Skip to main content

Phenology at High Latitudes

  • Chapter
  • First Online:
Phenology: An Integrative Environmental Science

Abstract

Phenology, mainly on plants, in the Northern Hemisphere north of 60°N in the “Old” World and of 50°N in the “New” World is described in the present chapter, both historically and in modern times. Experiments, field work and satellite data are discussed. Phenological observations related to recent climate change at high latitudes are discussed in detail, and they are generally found to be good indicators of such changes during long-term studies. However, various organisms in the food chain, or sometimes even different individuals of the same species, do not react in exactly the same way on climate change. The response may also vary with the continentality of a region and with the time of the year. An increasing mismatch may be seen between production and consumption at various trophic levels both in terrestrial and aquatic ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arft AM, Walker MD, Gurevitch J, Alatalo JM, Bret-Harte MS, Dale M, Diemer M, Gugerl F, Henry GHR, Jones MH, Hollister RD, Jónsdóttir IS, Laine K, Levesque E, Marion GM, Molau U, Mølgaard P, Nordenhäll U, Raszhivin V, Robinson CH, Starr G, Stenström A, Stenström M, Totland Ø, Turner PL, Walker LJ, Webber PJ, Welker JM, Wookey PA (1999) Responses of tundra plants to experimental warming: meta-analyses of the International Tundra Experiment. Ecol Monogr 69:491–511

    Google Scholar 

  • Arnell HW (1923) Vegetationens aarliga utvecklingsgaang i Svealand. Medd. Statens Meteorologisk – Hydrografiska Anstalt 2:1–80 (German abstr:74–80)

    Google Scholar 

  • Arnell K (1927) Vegetationens utvecklingsgaang i Norrland. Medd. Statens Meteorologisk – Hydrografiska Anstalt 4:1–28 (German abstr:1–28)

    Google Scholar 

  • Arnell K, Arnell S (1930) Vegetationens utveckling i Götaland. Medd. Statens Meteorologisk – Hydrografiska Anstalt 6:1–70 (German abstr:69–70)

    Google Scholar 

  • Aune B (1993) Aarstider og vekstsesong. Kartblad (Map) 3.1.7., scale 1:7 mill. In: Nasjonalatlas for Norge, Det norske meteorologiske institutt – Statens kartverk, Oslo – Hönefoss

    Google Scholar 

  • Barbraud C, Weimerskirch H (2006) Antarctic birds breed later in response to climate change. PNAS 103:6248–6251

    Article  PubMed  CAS  Google Scholar 

  • Barrett RT (2002) The phenology of spring bird migration to north Norway. Bird Study 49:270–277

    Article  Google Scholar 

  • Batta J (1969) Variasjoner i tid for bladsprett hos ask og eik, (Engl summary), Aarsskr. Planteskoledrift Dendrologi 14–15:78–85

    Google Scholar 

  • Beaubien EG (1996) Plantwatch, a model to initiate phenology in school classes. Phenol Seas 1:33–35

    Google Scholar 

  • Beaubien EG, Freeland HJ (2000) Spring phenology trends in Alberta, Canada: links to ocean temperature. Int J Biometeorol 44:53–59

    Article  PubMed  CAS  Google Scholar 

  • Beaubien EG, Hamann A (2011) Spring flowering response to climate change between 1936 and 2006 in Alberta, Canada. Bioscience 61:514–524

    Article  Google Scholar 

  • Beaubien EG, Johnson D (1994) Flowering plant phenology and weather in Alberta, Canada. Int J Biometeorol 38:23–27

    Article  Google Scholar 

  • Bennie J, Kubin E, Wiltshire A, Huntley B, Baxter R (2010) Predicting spatial and temporal patterns of bud-burst and spring frost risk in north-west Europe: the implications of local adaptation to climate. Glob Change Biol 16:1503–1514

    Article  Google Scholar 

  • Beuker E (1994) Adaptation to climatic changes of the timing of bud burst in populations of Pinus sylvestris L. and Picea abies (L.) Karst. Tree Physiol 14:961–970

    Article  PubMed  Google Scholar 

  • Bhatt US, Walker DA, Raynolds MK, Comiso JC, Epstein HE, Jia G, Gens R, Pinzon JE, Tucker CJ, Tweedie CE, Webber PJ (2010) Circulation arctic tundra vegetation change is linked to sea ice decline. Earth Interact 14–008:1–20

    Article  Google Scholar 

  • Björbekk (1993) Snö. Kartblad (Map) 3.1.4., scale 1.7 mill. In: Nasjonalatlas for Norge, Det norske meteorologiske – Statens kartverk, Oslo – Hönefoss

    Google Scholar 

  • Bliss LC (1971) Arctic and alpine life cycles. Ann Rev Ecol Syst 2:405–438

    Article  Google Scholar 

  • Bliss LC (ed) (1977) Truelove Lowland, Devon Island, Canada: a high Arctic ecosystem. University Alberta Press, Edmonton

    Google Scholar 

  • Bliss LC, Matveyeva NV (1992) Circumpolar arctic vegetation. In: Chapin FS III, Jefferies RL, Reynolds JF, Shaver GR, Svoboda J (eds) Arctic ecosystems in a changing climate. Academic, New York

    Google Scholar 

  • Böcher TW (1938) Studies on the vegetation of the east coast of Greenland. Medd Grønl 104:1–32

    Google Scholar 

  • Bokhorst S, Bjerke JW, Street LE, Callaghan TV, Phoenix GK (2011) Impacts of multiple extreme winter warming events on sub-Arctic heathland: phenology, reproduction, growth, and CO2 flux responses. Glob Change Biol 17:2817–2830

    Article  Google Scholar 

  • Both C, Artemyev AV, Blaauw B, Cowie RJ, Dekhuijzen AJ, Eeva T, Enemar A, Gustafsson L, Ivankina EV, Järvinen A, Metcalfe NB, Nyholm NEI, Potti J, Ravussin P-A, Sanz JJ, Silverin B, Slater FM, Sokolov LV, Török J, Winkel W, Wright J, Zang H, Visser ME (2004) Large-scale geographical variation confirms that climate change causes birds to lay earlier. Proc R Soc Lond B 271:1657–1662

    Article  Google Scholar 

  • Breckle SW (2002) Walters vegetation of the earth. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Bryn A (2008) Recent forest limit changes in south-east Norway: effects of climate change or regrowth after abandoned utilization? Nor J Geogr 62:251–270

    Google Scholar 

  • Carlsson BA, Callaghan TV (1994) Impact of climate change factors on the clonal sedge Carex bigelowii: implication for population growth and vegetative spread. Ecography 17:321–330

    Article  Google Scholar 

  • Chmielewski F-M, Rötzer T (2001) Response of tree phenology to climate change across Europe. Agric For Meteorol 108:101–112

    Article  Google Scholar 

  • Chmielewski FM, Rötzer T (2002) Annual and spatial variability of the beginning of growing season in Europe in relation to air temperature changes. Clim Res 19:257–264

    Article  Google Scholar 

  • Colombo SJ (1998) Climatic warming and its effect on bud burst and risk of frost damage to white spruce in Canada. For Chron 74:567–577

    Google Scholar 

  • Cooper EJ, Dullinger S, Semenchuk P (2011) Late snowmelt delays plant development and results in lower reproductive success in the high Arctic. Plant Sci 180:157–167

    Article  PubMed  CAS  Google Scholar 

  • de Beurs KM, Henebry GM (2010) A land surface phenology assessment of the northern polar regions using MODIS reflectance time series. Can J Remote Sens 36:S87–S110

    Article  Google Scholar 

  • Delbart N, Picard G (2007) Modeling the date of leaf appearance in low-arctic tundra. Glob Change Biol 13:2551–2562

    Article  Google Scholar 

  • Delbart N, Kergoat L, Toan TL, Llermitte J, Picard G (2005) Determination of phenological dates in boreal regions using normalized difference water index. Remote Sens Environ 97:26–38

    Article  Google Scholar 

  • Dickinson R (1986) The climate system and modelling of future climate. In: Bolin B, Doos B, Jager J, Warrick RA (eds) The greenhouse effect, climate change, and ecosystem. Wiley, Chichester

    Google Scholar 

  • Diekmann M (1996) Relationship between flowering phenology of perennial herbs and meteorological date in deciduous forests of Sweden. Can J Bot 74:528–537

    Article  Google Scholar 

  • Donelly A, Caffarra A, O’Neill BF (2011) A review of climate-driven mismatches between interdependent phenophases in terrestrial and aquatic ecosystems. Int J Biometeorol 55:805–817

    Article  Google Scholar 

  • Eriksen B, Molau U, Svensson M (1993) Reproductive strategies in two arctic Pedicularis species (Scrophulariaceae). Ecography 16:154–166

    Article  Google Scholar 

  • Erskine AJ (1985) Some phenological observations across Canada’s boreal regions. Can Field-Nat 99:188–195

    Google Scholar 

  • Forchhammer MC, Post E, Stenseth NC (2002) North Atlantic oscillation timing of long- and short-distance migration. J Anim Ecol 71:1002–1014

    Article  Google Scholar 

  • Guimond CM, Andrews PK, Lang GA (1998) Scanning electron microscopy of floral initiation in sweet cherry. J Am Soc Hortic Sci 123:509–512

    Google Scholar 

  • Hagem O (1931) Forsök med vestamerikanske traeslag, (German summary). Medd Vestl Forstl Forst 12:1–217

    Google Scholar 

  • Hannerz M (1999) Evaluation of temperature models for predicting bud burst in Norway spruce. Can J For Res 29:9–19

    Article  Google Scholar 

  • Hänninen H (1995) Effects of climate change on trees from cool and temperate regions: an ecophysiological approach to modelling of bud burst phenology. Can J Bot 73:183–199

    Article  Google Scholar 

  • Hanssen-Bauer I (2005) Regional temperature and precipitation series for Norway. Comparison from dynamical and empirical downscaling. Met. No. report 15/2005 Climate

    Google Scholar 

  • Harrington R, Wolwod I, Sparks T (1999) Climate change and trophic interactions. Trends Ecol Evol 14(4):146–150

    Article  PubMed  Google Scholar 

  • Heide OM (1985) Physiological aspects of climatic adaptation in plants with special references to high-latitude environments. In: Kaurin A, Junttila O, Nilsen J (eds) Plant production in the north. Norwegian University Press, Tromsö

    Google Scholar 

  • Heide OM (1993) Daylength and thermal time response of budburst during dormancy release in some northern deciduous trees. Physiol Plant 88:531–540

    Article  Google Scholar 

  • Heikinheimo O (1949) Results of the experiments on the geographical races of spruce and pine (in Finnish with English summary). Comm Inst For Fenn 37:1–44

    Google Scholar 

  • Høgda KA, Karlsen SR, Solheim I (2001) Climatic change impact on growing season in Fennoscandia studied by a time series of NOAA AVHRR NDVI data. In: Proceedings of IGARSS 2001, Sydney. ISBN 0-7803-7033-3

    Google Scholar 

  • Høgda KA, Karlsen SR, Solheim I, Tömmervik H, Ramfjord H (2002) The start dates of birch pollen seasons in Fennoscandia studied by NOAA AVHRR NDVI data. In: Proceedings of IGARSS 2002, Toronto. ISBN 0-7803-7536-X

    Google Scholar 

  • Holmboe J (1913) Vaarens utvikling i Tromsö amt (in Norwegian). Bergens Mus Aarb 1912:1–248

    Google Scholar 

  • Holopainen J, Helama S, Timonen M (2006) Plant phenological data and tree-rings as palaeoclimate indicators in south-west Finland since AD 1750. Int J Biometeorol 51:61–72

    Article  PubMed  Google Scholar 

  • Høye TT, Ellebjerg SM, Philipp M (2007a) The impact of climate on flowering in the high-Arctic – the case of Dryas in a hybrid zone. Arct Antarct Alp Res 39:412–421

    Article  Google Scholar 

  • Høye TT, Post E, Meltofte H, Schmidt NM, Forchhammer MC (2007b) Rapid advancement of spring in the high Arctic. Curr Biol 17:R449–R451

    Article  PubMed  CAS  Google Scholar 

  • IPCC (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Iversen M, Bråthen KA, Yoccoz NG, Ims RA (2009) Predictors of plant phenology in a diverse high-latitude alpine landscape: growth forms and topography. J Veg Sci 20:903–915

    Article  Google Scholar 

  • Johansson OV (1946) Det fenologiska observationsmaterialet i Finland och provstudier av detsamma, (in Swedish). Finlands Natur och Folk 88(8):1–118

    Google Scholar 

  • Johansson OV (1953) Die Phänologie in Finland. Soc Sci Fenn, Commun Biol 11(1):1–55

    Google Scholar 

  • Jonzén N, Lindén A, Ergon T, Knudsen E, Vik JO, Rubolini D, Piacentini D, Brinch C, Spina F, Karlsson L, Stervander M, Andersson A, Waldenström J, Lehikoinen A, Edvardsen E, Solvang R, Stenseth NC (2006) Rapid advance of spring arrival dates in long-distance migratory birds. Science 312:1959–1961

    Article  PubMed  CAS  Google Scholar 

  • Junttila O, Stushnoff C, Gusta LV (1983) Dehardening in flower buds of saskatoon-berry, Amelanchier alnifolia, in relation to temperature, moisture content, and spring bud development. Can J Bot 61:164–170

    Article  Google Scholar 

  • Kalela A (1938) Zur Synthese der experimentellen Untersuchungen über Klimarassen der Holzarten. Commun Inst For Fenn 26:1–445

    Google Scholar 

  • Karlsen SR, Tolvanen A, Kubin E, Poikolainen J, Høgda KA, Johansen B, Danks FS, Aspholm P, Wielgolaski FE, Makarova O (2008) MODIS-NDVI based mapping of the length of the growing season in northern Fennoscandia. Int J Appl Earth Obs Geoinf 10:253–266

    Article  Google Scholar 

  • Karlsen SR, Høgda KA, Wielgolaski FE, Tolvanen A, Tømmervik H, Poikolainen J, Kubin E (2009a) Growing-season trends in Fennoscandia 1982–2006, determined from satellite and phenology data. Clim Res 39:275–286

    Article  Google Scholar 

  • Karlsen SR, Ramfjord H, Høgda KA, Johansen B, Danks FS, Brobakk TE (2009b) A satellite-based map of onset of birch (Betula) flowering in Norway. Aerobiologia 25:15–25

    Article  Google Scholar 

  • Klaveness D, Wielgolaski FE (1996) Plant phenology in Norway – a summary of past and present first flowering dates (FFDs) with emphasis on conditions within three different areas. Phenol Seas 1:47–61

    Google Scholar 

  • Köppen W (1927) Wechsel der phänologischen Zeitenfolge. Meteorol Z 44:175–177

    Google Scholar 

  • Kozlov MV, Berlina NG (2002) Decline in length of the summer on the Kola Peninsula, Russia. Clim Change 54:387–398

    Article  CAS  Google Scholar 

  • Kramer O (1922) Über die Blütenknospen und der Zeitpunkt der Entstehung von Blütenanlagen bei einigen Obstsorten. Dtsch Obstbauztg 68:306–308

    Google Scholar 

  • Kramer K, Leinonen I, Loustau D (2000) The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: an overview. Int J Biometeorol 44:67–75

    Article  PubMed  CAS  Google Scholar 

  • Kullman L (2010) A richer, greener and smaller alpine world: review and projection of warming-induced plant cover change in Swedish Scandes. Ambio 39:150–169

    Article  Google Scholar 

  • Lauscher F (1980) Klima, Klimaschwankungen und phänologischer Jahresablauf am europäischen Nordkap. Mitt Österr Geogr Ges 122:193–220

    Google Scholar 

  • Lauscher F (1985) Zur Phänologie vegetativ vermehrter Pflanzen einheitlicher Herkunft – Beobachtungen in phänologischen Pflanzgärten in Norwegen 1963–1982. Phyton (Horn, Austria) 25:253–272

    Google Scholar 

  • Lauscher A, Lauscher F (1990) Phänologie Norwegens, Teil IV, Private edition

    Google Scholar 

  • Lauscher A, Lauscher F, Printz H (1955) Die Phänologie Norwegens, Teil I, Allgemeine Übersicht. Skr Det Norske Videnskaps-Akademi Oslo, 1, Mat-Naturv Kl 1:1–99

    Google Scholar 

  • Lauscher A, Lauscher F, Printz H (1959) Die Phänologie Norwegens, Teil II, Phänologische Mittelwerte für 260 Orte. Skr Det Norske Videnskaps-Akademi Oslo, 1, Mat-Naturv Kl 1:1–176

    Google Scholar 

  • Lauscher A, Lauscher F, Printz H (1978) Die Phänologie Norwegens, Teil III, Tabellen-Karten der Mittelwerte. Skr Det Norske Videnskaps-Akademi Oslo, 1, Mat-Naturv Kl 37:1–253

    Google Scholar 

  • Lehikoinen A, Kilpi M, Öst M (2006) Winter climate affects subsequent breeding success of common eiders. Glob Change Biol 12:1355–1365

    Article  Google Scholar 

  • Leinonen I (1996) Dependence of dormancy release on temperature in different origins of Pinus sylvestris and Betula pendula seedlings. Scand J For Res 11:122–128

    Article  Google Scholar 

  • Lie H (1931) Faenologiske noteringar fraa Telemark (in Norwegian). Tidsskr Norske Landbruk 38:204–206

    Google Scholar 

  • Lieth H (1997) Aims and methods in phenological monitoring. In: Lieth H, Schwartz MD (eds) Phenology in seasonal climates I. Backhuys Publication, Leiden

    Google Scholar 

  • Linkosalo T (2000) Analyses of the spring phenology of boreal trees and its response to climate change. Univ Hels Dept For Ecol 22:1–55

    Google Scholar 

  • Linkosalo T, Lappalainen HK, Hari P (2008) A comparison of phenological models of leaf bud burst and flowering of boreal trees using independent observations. Tree Physiol 28:1873–1882

    Article  PubMed  Google Scholar 

  • Linkosalo T, Häkkinen R, Terhivuo J, Tuomenvirta H, Hari P (2009) The time series of flowering and leaf bud burst of boreal trees (1846–2005) support the direct temperature observations of climate warming. Agric For Meteorol 149:453–461

    Article  Google Scholar 

  • Linne C (1751) Philosophia Botanica (in Latin). Kiesewetter, Stockholm

    Google Scholar 

  • Magnesen S (1992) Injuries on forest trees related to choice of the species and provenances: a literature survey of a one hundred year epoch in Norwegian forestry. Rep Skogforsk 7:1–46

    Google Scholar 

  • Makarova OA, Pohilko AA, Kushel JA (2001) Seasonal life of the nature in Kola Peninsula (in Russian, translated in English). Murmansk. ISBN 5-7744-0102-2

    Google Scholar 

  • Marchand FF, Nijs I, Heuer M, Mertens S, Kockelberg F, Pontailler JY, Impens I, Beyens L (2004) Climate warming postpones senescence in high arctic tundra. Arct Antarct Alp Res 36:390–394

    Article  Google Scholar 

  • Maxwell B (1992) Arctic climate: potential for change under global warming. In: Chapin FS, Jeffries RL, Reynolds JF, Shaver GR, Svoboda J (eds) Arctic ecosystems in a changing climate. Academic Press, New York

    Google Scholar 

  • Maxwell B (1997) Recent climate patterns in the Arctic. In: Oechel WC, Callaghan T, Gilmanov T, Holten JI, Maxwell B, Molau U, Sveinbjörnsson B (eds) Global change and arctic terrestrial ecosystems. Springer, Heidelberg

    Google Scholar 

  • Menzel A (2000) Trends in phenological phases in Europe between 1951 and 1996. Int J Biometeorol 44:76–81

    Article  PubMed  CAS  Google Scholar 

  • Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P, Braslavska O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl Å, Defila C, Donnelly A, Filella Y, Jatczak K, Måge F, Mestre A, Nordli Ø, Penuelas J, Pirinen P, Remisová V, Scheifinger H, Striz M, Susnik A, van Vliet AJH, Wielgolaski FE, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Glob Change Biol 12:1969–1976

    Article  Google Scholar 

  • MeteoSwiss (2011) http://www.meteoschweiz.admin.ch/web/de/klima/klima_schweiz/phaenologie/Phaenobeobachtungen_seit1808.html. Accessed 30 May 2011

  • Moberg A (1857) Naturalhistoriska daganteckningar gjorda i Finland aaren 1750–1845 (in Swedish). Förh Sällsk Fauna Flora Fenn 3:95–250

    Google Scholar 

  • Moberg A (1894) Fenologiska iakttagelser i Finland aaren 1750–1845 (in Swedish). Finlands Nat Folk 55:1–165

    Google Scholar 

  • Moe A (1928) Dates of flowering for native and garden plants at Stavanger 1897–1926. Skr Det Norske Videnskaps-Akademi Oslo, 1, Mat-Naturv Kl 3:1–50

    Google Scholar 

  • Molau U (1993) Relationship between flowering phenology and life history strategies in tundra plants. Arctic Alp Res 25:391–402

    Article  Google Scholar 

  • Molau U (1997) Responses to natural climatic variation and experimental warming in two tundra plant species with contrasting life forms: Cassiope tetragona and Ranunculus nivalis. Glob Change Biol 3(suppl 1):97–107

    Article  Google Scholar 

  • Myking T (1997) Dormancy, budburst and impacts of climatic warming in coastal-inland and altitudinal Betula pendula and B. pubescens ecotypes. In: Lieth H, Schwartz MD (eds) Phenology in seasonal climates I. Backhuys Publication, Leiden

    Google Scholar 

  • Myking T (1999) Winter dormancy release and budburst in Betula pendula ROTH and B. pubescens EHRH. Ecotypes. Phyton (Horn, Austria) 39(4):139–145

    Google Scholar 

  • Myking T, Heide OM (1995) Dormancy release and chilling requirement of buds of latitudinal ecotypes of Betula pendula and B. pubescens. Tree Physiol 15:697–704

    Article  PubMed  Google Scholar 

  • Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern latitudes from 1981 to 1991. Nature 386:698–702

    Article  CAS  Google Scholar 

  • Nordli Ø, Wielgolaski FE, Bakken AK, Hjeltnes SH, Måge F, Sivle A, Skre O (2008) Regional trends for bud burst and flowering of woody plants in Norway as related to climate change. Int J Biometeorol 52:625–639

    Article  PubMed  CAS  Google Scholar 

  • Odland A (2011) Estimation of the growing season length in alpine areas: effects of snow and temperatures. In: Scmidt JG (ed) Alpine environment: geology, ecology and conservation. Nova Science Publication, New York

    Google Scholar 

  • Oechel WC, Billings WD (1992) Effects of global change on the carbon balance of arctic plants and ecosystems. In: Chapin FS, Jefferies RL, Reynolds JF, Shaver GR, Svoboda J (eds) Arctic ecosystems in a changing climate. Academic Press, New York

    Google Scholar 

  • Ovaska JA, Nilsen J, Wielgolaski FE, Kauhanen H, Partanen R, Neuvonen S, Kapari L, Skre O, Laine K (2005) Phenology and performance of mountain birch provenances in transplant gardens: latitudinal, altitudinal and oceanity-continentality gradients. In: Wielgolaski FE (ed) Plant ecology, herbivory and human impact in Nordic mountain birch forests. Springer, Heidelberg

    Google Scholar 

  • Partanen J, Beuker E (1999) Effects of photoperiod and thermal time on the growth rhythm of Pinus sylvestris seedlings. Scand J For Res 14:487–497

    Google Scholar 

  • Pettorelli N, Mysterud A, Yoccoz NG, Langvatn R, Stenseth NC (2005) Importance of climatological downscaling and plant phenology for red deer in heterogenous landscapes. Proc R Soc B 272:2357–2364

    Article  PubMed  Google Scholar 

  • Philipp M, Böcher J, Mattson O, Woodell SRJ (1990) A quantitative approach to the sexual reproductive biology and population structure in some arctic flowering plants: Dryas integrifolia, Silene acaulis and Ranunculus nivalis. Medd Grønland Biosci 34:1–60

    Google Scholar 

  • Pieper SJ, Loeven V, Gill M, Johnstone JF (2011) Plant responses to natural and experimental variations in temperature in alpine tundra, southern Yukon, Canada. Arct Antarct Alp Res 43:442–456

    Article  Google Scholar 

  • Pop EW, Oberbauer SF, Starr G (2000) Predicting vegetative bud break in two arctic deciduous shrub species, Salix pulchra and Betula nana. Oecologia 124:176–184

    Article  Google Scholar 

  • Post E, Stenseth NC (1999) Climatic variability, plant phenology, and northern ungulates. Ecology 80:1322–1339

    Article  Google Scholar 

  • Post E, Pedersen C, Wilmers CC, Forchhammer MC (2008) Warming, plant phenology and the spatial dimension of trophic mismatch for large herbivores. Proc R Soc B 275:2005–2013

    Article  PubMed  Google Scholar 

  • Printz HC (1865) Beretning om en i Sommeren 1864 foretagen botanisk Reise i Valders (in Norwegian). Nyt Mag Naturv 14:51–96

    Google Scholar 

  • Pudas E, Leppälä M, Tolvanen A, Poikolainen J, Venäläinen A, Kubin E (2008) Trends in phenology of Betula pubescens across the boreal zone in Finland. Int J Biometeorol 52:251–259

    Article  PubMed  Google Scholar 

  • Resvoll TR (1918) Om planter som passer til kort og kold sommer, (in Norwegian). In: Helland A, Sars GO, Torup S (eds) Archiv for Mathematik og Naturvidenskab, M. Johansen Boktryukeri, Kristiania

    Google Scholar 

  • Robinson CH, Wookey PA, Lee JA, Callaghan TV, Press MC (1998) Plant community responses to simulated environmental change at a high Arctic polar semi-desert. Ecology 79:856–866

    Article  Google Scholar 

  • Rosenzweig C, Casassa G, Karoly DJ, Imeson A, Liu C, Menzel A, Rawlins S, Root TL, Seguin B, Tryjanowski P (2007) Assessment of observed changes and responses in natural and managed systems. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Saino N, Ambrosini R, Rubolini D, von Hardenberg J, Provenzale A, Hüppop K, Hüppop O, Lehikoinen A, Rainio K, Romano M, Sokolov L (2011) Climate warming, ecological mismatch at arrival and population decline in migratory birds. Proc R Soc B 278:835–842

    Article  PubMed  Google Scholar 

  • Schnelle F (1955) Pflanzen-Phänologie. Geest & Portig, Leipzig

    Google Scholar 

  • Schübeler FC (1885) Viridarium Norvegicum, Norges Vaextrige, Et Bidrag til Nord-Europas Natur- og Kulturhistorie, 1ste bind (in Norwegian). W. C. Fabritius, Christiania

    Google Scholar 

  • Schwartz MD (1997) Spring index models: an approach to connecting satellite and surface phenology. In: Lieth H, Schwartz MD (eds) Phenology in seasonal climates I. Backhuys Publication, Leiden

    Google Scholar 

  • Schwartz MD (1998) Green-wave phenology. Nature 394:839–840

    Article  CAS  Google Scholar 

  • Schwartz MD, Reiter BE (2000) Changes in North American spring. Int J Clim 20:929–932

    Article  Google Scholar 

  • Schwartz MD, Ahas R, Aasa A (2006) Onset of spring starting earlier across the northern Hemisphere. Glob Change Biol 12:343–351

    Article  Google Scholar 

  • Sheriff MJ, Kenagy GJ, Richter M, Lee T, Tøien Ø, Kohl F, Buck CL, Barnes BM (2011) Phenological variation in annual timing of hibernation and breeding in nearby populations of Arctic ground squirrels. Proc R Soc B 278:2369–2375

    Article  PubMed  Google Scholar 

  • Shutova E, Wielgolaski FE, Karlsen SR, Makarova O, Berlina N, Filimonova T, Haraldsson E, Aspholm PE, Flø L, Høgda KA (2006) Growing seasons of Nordic mountain birch in northernmost Europe as indicated by long-term field studies and analyses of satellite images. Int J Biometeorol 51:155–166

    Article  PubMed  CAS  Google Scholar 

  • Skjellvåg AO (1998) Climatic conditions for crop production in Nordic countries. Agric Food Sci Finl 7:149–160

    Google Scholar 

  • Skre O (2001) Climate change impact on mountain birch ecosystems. In: Wielgolaski FE (ed) Nordic mountain birch ecosystems. UNESCO/Parthenon Publication Group, Paris/New York/London

    Google Scholar 

  • Sörensen T (1941) Temperature relations and phenology of the northeast Greenland flowering plants. Medd Grönl 125:1–307

    Google Scholar 

  • Sparks TH, Bairlein F, Bojarinova JG, Hüppop O, Lehikoinen EA, Rainio K, Sokolov LV, Walker D (2005) Examining the total arrival distribution of migratory birds. Glob Change Biol 11:22–30

    Article  Google Scholar 

  • Stenström M, Gugerli F, Henry GHR (1997) Response of Saxifraga oppositifolia L. to simulated climate change at three contrasting latitudes. Glob Change Biol 3(suppl 1):44–54

    Article  Google Scholar 

  • Strand E (1965) Forelesning i plantekultur (in Norwegian.) Norges landbrukshögskole, Aas

    Google Scholar 

  • Taylor SG (2008) Climate warming causes phenological shift in Pink Salmon, Oncorhynchus gorbuscha, behavior at Auke Creek, Alaska. Glob Change Biol 14:229–235

    Article  Google Scholar 

  • Thórhallsdóttir TE (1998) Flowering phenology in the central highland of Iceland and implications for climatic warming in the Arctic. Oecologia 114:43–49

    Article  Google Scholar 

  • Tømmervik H, Wielgolaski FE, Neuvonen S, Solberg B, Høgda KA (2005) Biomass and production on a landscape level in the mountain birch forests. In: Wielgolaski FE (ed) Plant ecology, herbivory, and human impact in Nordic mountain birch forests. Springer, Berlin/Hiedelberg

    Google Scholar 

  • Tyler G (2001) Relationships between climate and flowering of eight herbs in a Swedish deciduous forest. Ann Bot 87:623–630

    Article  Google Scholar 

  • van der Jeugd H, Eichhorn G, Litvins KE, Stahl J, Larsson K, van der Graaf A, Drent RH (2009) Keeping up with early springs: rapid range expansion in avian herbivore incurs a mismatch between reproductive timing and food supply. Glob Change Biol 15:1057–1071

    Article  Google Scholar 

  • Vikhamar-Schuler D, Hanssen-Bauer I, Førland E (2010) Long-term climate trends of Finnmarksvidda, Northern-Norway. met. no. report 6/2010:1–41

    Google Scholar 

  • Visser ME, Both C, Lambrechts MM (2004) Global climate change leads to mistimed avian reproduction. Adv Ecol Res 3:89–110

    Article  Google Scholar 

  • Vitasse Y, Francois C, Delpierre N, Dufrene E, Kremer A, Chuine I, Delzon S (2011) Assessing the effects of climate change on the phenology of European temperate trees. Agric For Meteorol 151:969–980

    Article  Google Scholar 

  • Vors LS, Boyce MS (2009) Global declines of caribou and reindeer. Glob Change Biol 15:2626–2633

    Article  Google Scholar 

  • Walker MD, Wahren CH, Hollister RD, Henry GHR, Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP, Callaghan TV, Carroll AB, Epstein HE, Jónsdóttir IS, Klein JA, Magnússon B, Molau U, Oberbauer SF, Rewa SP, Robinson CH, Shaver GR, Suding KN, Thompson CC, Tolvanen A, Totland Ø, Turner PL, Tweedie CE, Webber PJ, Wookey PA (2006) Plant community responses to experimental warming across the tundra biome. PNAS 103:1342–1346

    Article  PubMed  CAS  Google Scholar 

  • Wielgolaski FE (1974a) Phenological studies in tundra. In: Lieth H (ed) Phenology and seasonality modeling. Springer, New York

    Google Scholar 

  • Wielgolaski FE (1974b) Phenology in agriculture. In: Lieth H (ed) Phenology and seasonality modeling. Springer, New York

    Google Scholar 

  • Wielgolaski FE (1999) Starting dates and basic temperatures in phenological observations of plants. Int J Biometeorol 42:158–168

    Article  Google Scholar 

  • Wielgolaski FE (2000) Predictions in plant phenology. Paper presented at International congress: progress in phenology, Freising

    Google Scholar 

  • Wielgolaski FE (2001) Phenological modifications in plants by various edaphic factors. Int J Biometeorol 45:196–202

    Article  PubMed  CAS  Google Scholar 

  • Wielgolaski FE (2003) Climatic factors governing plant phenological phases along a Norwegian fjord. Int J Biometeorol 47:213–220

    Article  PubMed  CAS  Google Scholar 

  • Wielgolaski FE (2009) Old Norwegian phenodata series in relation to recent ones. Int J Agrometeorol 14:33–38

    Google Scholar 

  • Wielgolaski FE, Kärenlampi L (1975) Plant phenology of Fennoscandian tundra areas. In: Wielgolaski FE (ed) Fennoscandian tundra ecosystems part1: plants and microorganisms. Springer, Heidelberg

    Google Scholar 

  • Wielgolaski FE, Nordli Ø, Karlsen SR (2011) Plant phenological variation related to temperature in Norway during the period 1928–1977. Int J Biometeorol 55:819–831

    Article  PubMed  Google Scholar 

  • Wipf S (2010) Phenology, growth, and fecundity of eight subarctic tundra species in response to snowmelt manipulations. Plant Ecol 207:53–66

    Article  Google Scholar 

  • Woodley EJ, Svoboda J (1994) Effects of habitat on variations of phenology and nutrient concentration among four common plant species of the Alexandra Fiord Lowland. In: Svoboda J, Freedman B (eds) Ecology of a polar oasis, Alexandra Fiord, Ellesmere Island, Canada. Captus University Press, Toronto

    Google Scholar 

  • Wookey PA, Parsons AN, Welker JM, Potter JA, Callaghan TV, Press MC (1993) Comparative responses of phenology and reproductive development to simulated environmental change in sub-arctic and high-arctic plants. Oikos 67:490–502

    Article  Google Scholar 

  • Zeng H, Jia G, Epstein H (2011) Recent changes in phenology over the northern latitudes detected from multi-satellite data. Environ Res Lett 6:1–11. doi:10.1088/1748-9326/6/4/045508

    Article  Google Scholar 

  • Zhang X, Friedl MA, Schaaf CB, Strahler AH (2004) Climate controls on vegetation phenological patterns in northern mid- and high latitudes inferred from MODIS data. Glob Change Biol 10:1133–1145

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frans E. Wielgolaski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wielgolaski, F.E., Inouye, D.W. (2013). Phenology at High Latitudes. In: Schwartz, M. (eds) Phenology: An Integrative Environmental Science. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6925-0_13

Download citation

Publish with us

Policies and ethics