Aquatic Plants and Animals

  • Wulf GreveEmail author


The topic of this chapter is concerned with the greatest volume of the earth’s ecosystems. The separate sub-ecosystems and their organisms are introduced and exemplified. The fresh water systems are distinguished from the salt water systems and compared with respect to the affiliated organisms. The subsystems rivers, lakes, estuaries and oceans are housing a multitude of annually repetitive organic processes based on geophysics such as the annual temperature change, the freezing and thawing of lakes and water flow from catchment areas determining the onset of the annual succession, the layering of deeper waters temporarily separating biota linked by the daily vertical migration of zooplankton, the regional migration within the sea and between rivers and shelf seas and the timing of the reproductive season within the biota, in which the short lived plankton displays a multitude of populations succeeding each other all year. Among marine zooplankton the phenology of the start of season (SOS), middle of season (MOS), the end of season (EOS) and the resulting length of season (LOS) permits observations in phenology and seasonality with respect to seasonal preceding temperatures and long term shifts resulting from global warming. Phenology is a useful means for functional definition, determination and prediction of annual and long term seasonality.


German Bight Phenological Response Marine Zooplankton Helgoland Road Reproductive Synchronization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Rita Adrian and Inka Bartsch, who provided information on their fields of research, supported this study. The Helgoland Roads time-series analysis was undertaken with the support of grants DFG 282/3-1,2 and BMBF 03F181A.


  1. Adrian R (1997) Calanoid-cyclopoid interactions: evidence from an 11-year field study in a eutrophic lake. Freshw Biol 38:315–325CrossRefGoogle Scholar
  2. Adrian R, Walz N, Hintze T, Hoeg S, Rusche R (1999) Effects of ice duration on plankton succession during spring in a shallow polymictic lake. Freshw Biol 41:621–632CrossRefGoogle Scholar
  3. Adrin R, Wilhelm S, Gerten D (2006) Life-history traits of lake plankton species may govern their phenological response to climate. Global Change Biol 12(4):652–661CrossRefGoogle Scholar
  4. Aksornkoae S (1993) Ecology and management of mangroves. IUCN Wetlands and Water Resources Programme, Gland, SwitzerlandGoogle Scholar
  5. Alderdice DF, Forrester CR (1968) Some effects of salinity and temperature on early development and survival of English sole (Parophyrus vetulus). J Fish Res Bd Can 25:495–521CrossRefGoogle Scholar
  6. Alheit J, Hagen E (1997) Long-term climate forcing of European herring and sardine populations. Fish Oceanogr 6:130–139CrossRefGoogle Scholar
  7. Arasaki S (1981) A comparison of the phenology of intertidal Porphyra on the coasts of Japan and western North America. Proc Int Seaweed Symp 8:273–277Google Scholar
  8. Avila M, Otaiza R, Norambuena R, Nunez M (1996) Biological basis for the management of ‘luga negra’ (Sarcothalia crispata Gigartinales, Rhodophyta) in southern Chile. Hydrobiologia 326–327(1):245–252CrossRefGoogle Scholar
  9. Belehradek J (1935) Temperature and living matter. In: Protoplasma monograph. Borntraeger, BerlinGoogle Scholar
  10. Breeman AM, Meulenhoff EGS, Guiry MD (1988) Life history regulation and phenology of the red alga Bonnemaisonia hamifera. Helgoländer Meeresuntersuchungen 42(3–4):535–551CrossRefGoogle Scholar
  11. Caspers H (1951) Rhythmische Erscheinungen in der Fortpflanzung von Clunio marinus (dipt. Chiron.) und das Problem der lunaren Periodizität bei Organismen. Arch Hydrobiol 18(suppl Bd):415–594Google Scholar
  12. Chamberlain YM (1985) Trichocyte occurrence and phenology in four species of Pneophyllum (Rhodophyta, Corallinaceae) from the British Isles. Br Phycol J 20:375–379CrossRefGoogle Scholar
  13. Childress J (1983) Oceanic biology: lost in space? In: Brewer PG (ed) Oceanography, the present and the future. Springer, New YorkGoogle Scholar
  14. Clifton KE, Clifton LM (1999) The phenology of sexual reproduction by green algae (Bryopsidales) on Caribbean coral reefs. J Phycol 35:24–34CrossRefGoogle Scholar
  15. Colebrook JM (1960) Continuous plankton records: methods of analysis, 1950–1959. Bull Mar Ecol 5:51–64Google Scholar
  16. Colebrook JM (1978) Continuous plankton records: zooplankton and environment, north-east Atlantic and North Sea, 1948–1975. Oceanol Acta 1(1):9–23Google Scholar
  17. Cushing DH (1990) Recent studies on long term changes in the sea. Freshw Biol 23:71–84CrossRefGoogle Scholar
  18. Dahms HU (1995) Dormancy in the Copepoda – an overview. Hydrobiologia 306:199–211CrossRefGoogle Scholar
  19. Deshmukhe GV, Tatewaki M (2001) Phenology of brown alga Coilodesme japonica (Phaeophyta, Dictyosiphonales) with respect to the host-specificity along Muroran coast, North Pacific Ocean, Japan. IJMS 30:161–165Google Scholar
  20. Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430:881–884PubMedCrossRefGoogle Scholar
  21. Elton C (1927) Animal ecology. University of Chicago Press, ChicagoGoogle Scholar
  22. Franke HD (1990) Photopollution: coastal artificial light affects reproductive synchronisation in a litoral polychaete. Verhandlungen der Deutschen Zoologischen Gesellschaft 83:481Google Scholar
  23. Garrido CL, Barber BJ (2001) Effects of temperature and food ration on gonads and oogenesis of the green sea urchin, Strongylocentrotus droebachiensis. Mar Biol 138:447–456CrossRefGoogle Scholar
  24. Gerlach SA (1994) Marine systeme. Springer, BerlinGoogle Scholar
  25. Gerten D, Adrian R (2002) Effects of climate warming, north Atlantic Oscillation, and El Nino/Southern oscillation thermal conditions and plankton dynamics in European and North American lakes. TSWJ 2:586–606Google Scholar
  26. Giese AC (1959) Comparative physiology: annual reproductive cycles of marine invertebrates. A Rev Physiol 21:547–576CrossRefGoogle Scholar
  27. Greve W (1974) Planktonic Spermatophores found in a culture device with spionid Polychaetes. Helgol Wiss Meeresunters 26:370–374CrossRefGoogle Scholar
  28. Greve W (1995) Mutual predation causes bifurcations in pelagic ecosystems: the simulation model PLITCH (PLanktonic swITCH), experimental tests, and theory. ICES J Mar Sci 52:505–510CrossRefGoogle Scholar
  29. Greve W, Reiners F (1988) Plankton time – space dynamics in German Bight – a systems approach. Oecologia 77:487–496CrossRefGoogle Scholar
  30. Greve W, Reiners F (1995) Biocoenotic process patterns in German Bight. In: Eleftheriou A, Ansell A, Smith CJ (eds) Biology and ecology of shallow coastal waters. Olsen & Olsen, Fredensborg, DenmarkGoogle Scholar
  31. Greve W, Lange U, Reiners F, Nast J (2001) Predicting the seasonality of north sea Zooplankton. In: Kröncke I, Türkay M, Sündermann J (eds) Burning issues of north sea ecology, Proceedings of the 14th international Senckenberg Conference North Sea 2000. Senckenbergiana marit, Frankfurt am MainGoogle Scholar
  32. Greve W, Prinage S, Zidowitz H, Nast J, Reiners F (2005) On the phenology of North Sea ichthyoplankton. ICES J Mar Sci 62:1216–1223CrossRefGoogle Scholar
  33. Gwada P, Makoto T, Uezu Y (2000) Leaf phenological traits in the mangrove Kandelia candel (L.) Druce. Aquat Bot 68:1–14CrossRefGoogle Scholar
  34. Hardege JD, Bentley MG (1997) Spawning synchrony in Arenicola marina: evidence for sex pheromonal control. Proc R Soc Lond B Biol 264:1041–1047CrossRefGoogle Scholar
  35. Harrington RW (1959) Effects of four combinations of temperature and daylength on the ovogenetic cycle of a low-latitude fish, Fundulus confluentus GOODE and BEAN. Zoologica 44:149–168Google Scholar
  36. Henry EC (1988) Regulation of reproduction in brown algae by light and temperature. Bot Mar 31:353–357CrossRefGoogle Scholar
  37. Heyen H, Fock H, Greve W (1998) Detecting relationships between the interannual variability in ecological time series and climate using a multivariate statistical approach – a case study on Helgoland Roads zooplankton. Clim Res 10:179–191CrossRefGoogle Scholar
  38. Hogg ID, Williams DD, Eadie JM, Butt SA (1995) The consequences of global warming for stream invertebrates: a field simulation. J Therm Biol 20:199–206CrossRefGoogle Scholar
  39. Howell SNG, King JR, Corben C (1999) First prebasic molt in herring-, Thayer’s-, and glaucous-winged gulls. J F Ornithol 70:543–554Google Scholar
  40. Joedicke R (1998) Autumnal phenology of central European Odonata. 2. Observations in the Lower Rhine Region, Germany. Opusc Zool Flumin 159:1–20Google Scholar
  41. Juanes F, Buckel JA, Conover DO (1994) Accelerating the onset of piscivory: intersection of predator and prey phenologies. J Fish Biol 45:41–54CrossRefGoogle Scholar
  42. Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. In: Dodge DP (ed) Proceedings of the international large river symposium. Fisheries and Oceans, Canada (Governmental Agency)Google Scholar
  43. Kinne O (1963) The effects of temperature and salinity on marine and brackish water animals I temperature. Oceanogr Mar Biol A Rev 1:301–340Google Scholar
  44. Kröncke I, Dippner JW, Heyen H, Zeiss B (1998) Long-term changes in macrofaunal communities off Norderney (East Frisia, Germany) in relation to climate variability. Mar Ecol Prog Ser 167:25–36CrossRefGoogle Scholar
  45. Lake PS (1995) Of floods and droughts. River and stream ecosystems of Australia. In: Cushing CE, Cummins KW, Minshall GW (eds) River and stream ecosystems. Elsevier, AmsterdamGoogle Scholar
  46. Lampitt RS (1985) Evidence for the seasonal deposition of detritus to the deep-sea floor and its subsequent resuspension. Deep-Sea Res 32:885–897CrossRefGoogle Scholar
  47. Lange U, Greve W (1997) Does temperature influence the spawning time, recruitment and distribution of flatfish via its influence on the rate of gonadal maturation? Deutsche Hydrographische Zeitschrift 49(3):251–263CrossRefGoogle Scholar
  48. Lenz J (2000) Introduction. In: Harris R, Weibe P, Lenz J, Skjoldal HR, Huntley M (eds) ICES zooplankton methodology manual. Academic Press, San DiegoGoogle Scholar
  49. Lindley JA, Batten SD (2002) Long-term variability in the diversity of North Sea zooplankton. J Mar Biol Ass UK 82(3):1–40Google Scholar
  50. Lüning K, tom Dieck I (1989) Environmental triggers in algal seasonality. Bot Mar 32(5):389–397CrossRefGoogle Scholar
  51. Mackas DI, Greve W, Edwards M, Chiba S, Tadokoro K, Eloire D, Mazzocchi MG, Batten S, Richardson AJ, Joihnson C, Head E, Conversi A, Pelusa T (2011) Changing zooplankton seasonality in a changing ocean: comparing time series of zooplankton phenology. Prog Oceanogr 97:31–62Google Scholar
  52. Marine Zooplankton Colloquium (2001) Future marine zooplankton research- a perspective. Mar Ecol Prog Ser 222:297–308CrossRefGoogle Scholar
  53. Menzel A (2000) Trends in phenological phases in Europe between 1951 and 1996. Int J Biometeorol 44:76–81PubMedCrossRefGoogle Scholar
  54. Mihuc TB, Toetz DW (1996) Phenology of aquatic macroinvertebrates in an alpine wetland. Hydrobiologia 330:131–136CrossRefGoogle Scholar
  55. Miller CB, Cowles TJ, Wiebe PH, Copley NJ, Grigg H (1991) Phenology in Calanus finmarchicus; hypotheses about control mechanisms. Mar Ecol Prog Ser 72:79–91CrossRefGoogle Scholar
  56. Molenaar FJ, Breeman AM (1997) Latitudinal trends in the growth and reproductive seasonality of Delesseria sanguinea, Membranoptera alata, and Phycodrys rubens (Rhodophyta). J Phycol 33(3):330–343CrossRefGoogle Scholar
  57. Neumann D (1967) Genetic adaption in emergence time of Clunio populations to different tidal conditions. Helgoländer wiss Meeresunters 15:163–171CrossRefGoogle Scholar
  58. Oestvedt OJ (1955) Zooplankton investigation from weather ship M in the Norwegian Sea, 1948–1949. Hvalradets Skrifter Sci Results Mar Biol Res 40:1–93Google Scholar
  59. Oliveira EC, Corbisier TN, De Eston VR, Ambrosio O (1997) Phenology of a seagrass (Halodule wrightii) bed on the southeast coast of Brazil. Aquat Bot 56:25–33CrossRefGoogle Scholar
  60. Orton JH (1920) Sea-temperature, breeding and distribution of marine animals. J Mar Biol Ass UK 12:330–366Google Scholar
  61. Parsons TR, Takahashi M, Hargrave B (1984) Biological oceanographic processes, 3rd edn. Pergamon Press, Oxford/New YorkGoogle Scholar
  62. Pohlmann T (1996) Simulating the heat storage in the North Sea with a three-dimensional circulation model. Cont Shelf Res 16:195–213CrossRefGoogle Scholar
  63. Reid PC, Planque B, Edwards M (1998) Is observed variability in the long-term results of the continuous plankton recorder survey a response to climate change? Fish Oceanogr 7(3/4):282–288CrossRefGoogle Scholar
  64. Reyes J, Sanson M, Afonso-Carrillo J (1995) Distribution and reproductive phenology of the seagrass Cymodocea nodosa (Ucria) Ascherson in the Canary Islands. Aquat Bot 50:171–180CrossRefGoogle Scholar
  65. Sartorius SS, Rosen PC (2000) Breeding phenology of the lowland leopard frog (Rana yavapaiensis): implications for conservation and ecology. Southwest Nat 45:267–273CrossRefGoogle Scholar
  66. Schmiedl G, Mitschele A, Beck S, Emeis K, Helleben C, Schulz H, Sperling M (2003) Benthic foraminiferal record of ecosystem variability in the eastern Mediterranean sea during times of saprobel S5 and S6 deposition. Palaeogeogr Palaeocl 190:139–164CrossRefGoogle Scholar
  67. Sewell MA, Young CM (1999) Temperature limits to fertilization and early development in the tropical sea urchin Exhinometra lucunter. J Exp Mar Biol Ecol 47:291–305CrossRefGoogle Scholar
  68. Southward AJ, Butler EI, Pennycuick P (1975) Recent cyclic changes in climate and in abundance of marine life. Nature 253:714–717CrossRefGoogle Scholar
  69. Stanwell-Smith D, Peck LS (1998) Temperature and embryonic development in relation to spawning and field occurrence of larvae of three Antarctic echinoderms. Biol Bull Mar Biol Lab Woods Hole 194:44–52CrossRefGoogle Scholar
  70. Straile D, Adrian R (2000) The north Atlantic oscillation and plankton dynamics in two European lakes – two variations on a general theme. Global Change Biol 6:663–670CrossRefGoogle Scholar
  71. Summers WC (1985) Ecological implications of life stage timing determined from the cultivation of Rossia pacifica (Mollusca: Cephalopoda). Vie et Mileu 35(3/4):249–254Google Scholar
  72. Tesch FW (1962) Witterungsabhängigkeit der Brutentwicklung und Nachwuchsförderung bei Lucioperca lucioperca L. Kurze Mitteilungen aus dem Institut für Fischereibiologie der Universität Hamburg 12:37–44Google Scholar
  73. Uhlig G, Sahling G (1995) Noctiluca scintillans: zeitliche Verteilung bei Helgoland und räumliche Verbreitung in der Deutschen Bucht (Langzeitreihen 1970–1993). Ber Biol Anst Helgoland 9:1–127Google Scholar
  74. Valdés L, O’Brien T, López-Urrutia A (2006) Zooplankton monitoring results in the ICES area, Summary Status Report 2004/2005. ICES Cooperative Research Report 281Google Scholar
  75. Van der Veer HW, Bergmann MJN (1987) Predation by crustaceans on a newly settled O-group plaice Pleuronectes platessa in the Western wadden sea. Mar Ecol Prog Ser 35:203–215CrossRefGoogle Scholar
  76. Wagner R, Gathmann O (1996) Long-term studies on aquatic dance flies (Diptera, Empididae) 1883–1993: distribution and size patterns along the stream, abundance changes between years and the influence of environmental factors of the community. Archiv Fuer Hydrobiologie 137:385–410Google Scholar
  77. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoeg-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395PubMedCrossRefGoogle Scholar
  78. Werner B (1962) Verbreitung und jahreszeitliches Auftreten Rathkea octopunctata (M. Sars) und Bougainvillia superciliaris (L. Agassiz), (Athecata-Anthomedusae). Ein Beitrag zur kausalen marinen Tiergeographie. Kieler Meeresforsch 18:55–66Google Scholar
  79. Wiencke C, Bartsch I, Bischoff B, Peters AF, Breeman AM (1994) Temperature requirements and biogeography of Antarctic, Arctic and Amphiequatorial seaweeds. Bot Mar 37(3):247–259CrossRefGoogle Scholar
  80. Wiltshire KH, Malzahn AM, Wirtz K, Greve W, Janisch S, Mangelsdorf P, Manly BFJ, Boersma M (2008) Resilience of North Sea phytoplankton spring bloom dynamics: an analysis of long-term data at Helgoland Roads. Limnol Oceanogr 53:1294–1302CrossRefGoogle Scholar
  81. Winder M, Schindler DE (2004) Climatic effects on the phenology of lake processes. Global Change Biol 10(11):1844–1856CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2013

Authors and Affiliations

  1. 1.German Center for Marine Biodiversity ResearchSenckenberg Research InstituteHamburgGermany

Personalised recommendations