Skip to main content

Animal Life Cycle Models (Poikilotherms)

  • Chapter
  • First Online:

Abstract

This chapter discusses the theoretical basis and application of phenology models for poikilothermic animals, with a particular emphasis on insects. Realistic and accurate models make use of the non-linear, unimodal nature of physiological responses to temperature, using the rate-summation paradigm. In addition, the intrinsic (genetic) variation of developmental rates within populations is described and used to generate simulations where life-cycle events are distributed over time among individuals rather than occurring simultaneously within populations. The usefulness of circle maps to understand the impact of climate on poikilotherm life cycles is illustrated. The application of phenology models at landscape scale, and their use in the study of the impacts of climate and climate change on the distribution of poikilotherms are illustrated with two examples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen JC, Foltz JL, Dixon WN, Liebhold AM, Colbert JJ, Régnière J, Gray DR, Wilder JW, Christie I (1993) Will the gypsy moth become a pest in Florida? Fla Entomol 76:102–113

    Article  Google Scholar 

  • Angilletta MJ, Niewiarowski PH, Navas CA (2002) The evolution of thermal physiology in ectotherms. J Therm Biol 27:249–268

    Article  Google Scholar 

  • Arrhenius S (1889) Uber die reaktionsgeschwindigkeit bei der inversion von rohrzucker durcj sauren. Zeitschrift for Physik Chemique 4:226–248

    Google Scholar 

  • Bentz BJ, Régnière J, Fettig CJ, Hansen EM, Hayes JL, Hicke JA, Kelsey RG, Negrón JF, Seybold SJ (2010) Climate change and bark beetles of the western United States and Canada: direct and indirect effects. Bioscience 60:602–613

    Article  Google Scholar 

  • Bolstad PV, Swift L, Collons F, Régnière J (1998) Measured and predicted air temperatures at basin to regional scales in the southern Appalachian mountains. Agric For Meteorol 91:161–176

    Article  Google Scholar 

  • Boutin S, Hébert D (2002) Landscape ecology and forest management: developing an effective partnership. Ecol Appl 12:390–397

    Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  • Chen J, Saunders SC, Crow TR, Naiman RJ, Brosofske KD, Mroz GD, Brookshire BL, Franklin JF (1999) Microclimate in forest ecosystem and landscape ecology: variations in local climate can be used to monitor and compare the effects of different management regimes. Bioscience 49:288–297

    Article  Google Scholar 

  • de Jong G, van der Have TM (2009) Temperature dependence of development rate, growth rate and size: from biophysics to adaptation. In: Whitman DW, Ananthakrishnan TN (eds) Phenotypic plasticity of insects: mechanisms and consequences. Science Publishers, Enfield

    Google Scholar 

  • Dixon AF, Honek GA, Keil P, Kotela MAA, Sizling AL, Jarosik V (2009) Relationship between the minimum and maximum temperature thresholds for development in insects. Funct Ecol 23:257–264

    Article  Google Scholar 

  • Eyring H (1935) The activated complex and the absolute rate of chemical reactions. Chem Rev 17:65–77

    Article  CAS  Google Scholar 

  • Gilbert E, Powell JA, Logan JA, Bentz BJ (2004) Comparison of three models predicting developmental milestones given environmental and individual variation. Bull Math Biol 66:1821–1850

    Article  Google Scholar 

  • Grist EPM, Gurney WSC (1995) Stage-specificity and the synchronization of life cycles to periodic environmental variation. J Math Biol 34:123–147

    Article  Google Scholar 

  • Haila Y (1995) A conceptual genealogy of fragmentation research: from island biogeography to landscape ecology. Ecol Appl 12:321–334

    Google Scholar 

  • Hutchinson MF (1995) Stochastic space-time weather models from ground-based data. Agric For Meteorol 73:237–264

    Article  Google Scholar 

  • Isaaks EH, Srivastava RM (1989) An introduction to geostatistics. Oxford University Press, New York

    Google Scholar 

  • Janisch E (1932) The influence of temperature on the life-history of insects. Trans R Soc Entomol Lond 80:137–168

    Article  Google Scholar 

  • Jenkins JL, Powell JA, Logan JA, Bentz BJ (2001) Low seasonal temperatures promote life cycle synchronization. Bull Math Biol 63:573–595

    Article  CAS  Google Scholar 

  • Knies JI, Kingsolver JG (2010) Erroneous Arrhenius: modified Arrhenius model best explains the temperature dependence of ectotherm fitness. Am Nat 176:227–233

    Article  Google Scholar 

  • Liebhold AM, Halverson JA, Elmes GA (1992) Gypsy moth invasion in North America: a quantitative analysis. J Biogeogr 19:513–520

    Article  Google Scholar 

  • Logan JA (1988) Toward an expert system for development of pest simulation models. Environ Entomol 17:359–376

    Google Scholar 

  • Logan JA, Powell JA (2001) Ghost forests, global warming, and the mountain pine beetle. Am Entomol 47:160–173

    Google Scholar 

  • McGarigal K, Cushman SA (2002) Comparative evaluation of experimental approaches to the study of habitat fragmentation effects. Ecol Appl 12:335–345

    Article  Google Scholar 

  • Montgomery ME (1990) Variation in the suitability of tree species for the gypsy moth. In: Gottschalk KW, Tivery MJ, Smith SI (eds) Proceedings U.S. Department of Agriculture Interagency Gypsy Moth Research Review. USDA Forest Service General technical report NE 146

    Google Scholar 

  • Music B, Caya D (2007) Evaluation of the hydrological cycle over the Mississippi River basin as simulated by the Canadian regional climate model (CRCM). J Hydrometeorol 8:969–988

    Article  Google Scholar 

  • Nalder IA, Wein RW (1998) Spatial interpolation of climatic normals: test of a new method in the Canadian boreal forest. Agric For Meteorol 9:211–225

    Article  Google Scholar 

  • Nietschke BS, Magarey RD, Bochert DM, Calvin DD, Jones E (2007) A developmental database to support insect phenology models. Crop Prot 26:1444–1448

    Article  Google Scholar 

  • Nylin S, Gotthard K (1998) Plasticity in life-history traits. Ann Rev Entomol 63:63–84

    Article  Google Scholar 

  • Powell JA, Bentz BJ (2009) Connecting phenological predictions with population growth rates for mountain pine beetle, an outbreak insect. Landsc Ecol 24:657–672

    Article  Google Scholar 

  • Powell JA, Logan JA (2005) Insect seasonality: circle map analysis of temperature-driven life cycles. Theor Popul Biol 67:161–179

    Article  Google Scholar 

  • Powell JA, Jenkins J, Logan JA, Bentz BJ (2000) Seasonal temperature alone can synchronize life cycles. Bull Math Biol 62:977–998

    Article  CAS  Google Scholar 

  • Racsko P, Szeidl L, Semonov M (1991) A serial approach to local stochastic weather models. Ecol Model 57:27–41

    Article  Google Scholar 

  • Régnière J, Bolstad PV (1994) Statistical simulation of daily air temperature patterns in eastern North America to forecast seasonal events in insect pest management. Environ Entomol 23:1368–1380

    Google Scholar 

  • Régnière J, Sharov A (1999) Simulating temperature-dependent ecological processes at the sub-continental scale: male gypsy moth flight phenology as an example. Int J Biometeorol 42:146–152

    Article  Google Scholar 

  • Régnière J, St-Amant R (2007) Stochastic simulation of daily air temperature and precipitation from monthly normals in North America north of Mexico. Int J Biometeorol 51:415–430

    Article  Google Scholar 

  • Régnière J, Nealis VG, Porter K (2009) Climate suitability and management of the gypsy moth invasion into Canada. Biol Invasions 11:135–148

    Article  Google Scholar 

  • Régnière J, Powell JA, Bentz BJ, Nealis VG (2012a) Effects of temperature on development, survival and reproduction of insects: experimental design, data analysis and modeling. J Insect Physiol 58:634–647

    Article  Google Scholar 

  • Régnière J, St-Amant R, Duval P (2012b) Predicting insect distributions under climate change for physiological responses: Spruce budworm as an example. Biol Invasions 14:1571–1586

    Article  Google Scholar 

  • Richardson CW (1981) Stochastic simulation of daily precipitation, temperature and solar radiation. Water Resour Res 17:182–190

    Article  Google Scholar 

  • Richardson CW, Wright DA (1984) WGEN: a model for generating daily weather variables. US Department of Agriculture, Washington, DC, Agricultural Research Service 8

    Google Scholar 

  • Royama T (1984) Population dynamics of the spruce budworm, Choristoneura fumiferana (Clem.). Ecol Monogr 54:429–462

    Article  Google Scholar 

  • Russo JM, Liebhold AW, Kelley AGW (1993) Mesoscale weather data as input to a gypsy moth (Lepidoptera: Lymantriidae) phenology model. J Econ Entomol 86:838–844

    Google Scholar 

  • Ryszkowski L (2001) Landscape ecology in agroecosystems management. Advances in agroecology. CRC Press, Boca Raton

    Book  Google Scholar 

  • Safranyik L, Carroll AL, Régnière J, Langor DW, Riel WG, Shore TL, Peter B, Cooke BJ, Nealis V, Taylor SW (2010) Potential for range expansion of mountain pine beetle into the boreal forest of North America. Can Entomol 142:415–442

    Article  Google Scholar 

  • Schoolfield RM, Sharpe PJH, Magnuson CE (1981) Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J Theor Biol 88:719–731

    Article  CAS  Google Scholar 

  • Sharov AA, Pijanowski BC, Liebhold AM, Gage SH (1999) What affects the rate of gypsy moth (Lepidoptera: Lymantriidae) spread: winter temperature or forest susceptibility? Agric For Entomol 1:37–45

    Article  Google Scholar 

  • Sharpe PJH, DeMichele DW (1977) Reaction kinetics of poikilotherm development. J Theor Biol 64:649–670

    Article  CAS  Google Scholar 

  • Sharpe PJH, Curry GL, DeMichele DW, Cole CL (1977) Distribution model of organism development times. J Theor Biol 66:21–38

    Article  CAS  Google Scholar 

  • Wang JY (1960) A critique of the heat unit approach to plant response studies. Ecology 41:785–790

    Article  Google Scholar 

  • Whiteman CD (2000) Mountain meteorology: fundamentals and applications. Oxford University Press, New York

    Google Scholar 

  • Wilks DS (1999) Simultaneous stochastic simulation of daily precipitation, temperature and solar radiation at multiple sites in complex terrain. Agric For Meteorol 96:85–101

    Article  Google Scholar 

  • Wolda H (1988) Insect seasonality: why? Annu Rev Ecol Syst 19:1–18

    Google Scholar 

  • Worner SP (1992) Performance of phenological models under variable temperature regimes: consequences of the Kaufmann or rate summation effect. Environ Entomol 21:689–699

    Google Scholar 

  • Yurk BP, Powell JA (2010) Modeling the effects of developmental variation on insect phenology. Bull Math Biol 76:1334–1360

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Régnière .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Régnière, J., Powell, J.A. (2013). Animal Life Cycle Models (Poikilotherms). In: Schwartz, M. (eds) Phenology: An Integrative Environmental Science. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6925-0_16

Download citation

Publish with us

Policies and ethics