Vegetation Phenology in Global Change Studies

  • Kirsten M. de BeursEmail author
  • Geoffrey M. Henebry


Changes in the character of the vegetated land surface are frequently expressed in terms of temporal trends in the Normalized Difference Vegetation Index (NDVI) retrieved from spaceborne sensors. In the past these change studies were typically based upon AVHRR data. By the end of 2011, we acquired 11 full years of NASA MODIS data which is a greatly improved dataset compared to extant AVHRR datasets. In this chapter, we present a change analysis based on a global NASA MODIS product (MCD43C4) at a 0.05° (~5.6 km) spatial resolution and a 16-day temporal resolution from 2001 through 2011. This new change map based on 11 years of data presents statistically significant positive and negative changes resulting from both direct and indirect impacts of climatic variability and change, disturbances, and human activity. We found significant negative changes in 8.7 % of the global land area (or 11.8 × 106 km2), with hotspots in Canada, southeastern USA, Kazakhstan, and Argentina. Significant positive changes appeared in 6.0 % of the global land area (8.0 × 106 km2) with hotspots in Turkey, China and Western Africa. Attribution is the key challenge in any change analysis. We provide several examples attributable to major modes of change, focusing both on natural disturbances arising from climatic variability and change, and also on changes arising directly from human actions.


Normalize Difference Vegetation Index Land Surface Temperature Advance Very High Resolution Radiometer Advance Very High Resolution Radiometer Bidirectional Reflectance Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported in part by the NEESPI and NASA LCLUC projects entitled Evaluating the effects of institutional changes on regional hydrometeorology: Assessing the vulnerability of the Eurasian semi-arid grain belt (NNG06GC22G) to GMH and Land abandonment in Russia: Understanding recent trends and assessing future vulnerability and adaptation to changing climate and population dynamics (NNX09AI29G) to KMdB. We would like to thank P. de Beurs for the application development that allowed us to estimate the trend statistics efficiently.


  1. Akhmadiyeva ZK, Groisman PY (2008) General assessment of climate change in Kazakhstan since 1990. Hydrometeorol Environ 2:45–53, in RussianGoogle Scholar
  2. Angert A, Biraud S, Bonfils C, Henning CC, Buermann W, Pinzon J, Tucker CJ, Fung I (2005) Drier summers cancel out the CO2 uptake enhancement induced by warmer springs. Proc Nat Acad Sci USA 102(31):10823–10827. doi: 10.1073/pnas.0501647102 PubMedCrossRefGoogle Scholar
  3. Betts RA, Falloon PD, Goldewijk KK, Ramankutty N (2007) Biogeophysical effects of land use on climate: model simulations of radiative forcings and large-scale temperature change. Agr For Meteorol 142(2–4):216–223CrossRefGoogle Scholar
  4. Brown ME, Pinzon JE, Didan K, Morisette JT, Tucker CJ (2006) Evaluation of the consistency of long-term NDVI time series derived from AVHRR, SPOT-vegetation, SeaWiFS, MODIS, and Landsat ETM + sensors. IEEE Trans Geosci Remote Sens 44(7):1787–1793CrossRefGoogle Scholar
  5. Carbone GJ, Dow K (2005) Water resource management and drought forecasts in South Carolina. JAWRA. J Am Water Resour As 41(1):145–155. doi: 10.1111/j.1752-1688.2005.tb03724.x CrossRefGoogle Scholar
  6. de Beurs KM, Henebry GM (2004a) Land surface phenology, climatic variation, and institutional change: analyzing agricultural land cover change in Kazakhstan. Remote Sens Environ 89(4):497–509. doi: 410.1016/j.rse.2003.1011.1006 CrossRefGoogle Scholar
  7. de Beurs KM, Henebry GM (2004b) Trend analysis of the pathfinder AVHRR land (PAL) NDVI data for the deserts of Central Asia. Geosci Remote Sens Lett 1(4):282–286CrossRefGoogle Scholar
  8. de Beurs KM, Henebry GM (2005a) Land surface phenology and temperature variation in the IGBP high-latitude transects. Glob Ch Biol 11:779–790CrossRefGoogle Scholar
  9. de Beurs KM, Henebry GM (2005b) A statistical framework for the analysis of long image time series. Int J Remote Sens 26(8):151–1573CrossRefGoogle Scholar
  10. de Beurs KM, Henebry GM (2008) Northern annular mode effects on the land surface phenologies of Northern Eurasia. J Clim 21:4257–4279CrossRefGoogle Scholar
  11. de Beurs KM, Henebry GM (2010a) A land surface phenology assessment of the northern polar regions using MODIS reflectance time series. Can J Remote Sens 36:S87–S110CrossRefGoogle Scholar
  12. de Beurs KM, Henebry GM (2010b) Spatio-temporal statistical methods for modeling land surface phenology. In: Hudson IL, Keatley MR (eds) Phenological research: methods for environmental and climate change analysis. Springer, New YorkGoogle Scholar
  13. de Beurs KM, Henebry GM (2010c) Spatio-temporal statistical methods for modelling land surface phenology. Phenological research: methods for environmental and climate change analysis 177–208. doi:10.1007/978-90-481-3335-2_9Google Scholar
  14. de Beurs KM, Wright CK, Henebry GM (2009) Dual scale trend analysis distinguishes climatic from anthropogenic effects on the vegetated land surface. Environ Res Lett 4(4):045012CrossRefGoogle Scholar
  15. de Beurs KM, Yan D, Karnieli A (2012) The effect of large scale conservation programs on the vegetative development of China’s Loess Plateau. In: Chen J, Wan S, Henebry GM et al (eds) Dryland East Asia (DEA): land dynamics amid social and climate change. HEP - De GruyerGoogle Scholar
  16. Dole R, Hoerling M, Perlwitz J, Eischeid J, Pegion P, Zhang T, Quan X-W, Xu T, Murray D (2011) Was there a basis for anticipating the 2010 Russian heat wave? Geophys Res Lett 38(6):L06702. doi: 10.1029/2010gl046582 CrossRefGoogle Scholar
  17. Donohue RJ, McVvicar TR, Roderick ML (2009) Climate-related trends in Australian vegetation cover as inferred from satellite observations, 1981–2006. Glob Ch Biol 15(4):1025–1039. doi: 10.1111/j.1365-2486.2008.01746.x CrossRefGoogle Scholar
  18. Ellis EC, Ramankutty N (2008) Putting people in the map: anthropogenic biomes of the world. Fr Ecol Environ 6:439–447. doi: 10.1890/070062 CrossRefGoogle Scholar
  19. Fensholt R, Proud SR (2012) Evaluation of earth observation based global long term vegetation trends – comparing GIMMS and MODIS global NDVI time series. Remote Sens Environ 119:131–147. doi: 10.1016/j.rse.2011.12.015 CrossRefGoogle Scholar
  20. Gallo K, Ji L, Reed B, Eidenshink J, Dwyer J (2005) Multi-platform comparisons of MODIS and AVHRR normalized difference vegetation index data. Remote Sens Environ 99(3):221–231. doi: 10.1016/j.rse.2005.08.014 CrossRefGoogle Scholar
  21. Goetz SJ, Bunn AG, Fiske GJ, Houghton RA (2005) Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proc Nat Acad Sci USA 102(38):13521–13525. doi: 10.1073/pnas.0506179102 PubMedCrossRefGoogle Scholar
  22. Goetz SJ, Mack MC, Gurney KR, Randerson JT, Houghton RA (2007) Ecosystem responses to recent climate change and fire disturbance at northern high latitudes: observations and model results contrasting northern Eurasia and North America. Environ Res Lett 2(4):1–9. doi: 04503110.1088/1748-9326/2/4/045031 CrossRefGoogle Scholar
  23. Gu Y, Brown JF, Verdin JP, Wardlow B (2007) A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophys Res Lett 34(6):L06407. doi: 10.1029/2006GL029127 CrossRefGoogle Scholar
  24. Henebry GM (2009) Carbon in idle croplands. Nature 457:1089–1090PubMedCrossRefGoogle Scholar
  25. Hess A, Iyer H, Malm W (2001) Linear trend analysis: a comparison of methods. Atmos Environ 35:5211–5222CrossRefGoogle Scholar
  26. Hirsch RM, Slack JR (1984) A nonparametric trend test for seasonal data with serial dependence. Water Resour Res 20(6):727–732CrossRefGoogle Scholar
  27. Hirsch RM, Slack JR, Smith RA (1982) Techniques of trend analysis for monthly water quality data. Water Resour Res 18(1):107–121CrossRefGoogle Scholar
  28. Huemann BW, Seaquist JW, Eklundh L, Jönsson P (2007) AVHRR derived phenological change in the Sahel and Soudan, Africa, 1982–2005. Remote Sens Environ 108:385–392CrossRefGoogle Scholar
  29. Ji L, Gallo K, Eidenshink JC, Dwyer J (2008) Agreement evaluation of AVHRR and MODIS 16‐day composite NDVI data sets. Int J Remote Sens 29(16):4839–4861. doi: 10.1080/01431160801927194 CrossRefGoogle Scholar
  30. Jia GJ, Epstein HE, Walker DA (2003) Greening of arctic Alaska, 1981–2001. Geophys Res Lett 30(20):2067. doi: 10.1029/2003GL018268 CrossRefGoogle Scholar
  31. Julien Y, Sobrino JA (2009a) Global land surface phenology trends from GIMMS database. Int J Remote Sens 30(13):3495–3513. doi: 10.1080/01431160802562255 CrossRefGoogle Scholar
  32. Julien Y, Sobrino JA (2009b) The Yearly Land Cover Dynamics (YLCD) method: an analysis of global vegetation from NDVI and LST parameters. Remote Sens Environ 113(2):329–334. doi: 10.1016/j.rse.2008.09.016 CrossRefGoogle Scholar
  33. Julien Y, Sobrino JA, Verhoef W (2006) Changes in land surface temperatures and NDVI values over Europe between 1982 and 1999. Remote Sens Environ 103:43–55CrossRefGoogle Scholar
  34. Kuemmerle T, Hostert P, Radeloff VC, Perzanowski K, Kruglov I (2008) Post-socialist farmland abandonment in the Carpatians. Ecosystems 11:614–628CrossRefGoogle Scholar
  35. Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET, Carroll AL, Ebata T, Safranyik L (2008) Mountain pine beetle and forest carbon feedback to climate change. Nature 452(7190):987–990. doi: 10.1038/nature06777 PubMedCrossRefGoogle Scholar
  36. Lashof DA, Ahuja DR (1990) Relative contributions of greenhouse gas emissions to global warming. Nature 344(6266):529–531CrossRefGoogle Scholar
  37. Lindeman M (2005) Kazakhstan: drought reduces 2004 wheat yield. Production Estimates and Crop Assessment Division Foreign Agricultural Service, FAS USDAGoogle Scholar
  38. Liu JG, Li SX, Ouyang ZY, Tam C, Chen XD (2008) Ecological and socioeconomic effects of China’s policies for ecosystem services. Proc Nat Acad Sci USA 105(28):9477–9482. doi: 10.1073/pnas.0706436105 PubMedCrossRefGoogle Scholar
  39. Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386(6626):698–702CrossRefGoogle Scholar
  40. Myneni RB, Tucker CJ, Asrar G, Keeling CD (1998) Interannual variations in satellite-sensed vegetation index data from 1981 to 1991. J Geophys Res 103(D6):6145–6160CrossRefGoogle Scholar
  41. Nelson A, Sprengel K, Flowers R, Kanaskie A, McWilliams M (2008) Forest health highlights in Oregon – 2007. Forest Health Highlights, PortlantGoogle Scholar
  42. Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–1563PubMedCrossRefGoogle Scholar
  43. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powel GVN, Underwood EC, D’Amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketss TH, Kura YLJF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on earth. BioScience 51(11):933–938CrossRefGoogle Scholar
  44. Potter C, Tan P, Steinbach M, Klooster S, Kumar V, Myneni R, Genovese V (2003) Major disturbance events in terrestrial ecosystems detected using global satellite data sets. Glob Ch Biol 9:1005–1021CrossRefGoogle Scholar
  45. Potter C, Boriah S, Steinbach M, Kumar V, Klooster S (2008) Terrestrial vegetation dynamics and global climate controls. Clim Dyn 31(1):67–78. doi: 10.1007/s00382-007-0339-5 CrossRefGoogle Scholar
  46. Reed BC (2006) Trend analysis of time-series phenology of North America derived from satellite data. GISci Remote Sens 43(1):24–38CrossRefGoogle Scholar
  47. Slayback DA, Pinzon JE, Los SO, Tucker CJ (2003) Northern hemisphere photosynthetic trends 1982–1999. Glob Ch Biol 9(1):1–15CrossRefGoogle Scholar
  48. Soja AJ, Tchebakova NM, French NHF, Flannigan MD, Shugart HH, Stocks BJ, Sukhinin AI, Parfenova EI, Chapin Iii FS, Stackhouse PW Jr (2007) Climate-induced boreal forest change: predictions versus current observations. Glob Planet Ch 56:274–296CrossRefGoogle Scholar
  49. Stahle DW, Cook ER, Villaneuva Diaz J, Fye FK, Burnette DJ, Griffin RD, Acuna Soto R, Seager R, Heim RR Jr (2009) Early 21st-century drought in mexico. EOS, Trans 90(11):89–90CrossRefGoogle Scholar
  50. Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150CrossRefGoogle Scholar
  51. Tucker CJ, Slayback DA, Pinzon JE, Los SO, Myneni RB, Taylor MG (2001) Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. Int J Biometeorol 45(4):184–190PubMedCrossRefGoogle Scholar
  52. Tucker CJ, Pinzon JE, Brown ME, Slayback D, Pak EW, Mahoney R, Vermote E, El Saleous N (2005) An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int J Remote Sens 26:4485–4498CrossRefGoogle Scholar
  53. van Leeuwen WJD, Orr BJ, Marsh SE, Herrmann SM (2006) Multi-sensor NDVI data continuity: uncertainties and implications for vegetation monitoring applications. Remote Sens Environ 100(1):67–81. doi: 10.1016/j.rse.2005.10.002 CrossRefGoogle Scholar
  54. Vuichard N, Ciais P, Belelli L, Smith P, Valentini R (2008) Carbon sequestration due to the abandonment of agriculture in the former USSR since 1990. Glob Biogeochem Cy 22, GB4018CrossRefGoogle Scholar
  55. Wang D, Morton D, Masek J, Wu A, Nagol J, Xiong X, Levy R, Vermote E, Wolfe R (2012) Impact of sensor degradation on the MODIS NDVI time series. Remote Sens Environ 119:55–61. doi: 10.1016/j.rse.2011.12.001 CrossRefGoogle Scholar
  56. White MA, Thornton PE, Running SW (1997) A continental phenology model for monitoring vegetation responses to interannual climatic variability. Glob Biogeochem Cy 11(2):217–234CrossRefGoogle Scholar
  57. Wilmking M, Juday GP, Barber VA, Zald HSJ (2004) Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds. Glob Change Biol 10(10):1724–1736. doi: 10.1111/j.1365-2486.2004.00826.x CrossRefGoogle Scholar
  58. Wright CK, de Beurs KM, Akhmadiyeva ZK, Groisman PY, Henebry GM (2009) Recent temperature and precipitation trends in Kazakhstan reveal significant changes in growing season weather. Environ Res Lett 4:045020CrossRefGoogle Scholar
  59. Xiao J, Moody A (2005) Geographical distribution of global greening trends and their climatic correlates: 1982–1998. Int J Remote Sens 26:2371–2390CrossRefGoogle Scholar
  60. Zhang PC, Shao GF, Zhao G, Le Master DC, Parker GR, Dunning JB, Li QL (2000) Ecology – China’s forest policy for the 21st century. Science 288(5474):2135–2136PubMedCrossRefGoogle Scholar
  61. Zhang K, Kimball JS, Hogg EH, Zhao MS, Oechel WC, Cassano JJ, Running SW (2008) Satellite-based model detection of recent climate-driven changes in northern high-latitude vegetation productivity. J Geophys Res-Biogeosci 113(G3):13. doi: G0303310.1029/2007jg000621 CrossRefGoogle Scholar
  62. Zhao M, Running S (2010) Drought-induced reduction in global terrestrial net primary productivity from 2000 through 2009. Science 329(5994):940–943PubMedCrossRefGoogle Scholar
  63. Zhou L, Tucker CJ, Kaufmann RK, Slayback D, Shabanov NV, Myneni RB (2001) Variation in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J Geophys Res 106(20):69–83Google Scholar
  64. Zhou L, Kaufmann RK, Tian Y, Myneni RB, Tucker CJ (2003) Relation between interannual variations in satellite measures of northern forest greenness and climate between 1982 and 1999. J Geophys Res 108(D1):ACL 3-1–ACL 3-16. doi: 10.1029/2002JD002510

Copyright information

© Springer Science+Business Media B.V. 2013

Authors and Affiliations

  1. 1.Department of Geography and Environmental SustainabilityThe University of OklahomaNormanUSA
  2. 2.Geographic Information Science Center of ExcellenceSouth Dakota State UniversityBrookingsUSA

Personalised recommendations