Plant Development Models

  • Isabelle ChuineEmail author
  • Iñaki Garcia de Cortazar-Atauri
  • Koen Kramer
  • Heikki Hänninen


In this chapter we provide a brief overview of plant phenology modeling, focusing on mechanistic phenological models. After a brief history of plant phenology modeling, we present the different models which have been described in the literature so far and highlight the main differences between them, i.e. their degree of complexity and the different types of response function to temperature they use. We also discuss the different approaches used to build and parameterize such models. Finally, we provide a few examples of applications mechanistic plant phenological models have been successfully used for, such as frost hardiness modeling, tree growth modeling, tree species distribution modeling and temperature reconstruction of the last millennium.


Harvest Date Frost Damage Plant Phenology Dormancy Release Phenological Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



IC was financially supported by project SCION (ANR-05-BDIV-009) of the French National Research Agency. KK was financially supported by project DynTerra (project no. 5238821) of the Knowledge Base of the Dutch Ministry of Economy, Agriculture and Innovation and the large-scale integrative project MOTIVE (FP7 contract no. 226544). HH was financially supported by the Academy of Finland (project 122194). The authors are most grateful to Jacques Régnière for his thorough review and his corrections which greatly improved the quality of this chapter.


  1. Anderson JL, Kesner CD, Richardson EA (1986) Validation of chill unit and flower bud phenology models for Montmorency sour cherry. Acta Hortic 184:71–77Google Scholar
  2. Aono Y, Omoto Y (1993) Variation in the March mean temperature deduced from cherry blossom in Kyoto since the 14th century. J Agric Meteorol 48:635–638CrossRefGoogle Scholar
  3. Aono Y, Saito S (2010) Clarifying springtime temperature reconstructions of the medieval period by gap-filling the cherry blossom phenological data series at Kyoto, Japan. Int J Biometeorol 54(2):211–219PubMedCrossRefGoogle Scholar
  4. Bennett JP (1949) Temperature and bud rest period. Calif Agric 3(11):9–12Google Scholar
  5. Bidabé B (1967) Action de la température sur l’évolution des bourgeons de pommier et comparaison de méthodes de contrôle de l’époque de floraison. Ann Physiol Vég 1:65–86Google Scholar
  6. Bonhomme M, Rageau R, Lacointe A (2010) Optimization of endodormancy release models using series of endodormancy release data collected in France. Acta Hortic 872:51–60Google Scholar
  7. Boyer WD (1973) Air temperature, heat sums, and pollen shedding phenology of longleaf pine. Ecology 54:421–425Google Scholar
  8. Brazdil R, Pfister C, Wanner H, Von Storch H, Luterbacher J (2005) Historical climatology in Europe – the state of the art. Clim Change 70(3):363–430. doi: 10.1007/s10584-005-5924-1 CrossRefGoogle Scholar
  9. Caffarra A, Donnelly A, Chuine I (2011a) Modelling the timing of Betula pubescens budburst. II. Integrating complex effects of photoperiod into process-based models. Clim Res 46:159–170. doi: 10.3354/cr00983 CrossRefGoogle Scholar
  10. Caffarra A, Donnelly A, Chuine I, Jones MB (2011b) Modelling the timing of Betula pubescens budburst. I. Temperature and photoperiod: a conceptual model. Clim Res 46:147–157Google Scholar
  11. Campbell RK, Sugano AI (1975) Phenology of bud burst in Douglas-fir related to provenance, photoperiod, chilling and flushing temperature. Bot Gaz 136:290–298Google Scholar
  12. Cannell MGR (1985) Analysis of risks of frost damage to forest trees in Britain. In: Tigerstedt PMA, Puttonen P, Koski V (eds) Crop physiology of forest trees. Helsinki University Press, HelsinkiGoogle Scholar
  13. Cannell MGR, Smith RI (1983) Thermal time, chill days and prediction of budburst in Picea sitchensis. J Appl Ecol 20:951–963CrossRefGoogle Scholar
  14. Cannell MGR, Smith RI (1986) Climatic warming, spring budburst and frost damage on trees. J Appl Ecol 23:177–191CrossRefGoogle Scholar
  15. Chatfield C (1988) Problem solving: a statistician guide. Chapman & Hall, LondonGoogle Scholar
  16. Chuine I (2000) A unified model for the budburst of trees. J Theor Biol 207:337–347PubMedCrossRefGoogle Scholar
  17. Chuine I (2010) Why does phenology drive species distribution? Philos Trans R Soc Lond B 365:3149–3160CrossRefGoogle Scholar
  18. Chuine I, Beaubien E (2001) Phenology is a major determinant of temperate tree range. Ecol Lett 4(5):500–510CrossRefGoogle Scholar
  19. Chuine I, Belmonte J (2004) Improving prophylaxis for pollen allergies: predicting the time course of the pollen load of the atmosphere of major allergenic plants in France and Spain. Grana 43:1–17CrossRefGoogle Scholar
  20. Chuine I, Cour P, Rousseau DD (1998) Fitting models predicting dates of flowering of temperate-zone trees using simulated annealing. Plant Cell Environ 21:455–466CrossRefGoogle Scholar
  21. Chuine I, Cour P, Rousseau DD (1999) Selecting models to predict the timing of flowering of temperate trees: implications for tree phenology modelling. Plant Cell Environ 22(1):1–13CrossRefGoogle Scholar
  22. Chuine I, Yiou P, Viovy N, Seguin B, Daux V, Ladurie EL (2004) Grape ripening as a past climate indicator. Nature 432:289–290Google Scholar
  23. Chuine I, Yiou P, Viovy N, Seguin B, Daux V, Ladurie EL (2004a) Grape ripening as a past climate indicator. Nature 432(7015):289–290. doi: 10.1038/432289a PubMedCrossRefGoogle Scholar
  24. Chuine I, Yiou P, Viovy N, Seguin B, Daux V, Ladurie ELR (2004b) Grape ripening as an indicator of past climate. Nature 432:289–290PubMedCrossRefGoogle Scholar
  25. Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007) Changing plant phenology in response to climate change. TREE 22(7):357–365PubMedGoogle Scholar
  26. Delpierre N, Dufrêne E, Soudani K, Ulrich E, Cecchini S, Boé J, François C (2009) Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France. Agric For Meteorol 149(6):938–948CrossRefGoogle Scholar
  27. Dose V, Menzel A (2004) Bayesian analysis of climate change impacts in phenology. Glob Change Biol 10(2):259–272CrossRefGoogle Scholar
  28. Emberlin J, Mullins J, Corden J, Millington W, Brooke M, Savage M, Jones S (1997) The trend to earlier Birch pollen season in the U. K.: a biotic response to changes in weather conditions? Grana 36:29–33Google Scholar
  29. Erez A, Fishman S, Linsley-Noakes GC, Allan P (1990) The dynamic model for rest completion in peach buds. Acta Hortic 276:165–174Google Scholar
  30. Etien N, Daux V, Masson-Delmotte V, Stievenard M, Bernard V, Durost S, Guillemin MT, Mestre O, Pierre M (2008) A bi-proxy reconstruction of Fontainebleau (France) growing season temperature from AD 1596 to 2000. Clim Past 4(2):91–106CrossRefGoogle Scholar
  31. Etien N, Daux V, Masson-Delmotte V, Mestre O, Stievenard M, Guillemin M, Boettger T, Breda N, Haupt M, Perraud P (2009) Summer maximum temperature in northern France over the past century: instrumental data versus multiple proxies (tree-ring isotopes, grape harvest dates and forest fires). Clim Change 94(3):429–456CrossRefGoogle Scholar
  32. Falusi M, Calamassi R (1996) Geographic variation and bud dormancy in beech seedlings (Fagus sylvatica L). Ann Sci Forestieres 53:967–979Google Scholar
  33. Fishman S, Erez A, Couvillon GA (1987) The temperature dependence of dormancy breaking in plants: mathematical analysis of a two-step model involving a cooperative transition. J Theor Biol 124(4):473–483CrossRefGoogle Scholar
  34. Frenguelli G, Bricchi E (1998) The use of pheno-climatic model for forecasting the pollination of some arboreal taxa. Aerobiologia 14:39–44CrossRefGoogle Scholar
  35. Fu YH, Campioli M, Demaree G, Deckmyn A, Hamdi R, Janssens IA, Deckmyn G (2012) Bayesian calibration of the Unified budburst model in six temperate tree species. Int J Biometeorol 56(1):153–164. doi: 10.1007/s00484-011-0408-7 PubMedCrossRefGoogle Scholar
  36. García de Cortázar-Atauri I, Daux V, Garnier E, Yiou P, Viovy N, Seguin B, Boursiquot JM, Parker AK, Van Leeuwen C, Chuine I (2010) Climate reconstructions from grape harvest dates: methodology and uncertainties. Holocene 20(4):599–608CrossRefGoogle Scholar
  37. Garcia-Mozo H, Chuine I, Aira M-J, Belmonte J, Bermejo D, Guardia CD, Elvira B, Gutierrez M, Rodriguez-Rajo J, Ruiz L, Trigo MM, Tormo R, Valencia R, Galan C (2007) Regional phenological models for forecasting the start and peak of the Quercus pollen season in Spain. Agric For Manag 148(3):372–380CrossRefGoogle Scholar
  38. Garcia-Mozo H, Galán C, Belmonte J, Bermejo D, Candau P, Guardia CD, Elvira B, Gutierrez M, Jato V, Silva I, Trigo MM, Valencia R, Chuine I (2008a) Predicting the start and peak dates of the Poaceae pollen season in Spain using process-based models. Agric For Meteorol 149:256–262CrossRefGoogle Scholar
  39. Garcia-Mozo H, Orlandi F, Galan C, Fornaciari M, Romano B, Ruiz L, Guardia CD, Trigo M, Chuine I (2008b) Olive flowering phenology variation between different cultivars in Spain and Italy: modelling analysis. Theor Appl Climatol 95:385–395. doi: 10/1007/s00704-008-0016-6 CrossRefGoogle Scholar
  40. Gritti ES, Duputié A, Massol F, Chuine I (2013) Estimating consensus and associated uncertainty between inherently different species distribution models. Methods in Ecology and Evolution 4:442–452Google Scholar
  41. Häkkinen R (1999) Statistical evaluation of bud development theories: application to bud burst of Betula pendula leaves. Tree Physiol 19:613–618PubMedCrossRefGoogle Scholar
  42. Hammer GL, Carberry PS, Muchow RC (1993) Modelling genotypic and environmental control of leaf area dynamics in grain sorghum. I. Whole plant level. Field Crop Res 33(3):293–310CrossRefGoogle Scholar
  43. Hänninen H (1987) Effects of temperature on dormancy release in woody plants: implications of prevailing models. Silva Fenn 21(3):279–299Google Scholar
  44. Hänninen H (1990) Modelling bud dormancy release in trees from cool and temperate regions. Acta For Fenn 213:1–47Google Scholar
  45. Hänninen H (1991) Does climatic warming increase the risk of frost damage in northern trees? Plant Cell Environ 14:449–454CrossRefGoogle Scholar
  46. Hänninen H (1995) Effects of climatic change on trees from cool and temperate regions: an ecophysiological approach to modelling of budburst phenology. Can J Bot 73:183–199CrossRefGoogle Scholar
  47. Hänninen, H, Kramer K (2007) A framework for modelling the annual cycle of trees in boreal and temperate regions. Silva Fennica 41:167–205Google Scholar
  48. Hanninen H, Tanino K (2011) Tree seasonality in a warming climate. Trends Plant Sci 16(8):412–416. doi: 10.1016/j.tplants.2011.05.001 PubMedCrossRefGoogle Scholar
  49. Hänninen H, Slaney M, Linder S (2007) Dormancy release of Norway spruce under climatic warming: testing ecophysiological models of bud burst with a whole-tree chamber experiment. Tree Physiol 27(2):291–300PubMedCrossRefGoogle Scholar
  50. Hartkamp AD, Hoogenboom G, White JW (2002) Adaptation of the CROPGRO growth model to velvet bean (Mucuna pruriens): I. Model development. Field Crop Res 78(1):9–25CrossRefGoogle Scholar
  51. Heide OM (1993a). Daylength and thermal time responses of budburst during dormancy release in some northern deciduous trees. Physiol Plant 88:531–540Google Scholar
  52. Heide OM (1993b) Dormancy release in beech buds (Fagus sylvatica) requires both chilling and long days. Physiol Plant 89:187–191Google Scholar
  53. Hunt LA, Pararajasingham S (1995) CROPSIM – WHEAT: a model describing the growth and development of wheat. Can J Plant Sci 75(3):619–632CrossRefGoogle Scholar
  54. Kellomäki S, HÄnninnen H, Kolström M (1995) Computations on frost damage to scots pine under climatic warming in boreal conditions. Ecol Appl 5(1):42–52CrossRefGoogle Scholar
  55. Kikuzawa K (1991) A cost-benefit analysis of leaf habit and leaf longevity of trees and their geographical pattern. Am Nat 138:1250–1263Google Scholar
  56. Kikuzawa K (1995a) The basis for variation in leaf longevity of plants. Vegetatio 121:89–100Google Scholar
  57. Kikuzawa K (1995b) Leaf phenology as an optimal strategy for carbon gain in plants. Can J Bot 73:158–163Google Scholar
  58. Kikuzawa K (1996) Geographical distribution of leaf life span and species diversity of trees simulated by a leaf-longevity model. Vegetatio 122:61–67Google Scholar
  59. Kikuzawa K, Kudo G (1995) Effects of the length of the snow-free period on leaf longevity in alpine shrubs: a cost-benefit model. Oikos 73:214–220Google Scholar
  60. Kobayashi KD, Fuchigami LH (1983a) Modeling bud development during the quiescent phase in red-osier dogwood (Cornus sericea L.). Agric Meteorol 28:75–84CrossRefGoogle Scholar
  61. Kobayashi KD, Fuchigami LH (1983b) Modelling temperature effects in breaking rest in Red-osier Dogwood (Cornus sericea L.). Ann Bot 52:205–215Google Scholar
  62. Kobayashi KD, Fuchigami LH, English MJ (1982) Modelling temperature requirements for rest development in Cornus sericea. J Am Soc Hortic Sci 107:914–918Google Scholar
  63. Kramer K (1994a) A modelling analysis of the effects of climatic warming on the probability of spring frost damage to tree species in The Netherlands and Germany. Plant Cell Environ 17:367–377CrossRefGoogle Scholar
  64. Kramer K (1994b) Selecting a model to predict the onset of growth of Fagus sylvatica. J Appl Ecol 31:172–181CrossRefGoogle Scholar
  65. Kramer K (1995) Modelling comparison to evaluate the importance of phenology for the effects of climate change in growth of temperate-zone deciduous trees. Clim Res 5:119–130CrossRefGoogle Scholar
  66. Kramer K, Hänninen H (2009) The tree’s annual cycle of development and the process-based modelling of growth to scale up from the tree to the stand. In: Noormets A (ed) Phenology of ecosystem processes. Applications in global change research. Springer, LondonGoogle Scholar
  67. Kramer K, Mohren GMJ (1996) Sensitivity of FORGRO to climatic change scenarios: a case study on Betula pubescens, Fagus sylvatica and Quercus robur in the Netherlands. Clim Change 34:231–237CrossRefGoogle Scholar
  68. Kramer K, Van der Werf DC (2010) Equilibrium and non-equilibrium concepts in forest genetic modelling: population- and individually-based approaches. For Syst 19:100–112Google Scholar
  69. Kramer K, Friend A, Leinonen I (1996) Modelling comparison to evaluate the importance of phenology and spring frost damage for the effects of climate change on growth of mixed temperate-zone deciduous forests. Clim Res 7:31–41CrossRefGoogle Scholar
  70. Kramer K, Buiteveld J, Forstreuter M, Geburek T, Leonardi S, Menozzi P, Povillon F, Schelhaas M, Cros ET, Vendramin GG, Werf DC (2008) Bridging the gap between ecophysiological and genetic knowledge to assess the adaptive potential of European beech. Ecol Model 216:333–353CrossRefGoogle Scholar
  71. Kramer K, Degen B, Buschbom J, Hickler T, Thuiller W, Sykes MT, de Winter W (2010) Modelling exploration of the future of European beech (Fagus sylvatica L.) under climate change-range, abundance, genetic diversity and adaptive response. For Ecol Manag 259(11):2213–2222. doi: 10.1016/j.foreco.2009.12.023 CrossRefGoogle Scholar
  72. Krinner G, Viovy N, Noblet-Ducoudrée N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC (2005) A dynamic global vegetation model for studies of the coupled atmospheric-biospheric system. Glob Biogeochem Cycles 19:1–33CrossRefGoogle Scholar
  73. Kupias R, Mäkinen Y (1980) Correlations of Alder pollen occurrence to climatic variables. In: First international conference on aerobiology, MunichGoogle Scholar
  74. Lamb RC (1948) Effects of temperature above and below freezing on the breaking of rest in the Latham raspberry. J Am Soc Hortic Sci 51:313–315Google Scholar
  75. Landsberg JJ (1974) Apple fruit bud development and growth; analysis and an empirical model. Ann Bot 38:1013–1023Google Scholar
  76. Lang GA, Early JD, Arroyave NJ, Darnell RL, Martin GC, Stutte GW (1985) Dormancy–toward a reduced, universal terminology. Hortscience 20:809–812Google Scholar
  77. Lechowicz MJ, Koike T (1995) Phenology and seasonality of woody-plants – an unappreciated element in global change research. Can J Bot 73(2):147–148CrossRefGoogle Scholar
  78. Leinonen I (1996) A simulation model for the annual frost hardiness and freeze damage of Scots pine. Ann Bot 78(6):687–693CrossRefGoogle Scholar
  79. Leinonen I, Kramer K (2002) Applications of phenological models to predict the future carbon sequestration potential of boreal forests. Clim Change 55(1–2):99–113CrossRefGoogle Scholar
  80. Leinonen I, Repo T, Hänninen H, Burr K (1995) A second-order dynamics model for the frost hardiness of trees. Ann Bot 76:89–95CrossRefGoogle Scholar
  81. Linkosalo T, Carter TR, Hakkinen R, Hari P (2000) Predicting spring phenology and frost damage risk of Betula spp. under climatic warming: a comparison of two models. Tree Physiol 20(17):1175–1182PubMedCrossRefGoogle Scholar
  82. Linkosalo T, Lappalainen HK, Hari P (2008) A comparison of phenological models of leaf bud burst and flowering of boreal trees using independent observations. Tree Physiol 28(12):1873–1882PubMedCrossRefGoogle Scholar
  83. Linsley-Noakes GC, Louw M, Allan P (1995) Estimating daily positive Utah chill units from maximum and minimum temperatures. J S Afr Soc Hortic Sci 5:19–24Google Scholar
  84. Maurer C, Koch E, Hammer C, Hammer T, Pokorny E (2009) BACCHUS temperature reconstruction for the period 16th to 18th centuries from Viennese and Klosterneuburg grape harvest dates. J Geophys Res D Atmos 114(22):1–13Google Scholar
  85. Mohren GMJ (1987) Simulation of forest growth, applied to Douglas fir stands in The Netherlands, Landbouw Universiteit Wageningen, WageningenGoogle Scholar
  86. Maurer C, Hammerl C, Koch E, Hammerl T, Pokorny E (2011) Extreme grape harvest data of Austria, Switzerland and France from AD 1523 to 2007 compared to corresponding instrumental/reconstructed temperature data and various documentary sources. Theor Appl Climatol 106(1–2):55–68. doi: 10.1007/s00704-011-0410-3 CrossRefGoogle Scholar
  87. Meier N, Rutishauser T, Pfister C, Wanner H, Luterbacher J (2007) Grape harvest dates as a proxy for Swiss April to August temperature reconstructions back to AD 1480. Geophys Res Lett 34:1–6. doi: 10.1029/2007GL031381 CrossRefGoogle Scholar
  88. Menzel A (2005) A 500 year pheno-climatological view on the 2003 heatwave in Europe assessed by grape harvest dates. Meteorol Z 14(1):75–77CrossRefGoogle Scholar
  89. Morin X, Augspurger C, Chuine I (2007) Process-based modeling of species’ distributions: what limits temperate tree species’ range boundaries? Ecology 88(9):2280–2291PubMedCrossRefGoogle Scholar
  90. Morin X, Viner D, Chuine I (2008) Tree species range shifts at a continental scale: new predictive insights from a process-based model. J Ecol 96:784–794CrossRefGoogle Scholar
  91. Morin X, Lechowicz MJ, Augspurger C, Keef JO, Viner D, Chuine I (2009) Leaf phenology in 22 North American tree species during the 21st century. Glob Change Biol 15:961–975CrossRefGoogle Scholar
  92. Možný M, Brázdil R, Dobrovolný P, Trnka M (2010) Cereal harvest dates in the Czech Republic between 1501 and 2008 as a proxy for March–June temperature reconstruction. Clim Change 110(3–4):810–821Google Scholar
  93. Murray MB, Cannell MGR, Smith RI (1989) Date of budburst of fifteen tree species in Britain following climatic warming. J Appl Ecol 26:693–700CrossRefGoogle Scholar
  94. Myking T, Heide OM (1995) Dormancy release and chilling requirements of buds of latitudinal ecotypes of Betula pendula and B. pubescens. Tree Physiol 15:697–704Google Scholar
  95. Phillipp M, Böcher J, Mattson O, Woodell SLJ (1990) A quantitative approach to the sexual reproductive biology and population structure in some Arctic flowering plants: Dryas integrifolia, Silene acaulis and Ranunculus nivalis. Medd Grönl Biosci 34:1–60Google Scholar
  96. Piao SL, Ciais P, Friedlingstein P, Peylin P, Reichstein M, Luyssaert S, Margolis H, Fang JY, Barr L, Chen AP, Grelle A, Hollinger D, Laurila T, Lindroth A, Richardson AD, Vesala T (2007) Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451:49–52. doi: 10.1038/nature06444 CrossRefGoogle Scholar
  97. Pigott CD, Huntley JP (1981) Factors controlling the distribution of Tilia cordata at the northern limits of its geographical range. III nature and cause of seed sterility. New Phytol 87:817–839CrossRefGoogle Scholar
  98. Poirier M, Lacointe A, Améglio T (2010) A semi-physiological model of cold hardening and dehardening in walnut stem. Tree Physiol 30(12):1555–1569PubMedCrossRefGoogle Scholar
  99. Porter JR, Gawith M (1999) Temperatures and the growth and development of wheat: a review. Eur J Agron 10(1):23–36CrossRefGoogle Scholar
  100. Pouget R (1968) Nouvelle conception du seuil de croissance chez la vigne. Vitis 7:201–205Google Scholar
  101. Pouget R (1972) Considérations générales sur le rythme végétatif et la dormance des bourgeons de la vigne. Vitis 11:198–217Google Scholar
  102. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1989) Numerical recipes in Pascal. Cambridge University Press, CambridgeGoogle Scholar
  103. Reaumur RAF (1735) Observations du thermomètre, faites à Paris pendant l’année 1735, comparées avec celles qui ont été faites sous la ligne, à l’isle de France, à Alger et quelques unes de nos isles de l’Amérique. Mem Paris Acad Sci 1735:545Google Scholar
  104. Reich PB (1994) Phenology of tropical forests: patterns, causes, and consequences. Can J Bot 73:164–174CrossRefGoogle Scholar
  105. Repo T, Mäkelä A, Hänninen H (1990) Modelling frost resistance of trees. Silva Carelica 15:61–74Google Scholar
  106. Richardson EA, Seeley SD, Walker DR (1974) A model for estimating the completion of rest for ‘Redhaven’ and ‘Elberta’ peach trees. Hortscience 9:331–332Google Scholar
  107. Richardson EA, Anderson JL, Hatch AH, Seeley SD Asymcur (1982) An asymetric curvilinear fruit tree model. In: 21st international horticultural congress, Hamburg, p 2078Google Scholar
  108. Richardson AD, Black TA, Ciais P, Delbart N, Friedl MA, Gobron N, Hollinger DY, Kutsch WL, Longdoz B, Luyssaert S, Migliavacca M, Montagnani L, Munger JW, Moors E, Piao SL, Rebmann C, Reichstein M, Saigusa N, Tomelleri E, Vargas R, Varlagin A (2010) Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos Trans R Soc B Biol Sci 365(1555):3227–3246. doi: 10.1098/rstb.2010.0102 CrossRefGoogle Scholar
  109. Riou C (1994) The effect of climate on grape ripening: application to the zoning of sugar content in the European community. Office des Publications Officielles des Communautés Européennes, LuxembourgGoogle Scholar
  110. Robertson GW (1968) A biometeorological time scale for a cereal crop involving day and night temperatures and photoperiod. Int J Biometeorol 12:191–223CrossRefGoogle Scholar
  111. Ruml M, Vuković A, Vujadinović M, Djurdjević V, Ranković-Vasić Z, Atanacković Z, Sivčev B, Marković N, Matijašević S, Petrović N (2012) On the use of regional climate models: implications of climate change for viticulture in Serbia. Agric For Meteorol 158:53–62CrossRefGoogle Scholar
  112. Sakai A, Larcher W (1987) Frost survival of plants, vol 62, Ecological studies. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  113. Sarvas R (1972) Investigations on the annual cycle of development on forest trees active period. Commun Inst For Fenn 76(3):110Google Scholar
  114. Sarvas R (1974) Investigations on the annual cycle of development of forest trees. Autumn dormancy and winter dormancy. Commun Inst For Fenn 84:1–101Google Scholar
  115. Schwartz MD (1997) Spring index models: an approach to connecting satellite and surface phenology. In: Lieth H, Schwartz MD (eds) Phenology in seasonal climates. Backhuys Publishers, Leiden, pp 23–38Google Scholar
  116. Schwartz MD, Marotz GA (1986) An approach to examining regional atmosphere-plant interactions with phenological data. J Biogeogr 13:551–560CrossRefGoogle Scholar
  117. Schwartz MD, Marotz GA (1988) Synoptic events and spring phenology. Phys Geogr 9:151–161Google Scholar
  118. Schwartz MD, Ault TR, Betancourt JL (2012) Spring onset variations and trends in the continental USA: past and regional assessment using temperature-based indices. Int J Climatol (published online. doi:  10.1002/joc.3625)
  119. Siminovitch D, Wilson CM, Briggs DR (1953) Studies on the chemistry of the living bark of the black locust in relation to its frost hardiness. V. Seasonal transformations and variations in the carbohydrates: starch-sucrose interconversions. Plant Physiol 28:383–400PubMedCrossRefGoogle Scholar
  120. Sinclair TR, Kitani S, Bruniard J, Horide T (1991) Soybean flowering date: linear and logistic models based on temperature and photoperiod. Crop Sci 31:786–790CrossRefGoogle Scholar
  121. Soltani A, Hammer GL, Torabi B, Robertson MJ, Zeinali E (2006) Modeling chickpea growth and development: phenological development. Field Crops Res 99(1):1–13CrossRefGoogle Scholar
  122. Spieksma FTH, Emberlin J, Hjelmroos M, Jðger S, Leuschner RM (1995) Atmospheric birch (Betula) pollen in Europe: trends and fluctuations in annual quantities and the starting dates of the seasons. Grana 34:51–57Google Scholar
  123. Stone M (1977) An asymptotic equivalence of choice of model by cross-validation and Akaike’s criterion. J R Stat Soc B 38:44–47Google Scholar
  124. Thorhallsdottir TE (1998) Flowering phenology in the central highland of Iceland and implications for climatic warming in the Arctic. Oecologia 114:43–49CrossRefGoogle Scholar
  125. Thorsen SM, Hoglind M (2010) Modelling cold hardening and dehardening in timothy. Sensitivity analysis and Bayesian model comparison. Agric For Meteorol 150(12):1529–1542. doi: 10.1016/j.agrformet.2010.08.001 CrossRefGoogle Scholar
  126. Vegis A (1964) Dormancy in higher plants. Annu Rev Plant Physiol 15:185–224CrossRefGoogle Scholar
  127. Vesala T, Haataja J, Aalto P, Altimir N, Buzorius G, Garam E, Hämeri K, Ilvesniemi H, Jokinen V, Keronen P, Lahti T, Markkanen T, Mäkelä JM, Nikinmaa E, Palmroth S, Palva L, Pohja T, Pumpanen J, Rannik Ü, Siivola E, Ylitalo H, Hari P, Kulmala M (1998) Long-term field measurements of atmosphere-surface interactions in boreal forest combining forest ecology, micrometeorology, aerosol physics and atmospheric chemistry. Trends Heat Mass Momentum Transf 4:17–35Google Scholar
  128. Wang JY (1960) A critique of the heat unit approach to plant response studies. Ecology 41(4):785–789CrossRefGoogle Scholar
  129. Wang E, Engel T (1998) Simulation of phenological development of wheat crops. Agric Syst 58(1):1–24CrossRefGoogle Scholar
  130. Wareing PF (1953) Growth studies in woody species. V. Photoperiodism in dormant buds of Fagus sylvatica L. Physiologia Plantarum 6:692–706Google Scholar
  131. Weinberger JH (1950) Chilling requirements of peach varieties. Proc Am Soc Hortic Sci 56:122–128Google Scholar
  132. White MA, Thornton PE, Running SW (1997) A continental phenology model for monitoring vegetation responses to interannual climatic variability. Glob Biogeochem Cycles 11:217–234CrossRefGoogle Scholar
  133. Yan W, Hunt LA (1999) An equation for modelling the temperature response of plants using only the cardinal temperatures. Ann Bot 84(5):607–614CrossRefGoogle Scholar
  134. Yin X, Kropff MJ, McLaren G, Visperas RM (1995) A nonlinear model for crop development as a function of temperature. Agric For Meteorol 77(1–2):1–16CrossRefGoogle Scholar
  135. Yiou P, García de Cortázar-Atauri I, Chuine I, Daux V, Garnier E, Viovy N, Leeuwen C, Parker AK, Boursiquot J-M (2012) Continental atmospheric circulation over Europe during the Little Ice Age inferred from grape harvest dates. Clim Past 8:577–588CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2013

Authors and Affiliations

  • Isabelle Chuine
    • 1
    Email author
  • Iñaki Garcia de Cortazar-Atauri
    • 2
  • Koen Kramer
    • 3
  • Heikki Hänninen
    • 4
  1. 1.Centre d’Ecologie Fonctionnelle et EvolutiveCNRSMontpellierFrance
  2. 2.AGROCLIM INRAAvignonFrance
  3. 3.Alterra - Green World ResearchWageningen University and Research CentreWageningenThe Netherlands
  4. 4.Department of BiosciencesUniversity of HelsinkiHelsinkiFinland

Personalised recommendations