klimawandel – Einblicke, Rückblicke und Ausblicke. Eigenverlag, PotsdamGoogle Scholar
  10. Chmielewski FM (2009) Landwirtschaft und Klimawandel: In: Geographischen Rundschau 9: 61. Klimawandel im Industriezeitalter, pp 28–35Google Scholar
  11. Chmielewski FM (2011) Klimawandel und Landwirtschaft in der Metropolregion Hamburg. In: Storch H, Claußen M (eds) Klimabericht der Metropolregion Hamburg. Springer, Berlin/Heidelberg, pp 211–227CrossRefGoogle Scholar
  12. Chmielewski FM, Köhn W (1999a) The long-term agrometeorological field experiment at Berlin-Dahlem. Agr For Meteorol 96:39–48CrossRefGoogle Scholar
  13. Chmielewski FM, Köhn W (1999b) Impact of weather on yield components of spring cereals over 30 years. Agr For Meteorol 96:49–58CrossRefGoogle Scholar
  14. Chmielewski FM, Köhn W (2000) Impact of weather on yield and yield components of winter rye. Agr For Meteorol 102:253–261CrossRefGoogle Scholar
  15. Chmielewski FM, Müller A, Bruns E (2004) Climate changes and trends in phenology of fruit trees and field crops in Germany 1961–2000. Agr For Meteorol 121(1–2):69–78CrossRefGoogle Scholar
  16. Chmielewski FM, Blümel K, Henniges Y, Müller A (2009a) Klimawandel und Obstbau in Deutschland. Endbericht des BMBF-Verbundprojekts KliO. Eigenverlag Humboldt-Universität zu Berlin 237 S. Accessed 2012
  17. Chmielewski FM, Blümel K, Henniges Y, Müller A, Weber RWS (2009b) Klimawandel: Chancen, Risiken und Kosten für den deutschen Obstbau. In: Mahammadzadeh M, Biebeler H, Bardt H (Hrsg) Klimaschutz und Anpassung an die Klimafolgen – Strategien, Maßnahmen und Anwendungsbeispiele. Institut der deutschen Wirtschaft Köln Medien GmbH, pp 279–286Google Scholar
  18. Chmielewski FM, Blümel K, Henniges Y, Blanke M, Weber RWS, Zoth M (2011) Phenological models for the beginning of apple blossom in Germany. Meteorol Z 20:487–496CrossRefGoogle Scholar
  19. Chmielewski FM, Blümel K, Páleošvá I (2012) Climate change and shifts of dormancy release for deciduous fruit crops in Germany. Clim Res 54:209–219. doi: 10.3354/cr01115 Google Scholar
  20. Clive-James W (1971) Growth stages key for cereals. Can Pl Dis Surv 51:42–43Google Scholar
  21. Craufurd PQ, Wheeler TR (2009) Climate change and the flowering time of annual crops. J Exp Bot 60(9):2529–2539PubMedCrossRefGoogle Scholar
  22. Critchfield HJ (1966) General climatology. Prentice-Hall , Englewood CliffsGoogle Scholar
  23. Doi H (2007) Winter flowering phenology of Japanese apricot Prunus mume reflects climate change across Japan. Climat Res 34:99–104CrossRefGoogle Scholar
  24. Duchêne E, Schneider C (2005) Grapevine and climatic changes: a glance at the situation in Alsace. Agron Sustain Dev 25:93–99CrossRefGoogle Scholar
  25. Erez A, Samish RM, Lavee S (1966) The role of light in leaf and flower bud break of the peach (Prunus persica). Physiol Plantarum 19:650–659CrossRefGoogle Scholar
  26. Estrella N, Sparks T, Menzel A (2007) Trends and temperature response in the phenology of crops in Germany. Glob Change Biol 13:1737–1747CrossRefGoogle Scholar
  27. Feekes W (1941) De tarwe en haar milieu. Versl techn Techn Tarwe Commissie 12:523–888 and 17:560–561Google Scholar
  28. Fishman S, Erez A, Couvillon GA (1987a) The temperature-dependence of dormancy breaking in plants-mathematical analysis of a 2-step model involving a cooperative transition. J Theor Biol 124:473–483CrossRefGoogle Scholar
  29. Fishman S, Erez A, Couvillon GA (1987b) The temperature-dependence of dormancy breaking in plants-computer simulation of processes studied under controlled temperatures. J Theor Biol 126:309–321CrossRefGoogle Scholar
  30. Fujisawa M, Kobayashi K (2010) Apple (Malus pumila var. domestica) phenology is advancing due to rising air temperature in northern Japan. Glob Change Biol 16:2651–2660. doi: 10.1111/j.1365-2486.2009.02126.x CrossRefGoogle Scholar
  31. Goodrich S (1984) Checklist of vascular plants of the Canyon and Church Mountain (Utah, USA). Great Basin Nat 44:277–295Google Scholar
  32. Heide OM (2008) Interaction of photoperiod and temperature in the control of growth and dormancy of Prunus species. Sci Horticul 115:309–314CrossRefGoogle Scholar
  33. Heide OM, Prestrud AK (2004) Low temperatures, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiol 25:109–114CrossRefGoogle Scholar
  34. Hörmann G, Chmielewski FM (2001) Consequences for agriculture and forestry. In: Lozan JL, Hupfer P, Graßl H (eds) The climate of the 21st century. Wissenschaftliche Auswertungen, HamburgGoogle Scholar
  35. Hu Q, Weiss A, Feng S, Baenziger P (2005) Earlier winter wheat heading dates and warmer spring in the U.S. Great Plains. Agr For Meteorol 135:284–290CrossRefGoogle Scholar
  36. Jones GV, Davis RE (2000) Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. Am J Enol Viticult 51:249–261Google Scholar
  37. Keller C, Baggiolini M (1954) Les stades repéres dans la vegetation du blé. Revue Romande d’ Agricult 10(3):17–30Google Scholar
  38. Körschens M (1997) Die wichtigsten Dauerfeldversuche der Welt. Übersicht, Bedeutung, Ergebnisse. Arch Agron Soil Sci 42(3–4):157–168CrossRefGoogle Scholar
  39. Large EC (1954) Growth stages in cereals. Illustration of the Feekes Scale Plant Pathol 3:128–129CrossRefGoogle Scholar
  40. Lawn RJ, Summerfield RJ, Ellis RH, Roberts EH, Chay PM, Brouwer JB, Rose JL, Yeates SJ (1993) Towards the reliable prediction of time to flowering in six annual crops. VI. Applications in crop improvement. Exp Agric 31:89–108CrossRefGoogle Scholar
  41. Linsley-Noakes GC, Louw M, Allan P (1995) Estimating daily positive Utah Chill units using daily minimum and maximum temperatures. J SA Soc Hort Sci 5:19–23Google Scholar
  42. Lobell DB, Field CB (2011) California perennial crops in a changing climate. Clim Chang 109(suppl 1):317–333. doi: 10.1007/s10584-011-0303-6 CrossRefGoogle Scholar
  43. Luedeling E, Brown PH (2011) A global analysis of the comparability of winter chill models for fruit and nut trees. Int J Biometeorol 55:411–421PubMedCrossRefGoogle Scholar
  44. Matzneller P, Blümel K, Chmielewski FM (2013) Models for the beginning of sour cherry blossom. Int J Biometeorol. doi: 10.1007/s00484-013-0651-1
  45. McMaster GS, Wilhelm WW (2003) Phenological response of wheat and barley to water and temperature: improving simulation models. J Agric Sci 141:129–147CrossRefGoogle Scholar
  46. Meier U (1997) Growth stages of mono- and dicotyledonous plants. BBCH-Monograph Blackwell, BerlinGoogle Scholar
  47. Mirschel W, Kretschmer H (1990) Vergleich existierender Ontogenesemodelle für Winterweizen Arch Acker- Pflanzenbau Bodenkd 34:683–690Google Scholar
  48. Mirschel W, Kretschmer H, Matthäus E (1990) Dynamisches Modell zur Abschätzung der Ontogenese von Winterweizen unter Berücksichtigung des Wasser- und Stickstoff-versorgungszustandes. Arch Acker- Pflanzenbau Bodenkd 34:691–699Google Scholar
  49. Mirschel W, Wenkel KO, Schultz A, Pommerening J, Verch G (2005) Dynamic phenological model for winter rye and winter barley. Euro J Agron 23:123–135CrossRefGoogle Scholar
  50. Mitchell TD, Hulme M (2002) Length of the growing season. Weather 5(57):196–198Google Scholar
  51. MLUV (2009) Dauerfeldversuche in Brandenburg und Berlin. Beiträge für eine nachhaltige landwirtschaftliche Bodennutzung. Heidelberg, Berlin.Google Scholar
  52. Murray M (2011) Critical temperatures for frost damage on fruit trees. Utah State Univ Extension and Utah Plant Pest Diagnostic Lab. IPM-012-11Google Scholar
  53. Parry M (2007) The implications of climate change for crop yields, global food supply and risk of hunger. SAT eJournal ejournal icrisat org 4(1):44Google Scholar
  54. Petr J (1966) A precise phenological scale for grain cereals. Rostl Vyroba 12:207–212Google Scholar
  55. Primack RB, Higuchi H, Miller-Rushing AJ (2009) The impact of climate change on cherry trees and other species in Japan. Biol Conserv 142:1943–1949CrossRefGoogle Scholar
  56. Reiner L, Mangstl A, Straß F, Teuteberg W, Panse E, Kürten PW, Meier B, Grosskopf W, Deecke U, Kühne P, Schwerdtle JG (1979) Winterroggen aktuell. DLG Verlag, FrankfurtGoogle Scholar
  57. Reynolds MP (ed.) (2010) Climate change and crop production. CABI climate change series v. 1. CAB International, OxfordshireGoogle Scholar
  58. Richardson EA, Seeley SD, Walker DR (1974) A model for estimating the completion of rest for “Redhaven” and “Elberta” peach trees. Hortscience 1:331–332Google Scholar
  59. Ritchie TJ, Godwin DC, Otter-Nacke S (1988) CERES-Wheat. A simulation model of wheat growth and development. Texas A&M Univ Press, College StationGoogle Scholar
  60. Roßberg D, Jörg E, Falke K (2005) SIMONTO – ein neues Ontogenesemodell für Wintergetreide und Winterraps. Nachrichtenbl Deut Pflanzenschutzd 57:74–80Google Scholar
  61. Rötzer T, Würländer W, Häckel H (1997) Agrar- und Umweltklimatologischer Atlas von Bayern. Selbstverlag Deutscher Wetterdienst, WeihenstephanGoogle Scholar
  62. Schnelle F (1955) Pflanzenphänologie. Akademische Verlagsgesellschaft Geest & Portig K-G, Leipzig, p 299Google Scholar
  63. Schnelle F (1961) Agro-phenological annual course of the German and European agricultural regions. German Geographic Meeting, WiesbadenGoogle Scholar
  64. Shaltout AD, Unrath CR (1983) Rest completion prediction model for Starkrimson delicious apples. J Am Soc HortSci 108:957–961Google Scholar
  65. Siebert S, Ewert F (2012) Spatio-temporal patterns of phenological development in Germany in relation to temperature and day length. Agr For Meteorol 152:44–57CrossRefGoogle Scholar
  66. Strauß R, Bleiholder H, van den Bomm T, Buhr L, Hack H, Heb M, Klose R, Meier U, Weber E (1994) Einheitliche Codierung der phänologischen Entwicklungsstadien mono- und dikotyler Pflanzen. Erweiterte BBCH-Skala, BaselGoogle Scholar
  67. Tao F, Yokozawa M, Xu Y, Hayashi Y, Zhang Z (2006) Climate changes and trends in phenology and yields of field crops in China, 1981–2000. Agr For Meteorol 138:82–92CrossRefGoogle Scholar
  68. Wareing PF, Phillips IDJ (1981) Growth and differentiation in plants, 3rd edn. Pergamon Press, OxfordGoogle Scholar
  69. Weber RWS (2009) Possible impacts of climate change on harmful fungi in orchards. The examples of fruit rot pathogens on apples (in German). Erwerbs-Obstbau 51:115–120CrossRefGoogle Scholar
  70. Weinberger JH (1950) Chilling requirements of peach varieties. Proc Am Soc Hort Sci 56:122–128Google Scholar
  71. Weir AH, Bragg PL, Porter JR, Rayner JH (1984) A winter wheat crop simulation model without water nutrient limitations. J Agric Sci Cam 102:371–382CrossRefGoogle Scholar
  72. Wernecke P, Claus S (1992) Extension and improvement of descriptive models for the ontogenesis of wheat plants. Modelling Geo-Biosphere 1. Catena Verlag, Cremlingen-DestedtGoogle Scholar
  73. Wernecke P, Claus S (1996) Modelle der Ontogenese für die Kulturarten Winterweizen, Wintergerste und Winterraps. In: Mühle H, Claus S (Hrsg.) Reaktionsverhalten von agrarischen Ökosytemen homogener Areale, pp 105–120Google Scholar
  74. Williams T, Abberton M (2004) Earlier flowering between 1962 and 2002 in agricultural varieties of white clover. Oecologia 138:122–126PubMedCrossRefGoogle Scholar
  75. Wittchen U, Chmielewski FM (2005) Phytoclimate of winter rye stands. Meteorol Z 14(2):183–189CrossRefGoogle Scholar
  76. Wolfe DW, Schwartz MD, Lakso AN, Otsuki Y, Pool RM, Shaulis NJ (2005) Climate change and shifts in spring phenology of three horticultural woody perennials in northeastern USA. Int J Biometeorol 49:303–309PubMedCrossRefGoogle Scholar
  77. Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2013

Authors and Affiliations

  1. 1.Agricultural Climatology, Department of Crop and Animal Sciences, Faculty of Agriculture and HorticultureHumboldt-University of BerlinBerlinGermany

Personalised recommendations