Advertisement

Phenology at High Latitudes

  • Frans E. WielgolaskiEmail author
  • David W. Inouye
Chapter

Abstract

Phenology, mainly on plants, in the Northern Hemisphere north of 60°N in the “Old” World and of 50°N in the “New” World is described in the present chapter, both historically and in modern times. Experiments, field work and satellite data are discussed. Phenological observations related to recent climate change at high latitudes are discussed in detail, and they are generally found to be good indicators of such changes during long-term studies. However, various organisms in the food chain, or sometimes even different individuals of the same species, do not react in exactly the same way on climate change. The response may also vary with the continentality of a region and with the time of the year. An increasing mismatch may be seen between production and consumption at various trophic levels both in terrestrial and aquatic ecosystems.

Keywords

High Latitude North Atlantic Oscillation Frost Damage Mountain Birch Phenological Observation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Arft AM, Walker MD, Gurevitch J, Alatalo JM, Bret-Harte MS, Dale M, Diemer M, Gugerl F, Henry GHR, Jones MH, Hollister RD, Jónsdóttir IS, Laine K, Levesque E, Marion GM, Molau U, Mølgaard P, Nordenhäll U, Raszhivin V, Robinson CH, Starr G, Stenström A, Stenström M, Totland Ø, Turner PL, Walker LJ, Webber PJ, Welker JM, Wookey PA (1999) Responses of tundra plants to experimental warming: meta-analyses of the International Tundra Experiment. Ecol Monogr 69:491–511Google Scholar
  2. Arnell HW (1923) Vegetationens aarliga utvecklingsgaang i Svealand. Medd. Statens Meteorologisk – Hydrografiska Anstalt 2:1–80 (German abstr:74–80)Google Scholar
  3. Arnell K (1927) Vegetationens utvecklingsgaang i Norrland. Medd. Statens Meteorologisk – Hydrografiska Anstalt 4:1–28 (German abstr:1–28)Google Scholar
  4. Arnell K, Arnell S (1930) Vegetationens utveckling i Götaland. Medd. Statens Meteorologisk – Hydrografiska Anstalt 6:1–70 (German abstr:69–70)Google Scholar
  5. Aune B (1993) Aarstider og vekstsesong. Kartblad (Map) 3.1.7., scale 1:7 mill. In: Nasjonalatlas for Norge, Det norske meteorologiske institutt – Statens kartverk, Oslo – HönefossGoogle Scholar
  6. Barbraud C, Weimerskirch H (2006) Antarctic birds breed later in response to climate change. PNAS 103:6248–6251PubMedCrossRefGoogle Scholar
  7. Barrett RT (2002) The phenology of spring bird migration to north Norway. Bird Study 49:270–277CrossRefGoogle Scholar
  8. Batta J (1969) Variasjoner i tid for bladsprett hos ask og eik, (Engl summary), Aarsskr. Planteskoledrift Dendrologi 14–15:78–85Google Scholar
  9. Beaubien EG (1996) Plantwatch, a model to initiate phenology in school classes. Phenol Seas 1:33–35Google Scholar
  10. Beaubien EG, Freeland HJ (2000) Spring phenology trends in Alberta, Canada: links to ocean temperature. Int J Biometeorol 44:53–59PubMedCrossRefGoogle Scholar
  11. Beaubien EG, Hamann A (2011) Spring flowering response to climate change between 1936 and 2006 in Alberta, Canada. Bioscience 61:514–524CrossRefGoogle Scholar
  12. Beaubien EG, Johnson D (1994) Flowering plant phenology and weather in Alberta, Canada. Int J Biometeorol 38:23–27CrossRefGoogle Scholar
  13. Bennie J, Kubin E, Wiltshire A, Huntley B, Baxter R (2010) Predicting spatial and temporal patterns of bud-burst and spring frost risk in north-west Europe: the implications of local adaptation to climate. Glob Change Biol 16:1503–1514CrossRefGoogle Scholar
  14. Beuker E (1994) Adaptation to climatic changes of the timing of bud burst in populations of Pinus sylvestris L. and Picea abies (L.) Karst. Tree Physiol 14:961–970PubMedCrossRefGoogle Scholar
  15. Bhatt US, Walker DA, Raynolds MK, Comiso JC, Epstein HE, Jia G, Gens R, Pinzon JE, Tucker CJ, Tweedie CE, Webber PJ (2010) Circulation arctic tundra vegetation change is linked to sea ice decline. Earth Interact 14–008:1–20CrossRefGoogle Scholar
  16. Björbekk (1993) Snö. Kartblad (Map) 3.1.4., scale 1.7 mill. In: Nasjonalatlas for Norge, Det norske meteorologiske – Statens kartverk, Oslo – HönefossGoogle Scholar
  17. Bliss LC (1971) Arctic and alpine life cycles. Ann Rev Ecol Syst 2:405–438CrossRefGoogle Scholar
  18. Bliss LC (ed) (1977) Truelove Lowland, Devon Island, Canada: a high Arctic ecosystem. University Alberta Press, EdmontonGoogle Scholar
  19. Bliss LC, Matveyeva NV (1992) Circumpolar arctic vegetation. In: Chapin FS III, Jefferies RL, Reynolds JF, Shaver GR, Svoboda J (eds) Arctic ecosystems in a changing climate. Academic, New YorkGoogle Scholar
  20. Böcher TW (1938) Studies on the vegetation of the east coast of Greenland. Medd Grønl 104:1–32Google Scholar
  21. Bokhorst S, Bjerke JW, Street LE, Callaghan TV, Phoenix GK (2011) Impacts of multiple extreme winter warming events on sub-Arctic heathland: phenology, reproduction, growth, and CO2 flux responses. Glob Change Biol 17:2817–2830CrossRefGoogle Scholar
  22. Both C, Artemyev AV, Blaauw B, Cowie RJ, Dekhuijzen AJ, Eeva T, Enemar A, Gustafsson L, Ivankina EV, Järvinen A, Metcalfe NB, Nyholm NEI, Potti J, Ravussin P-A, Sanz JJ, Silverin B, Slater FM, Sokolov LV, Török J, Winkel W, Wright J, Zang H, Visser ME (2004) Large-scale geographical variation confirms that climate change causes birds to lay earlier. Proc R Soc Lond B 271:1657–1662CrossRefGoogle Scholar
  23. Breckle SW (2002) Walters vegetation of the earth. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  24. Bryn A (2008) Recent forest limit changes in south-east Norway: effects of climate change or regrowth after abandoned utilization? Nor J Geogr 62:251–270Google Scholar
  25. Carlsson BA, Callaghan TV (1994) Impact of climate change factors on the clonal sedge Carex bigelowii: implication for population growth and vegetative spread. Ecography 17:321–330CrossRefGoogle Scholar
  26. Chmielewski F-M, Rötzer T (2001) Response of tree phenology to climate change across Europe. Agric For Meteorol 108:101–112CrossRefGoogle Scholar
  27. Chmielewski FM, Rötzer T (2002) Annual and spatial variability of the beginning of growing season in Europe in relation to air temperature changes. Clim Res 19:257–264CrossRefGoogle Scholar
  28. Colombo SJ (1998) Climatic warming and its effect on bud burst and risk of frost damage to white spruce in Canada. For Chron 74:567–577Google Scholar
  29. Cooper EJ, Dullinger S, Semenchuk P (2011) Late snowmelt delays plant development and results in lower reproductive success in the high Arctic. Plant Sci 180:157–167PubMedCrossRefGoogle Scholar
  30. de Beurs KM, Henebry GM (2010) A land surface phenology assessment of the northern polar regions using MODIS reflectance time series. Can J Remote Sens 36:S87–S110CrossRefGoogle Scholar
  31. Delbart N, Picard G (2007) Modeling the date of leaf appearance in low-arctic tundra. Glob Change Biol 13:2551–2562CrossRefGoogle Scholar
  32. Delbart N, Kergoat L, Toan TL, Llermitte J, Picard G (2005) Determination of phenological dates in boreal regions using normalized difference water index. Remote Sens Environ 97:26–38CrossRefGoogle Scholar
  33. Dickinson R (1986) The climate system and modelling of future climate. In: Bolin B, Doos B, Jager J, Warrick RA (eds) The greenhouse effect, climate change, and ecosystem. Wiley, ChichesterGoogle Scholar
  34. Diekmann M (1996) Relationship between flowering phenology of perennial herbs and meteorological date in deciduous forests of Sweden. Can J Bot 74:528–537CrossRefGoogle Scholar
  35. Donelly A, Caffarra A, O’Neill BF (2011) A review of climate-driven mismatches between interdependent phenophases in terrestrial and aquatic ecosystems. Int J Biometeorol 55:805–817CrossRefGoogle Scholar
  36. Eriksen B, Molau U, Svensson M (1993) Reproductive strategies in two arctic Pedicularis species (Scrophulariaceae). Ecography 16:154–166CrossRefGoogle Scholar
  37. Erskine AJ (1985) Some phenological observations across Canada’s boreal regions. Can Field-Nat 99:188–195Google Scholar
  38. Forchhammer MC, Post E, Stenseth NC (2002) North Atlantic oscillation timing of long- and short-distance migration. J Anim Ecol 71:1002–1014CrossRefGoogle Scholar
  39. Guimond CM, Andrews PK, Lang GA (1998) Scanning electron microscopy of floral initiation in sweet cherry. J Am Soc Hortic Sci 123:509–512Google Scholar
  40. Hagem O (1931) Forsök med vestamerikanske traeslag, (German summary). Medd Vestl Forstl Forst 12:1–217Google Scholar
  41. Hannerz M (1999) Evaluation of temperature models for predicting bud burst in Norway spruce. Can J For Res 29:9–19CrossRefGoogle Scholar
  42. Hänninen H (1995) Effects of climate change on trees from cool and temperate regions: an ecophysiological approach to modelling of bud burst phenology. Can J Bot 73:183–199CrossRefGoogle Scholar
  43. Hanssen-Bauer I (2005) Regional temperature and precipitation series for Norway. Comparison from dynamical and empirical downscaling. Met. No. report 15/2005 ClimateGoogle Scholar
  44. Harrington R, Wolwod I, Sparks T (1999) Climate change and trophic interactions. Trends Ecol Evol 14(4):146–150PubMedCrossRefGoogle Scholar
  45. Heide OM (1985) Physiological aspects of climatic adaptation in plants with special references to high-latitude environments. In: Kaurin A, Junttila O, Nilsen J (eds) Plant production in the north. Norwegian University Press, TromsöGoogle Scholar
  46. Heide OM (1993) Daylength and thermal time response of budburst during dormancy release in some northern deciduous trees. Physiol Plant 88:531–540CrossRefGoogle Scholar
  47. Heikinheimo O (1949) Results of the experiments on the geographical races of spruce and pine (in Finnish with English summary). Comm Inst For Fenn 37:1–44Google Scholar
  48. Høgda KA, Karlsen SR, Solheim I (2001) Climatic change impact on growing season in Fennoscandia studied by a time series of NOAA AVHRR NDVI data. In: Proceedings of IGARSS 2001, Sydney. ISBN 0-7803-7033-3Google Scholar
  49. Høgda KA, Karlsen SR, Solheim I, Tömmervik H, Ramfjord H (2002) The start dates of birch pollen seasons in Fennoscandia studied by NOAA AVHRR NDVI data. In: Proceedings of IGARSS 2002, Toronto. ISBN 0-7803-7536-XGoogle Scholar
  50. Holmboe J (1913) Vaarens utvikling i Tromsö amt (in Norwegian). Bergens Mus Aarb 1912:1–248Google Scholar
  51. Holopainen J, Helama S, Timonen M (2006) Plant phenological data and tree-rings as palaeoclimate indicators in south-west Finland since AD 1750. Int J Biometeorol 51:61–72PubMedCrossRefGoogle Scholar
  52. Høye TT, Ellebjerg SM, Philipp M (2007a) The impact of climate on flowering in the high-Arctic – the case of Dryas in a hybrid zone. Arct Antarct Alp Res 39:412–421CrossRefGoogle Scholar
  53. Høye TT, Post E, Meltofte H, Schmidt NM, Forchhammer MC (2007b) Rapid advancement of spring in the high Arctic. Curr Biol 17:R449–R451PubMedCrossRefGoogle Scholar
  54. IPCC (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  55. Iversen M, Bråthen KA, Yoccoz NG, Ims RA (2009) Predictors of plant phenology in a diverse high-latitude alpine landscape: growth forms and topography. J Veg Sci 20:903–915CrossRefGoogle Scholar
  56. Johansson OV (1946) Det fenologiska observationsmaterialet i Finland och provstudier av detsamma, (in Swedish). Finlands Natur och Folk 88(8):1–118Google Scholar
  57. Johansson OV (1953) Die Phänologie in Finland. Soc Sci Fenn, Commun Biol 11(1):1–55Google Scholar
  58. Jonzén N, Lindén A, Ergon T, Knudsen E, Vik JO, Rubolini D, Piacentini D, Brinch C, Spina F, Karlsson L, Stervander M, Andersson A, Waldenström J, Lehikoinen A, Edvardsen E, Solvang R, Stenseth NC (2006) Rapid advance of spring arrival dates in long-distance migratory birds. Science 312:1959–1961PubMedCrossRefGoogle Scholar
  59. Junttila O, Stushnoff C, Gusta LV (1983) Dehardening in flower buds of saskatoon-berry, Amelanchier alnifolia, in relation to temperature, moisture content, and spring bud development. Can J Bot 61:164–170CrossRefGoogle Scholar
  60. Kalela A (1938) Zur Synthese der experimentellen Untersuchungen über Klimarassen der Holzarten. Commun Inst For Fenn 26:1–445Google Scholar
  61. Karlsen SR, Tolvanen A, Kubin E, Poikolainen J, Høgda KA, Johansen B, Danks FS, Aspholm P, Wielgolaski FE, Makarova O (2008) MODIS-NDVI based mapping of the length of the growing season in northern Fennoscandia. Int J Appl Earth Obs Geoinf 10:253–266CrossRefGoogle Scholar
  62. Karlsen SR, Høgda KA, Wielgolaski FE, Tolvanen A, Tømmervik H, Poikolainen J, Kubin E (2009a) Growing-season trends in Fennoscandia 1982–2006, determined from satellite and phenology data. Clim Res 39:275–286CrossRefGoogle Scholar
  63. Karlsen SR, Ramfjord H, Høgda KA, Johansen B, Danks FS, Brobakk TE (2009b) A satellite-based map of onset of birch (Betula) flowering in Norway. Aerobiologia 25:15–25CrossRefGoogle Scholar
  64. Klaveness D, Wielgolaski FE (1996) Plant phenology in Norway – a summary of past and present first flowering dates (FFDs) with emphasis on conditions within three different areas. Phenol Seas 1:47–61Google Scholar
  65. Köppen W (1927) Wechsel der phänologischen Zeitenfolge. Meteorol Z 44:175–177Google Scholar
  66. Kozlov MV, Berlina NG (2002) Decline in length of the summer on the Kola Peninsula, Russia. Clim Change 54:387–398CrossRefGoogle Scholar
  67. Kramer O (1922) Über die Blütenknospen und der Zeitpunkt der Entstehung von Blütenanlagen bei einigen Obstsorten. Dtsch Obstbauztg 68:306–308Google Scholar
  68. Kramer K, Leinonen I, Loustau D (2000) The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: an overview. Int J Biometeorol 44:67–75PubMedCrossRefGoogle Scholar
  69. Kullman L (2010) A richer, greener and smaller alpine world: review and projection of warming-induced plant cover change in Swedish Scandes. Ambio 39:150–169CrossRefGoogle Scholar
  70. Lauscher F (1980) Klima, Klimaschwankungen und phänologischer Jahresablauf am europäischen Nordkap. Mitt Österr Geogr Ges 122:193–220Google Scholar
  71. Lauscher F (1985) Zur Phänologie vegetativ vermehrter Pflanzen einheitlicher Herkunft – Beobachtungen in phänologischen Pflanzgärten in Norwegen 1963–1982. Phyton (Horn, Austria) 25:253–272Google Scholar
  72. Lauscher A, Lauscher F (1990) Phänologie Norwegens, Teil IV, Private editionGoogle Scholar
  73. Lauscher A, Lauscher F, Printz H (1955) Die Phänologie Norwegens, Teil I, Allgemeine Übersicht. Skr Det Norske Videnskaps-Akademi Oslo, 1, Mat-Naturv Kl 1:1–99Google Scholar
  74. Lauscher A, Lauscher F, Printz H (1959) Die Phänologie Norwegens, Teil II, Phänologische Mittelwerte für 260 Orte. Skr Det Norske Videnskaps-Akademi Oslo, 1, Mat-Naturv Kl 1:1–176Google Scholar
  75. Lauscher A, Lauscher F, Printz H (1978) Die Phänologie Norwegens, Teil III, Tabellen-Karten der Mittelwerte. Skr Det Norske Videnskaps-Akademi Oslo, 1, Mat-Naturv Kl 37:1–253Google Scholar
  76. Lehikoinen A, Kilpi M, Öst M (2006) Winter climate affects subsequent breeding success of common eiders. Glob Change Biol 12:1355–1365CrossRefGoogle Scholar
  77. Leinonen I (1996) Dependence of dormancy release on temperature in different origins of Pinus sylvestris and Betula pendula seedlings. Scand J For Res 11:122–128CrossRefGoogle Scholar
  78. Lie H (1931) Faenologiske noteringar fraa Telemark (in Norwegian). Tidsskr Norske Landbruk 38:204–206Google Scholar
  79. Lieth H (1997) Aims and methods in phenological monitoring. In: Lieth H, Schwartz MD (eds) Phenology in seasonal climates I. Backhuys Publication, LeidenGoogle Scholar
  80. Linkosalo T (2000) Analyses of the spring phenology of boreal trees and its response to climate change. Univ Hels Dept For Ecol 22:1–55Google Scholar
  81. Linkosalo T, Lappalainen HK, Hari P (2008) A comparison of phenological models of leaf bud burst and flowering of boreal trees using independent observations. Tree Physiol 28:1873–1882PubMedCrossRefGoogle Scholar
  82. Linkosalo T, Häkkinen R, Terhivuo J, Tuomenvirta H, Hari P (2009) The time series of flowering and leaf bud burst of boreal trees (1846–2005) support the direct temperature observations of climate warming. Agric For Meteorol 149:453–461CrossRefGoogle Scholar
  83. Linne C (1751) Philosophia Botanica (in Latin). Kiesewetter, StockholmGoogle Scholar
  84. Magnesen S (1992) Injuries on forest trees related to choice of the species and provenances: a literature survey of a one hundred year epoch in Norwegian forestry. Rep Skogforsk 7:1–46Google Scholar
  85. Makarova OA, Pohilko AA, Kushel JA (2001) Seasonal life of the nature in Kola Peninsula (in Russian, translated in English). Murmansk. ISBN 5-7744-0102-2Google Scholar
  86. Marchand FF, Nijs I, Heuer M, Mertens S, Kockelberg F, Pontailler JY, Impens I, Beyens L (2004) Climate warming postpones senescence in high arctic tundra. Arct Antarct Alp Res 36:390–394CrossRefGoogle Scholar
  87. Maxwell B (1992) Arctic climate: potential for change under global warming. In: Chapin FS, Jeffries RL, Reynolds JF, Shaver GR, Svoboda J (eds) Arctic ecosystems in a changing climate. Academic Press, New YorkGoogle Scholar
  88. Maxwell B (1997) Recent climate patterns in the Arctic. In: Oechel WC, Callaghan T, Gilmanov T, Holten JI, Maxwell B, Molau U, Sveinbjörnsson B (eds) Global change and arctic terrestrial ecosystems. Springer, HeidelbergGoogle Scholar
  89. Menzel A (2000) Trends in phenological phases in Europe between 1951 and 1996. Int J Biometeorol 44:76–81PubMedCrossRefGoogle Scholar
  90. Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P, Braslavska O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl Å, Defila C, Donnelly A, Filella Y, Jatczak K, Måge F, Mestre A, Nordli Ø, Penuelas J, Pirinen P, Remisová V, Scheifinger H, Striz M, Susnik A, van Vliet AJH, Wielgolaski FE, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Glob Change Biol 12:1969–1976CrossRefGoogle Scholar
  91. Moberg A (1857) Naturalhistoriska daganteckningar gjorda i Finland aaren 1750–1845 (in Swedish). Förh Sällsk Fauna Flora Fenn 3:95–250Google Scholar
  92. Moberg A (1894) Fenologiska iakttagelser i Finland aaren 1750–1845 (in Swedish). Finlands Nat Folk 55:1–165Google Scholar
  93. Moe A (1928) Dates of flowering for native and garden plants at Stavanger 1897–1926. Skr Det Norske Videnskaps-Akademi Oslo, 1, Mat-Naturv Kl 3:1–50Google Scholar
  94. Molau U (1993) Relationship between flowering phenology and life history strategies in tundra plants. Arctic Alp Res 25:391–402CrossRefGoogle Scholar
  95. Molau U (1997) Responses to natural climatic variation and experimental warming in two tundra plant species with contrasting life forms: Cassiope tetragona and Ranunculus nivalis. Glob Change Biol 3(suppl 1):97–107CrossRefGoogle Scholar
  96. Myking T (1997) Dormancy, budburst and impacts of climatic warming in coastal-inland and altitudinal Betula pendula and B. pubescens ecotypes. In: Lieth H, Schwartz MD (eds) Phenology in seasonal climates I. Backhuys Publication, LeidenGoogle Scholar
  97. Myking T (1999) Winter dormancy release and budburst in Betula pendula ROTH and B. pubescens EHRH. Ecotypes. Phyton (Horn, Austria) 39(4):139–145Google Scholar
  98. Myking T, Heide OM (1995) Dormancy release and chilling requirement of buds of latitudinal ecotypes of Betula pendula and B. pubescens. Tree Physiol 15:697–704PubMedCrossRefGoogle Scholar
  99. Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern latitudes from 1981 to 1991. Nature 386:698–702CrossRefGoogle Scholar
  100. Nordli Ø, Wielgolaski FE, Bakken AK, Hjeltnes SH, Måge F, Sivle A, Skre O (2008) Regional trends for bud burst and flowering of woody plants in Norway as related to climate change. Int J Biometeorol 52:625–639PubMedCrossRefGoogle Scholar
  101. Odland A (2011) Estimation of the growing season length in alpine areas: effects of snow and temperatures. In: Scmidt JG (ed) Alpine environment: geology, ecology and conservation. Nova Science Publication, New YorkGoogle Scholar
  102. Oechel WC, Billings WD (1992) Effects of global change on the carbon balance of arctic plants and ecosystems. In: Chapin FS, Jefferies RL, Reynolds JF, Shaver GR, Svoboda J (eds) Arctic ecosystems in a changing climate. Academic Press, New YorkGoogle Scholar
  103. Ovaska JA, Nilsen J, Wielgolaski FE, Kauhanen H, Partanen R, Neuvonen S, Kapari L, Skre O, Laine K (2005) Phenology and performance of mountain birch provenances in transplant gardens: latitudinal, altitudinal and oceanity-continentality gradients. In: Wielgolaski FE (ed) Plant ecology, herbivory and human impact in Nordic mountain birch forests. Springer, HeidelbergGoogle Scholar
  104. Partanen J, Beuker E (1999) Effects of photoperiod and thermal time on the growth rhythm of Pinus sylvestris seedlings. Scand J For Res 14:487–497Google Scholar
  105. Pettorelli N, Mysterud A, Yoccoz NG, Langvatn R, Stenseth NC (2005) Importance of climatological downscaling and plant phenology for red deer in heterogenous landscapes. Proc R Soc B 272:2357–2364PubMedCrossRefGoogle Scholar
  106. Philipp M, Böcher J, Mattson O, Woodell SRJ (1990) A quantitative approach to the sexual reproductive biology and population structure in some arctic flowering plants: Dryas integrifolia, Silene acaulis and Ranunculus nivalis. Medd Grønland Biosci 34:1–60Google Scholar
  107. Pieper SJ, Loeven V, Gill M, Johnstone JF (2011) Plant responses to natural and experimental variations in temperature in alpine tundra, southern Yukon, Canada. Arct Antarct Alp Res 43:442–456CrossRefGoogle Scholar
  108. Pop EW, Oberbauer SF, Starr G (2000) Predicting vegetative bud break in two arctic deciduous shrub species, Salix pulchra and Betula nana. Oecologia 124:176–184CrossRefGoogle Scholar
  109. Post E, Stenseth NC (1999) Climatic variability, plant phenology, and northern ungulates. Ecology 80:1322–1339CrossRefGoogle Scholar
  110. Post E, Pedersen C, Wilmers CC, Forchhammer MC (2008) Warming, plant phenology and the spatial dimension of trophic mismatch for large herbivores. Proc R Soc B 275:2005–2013PubMedCrossRefGoogle Scholar
  111. Printz HC (1865) Beretning om en i Sommeren 1864 foretagen botanisk Reise i Valders (in Norwegian). Nyt Mag Naturv 14:51–96Google Scholar
  112. Pudas E, Leppälä M, Tolvanen A, Poikolainen J, Venäläinen A, Kubin E (2008) Trends in phenology of Betula pubescens across the boreal zone in Finland. Int J Biometeorol 52:251–259PubMedCrossRefGoogle Scholar
  113. Resvoll TR (1918) Om planter som passer til kort og kold sommer, (in Norwegian). In: Helland A, Sars GO, Torup S (eds) Archiv for Mathematik og Naturvidenskab, M. Johansen Boktryukeri, KristianiaGoogle Scholar
  114. Robinson CH, Wookey PA, Lee JA, Callaghan TV, Press MC (1998) Plant community responses to simulated environmental change at a high Arctic polar semi-desert. Ecology 79:856–866CrossRefGoogle Scholar
  115. Rosenzweig C, Casassa G, Karoly DJ, Imeson A, Liu C, Menzel A, Rawlins S, Root TL, Seguin B, Tryjanowski P (2007) Assessment of observed changes and responses in natural and managed systems. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  116. Saino N, Ambrosini R, Rubolini D, von Hardenberg J, Provenzale A, Hüppop K, Hüppop O, Lehikoinen A, Rainio K, Romano M, Sokolov L (2011) Climate warming, ecological mismatch at arrival and population decline in migratory birds. Proc R Soc B 278:835–842PubMedCrossRefGoogle Scholar
  117. Schnelle F (1955) Pflanzen-Phänologie. Geest & Portig, LeipzigGoogle Scholar
  118. Schübeler FC (1885) Viridarium Norvegicum, Norges Vaextrige, Et Bidrag til Nord-Europas Natur- og Kulturhistorie, 1ste bind (in Norwegian). W. C. Fabritius, ChristianiaGoogle Scholar
  119. Schwartz MD (1997) Spring index models: an approach to connecting satellite and surface phenology. In: Lieth H, Schwartz MD (eds) Phenology in seasonal climates I. Backhuys Publication, LeidenGoogle Scholar
  120. Schwartz MD (1998) Green-wave phenology. Nature 394:839–840CrossRefGoogle Scholar
  121. Schwartz MD, Reiter BE (2000) Changes in North American spring. Int J Clim 20:929–932CrossRefGoogle Scholar
  122. Schwartz MD, Ahas R, Aasa A (2006) Onset of spring starting earlier across the northern Hemisphere. Glob Change Biol 12:343–351CrossRefGoogle Scholar
  123. Sheriff MJ, Kenagy GJ, Richter M, Lee T, Tøien Ø, Kohl F, Buck CL, Barnes BM (2011) Phenological variation in annual timing of hibernation and breeding in nearby populations of Arctic ground squirrels. Proc R Soc B 278:2369–2375PubMedCrossRefGoogle Scholar
  124. Shutova E, Wielgolaski FE, Karlsen SR, Makarova O, Berlina N, Filimonova T, Haraldsson E, Aspholm PE, Flø L, Høgda KA (2006) Growing seasons of Nordic mountain birch in northernmost Europe as indicated by long-term field studies and analyses of satellite images. Int J Biometeorol 51:155–166PubMedCrossRefGoogle Scholar
  125. Skjellvåg AO (1998) Climatic conditions for crop production in Nordic countries. Agric Food Sci Finl 7:149–160Google Scholar
  126. Skre O (2001) Climate change impact on mountain birch ecosystems. In: Wielgolaski FE (ed) Nordic mountain birch ecosystems. UNESCO/Parthenon Publication Group, Paris/New York/LondonGoogle Scholar
  127. Sörensen T (1941) Temperature relations and phenology of the northeast Greenland flowering plants. Medd Grönl 125:1–307Google Scholar
  128. Sparks TH, Bairlein F, Bojarinova JG, Hüppop O, Lehikoinen EA, Rainio K, Sokolov LV, Walker D (2005) Examining the total arrival distribution of migratory birds. Glob Change Biol 11:22–30CrossRefGoogle Scholar
  129. Stenström M, Gugerli F, Henry GHR (1997) Response of Saxifraga oppositifolia L. to simulated climate change at three contrasting latitudes. Glob Change Biol 3(suppl 1):44–54CrossRefGoogle Scholar
  130. Strand E (1965) Forelesning i plantekultur (in Norwegian.) Norges landbrukshögskole, AasGoogle Scholar
  131. Taylor SG (2008) Climate warming causes phenological shift in Pink Salmon, Oncorhynchus gorbuscha, behavior at Auke Creek, Alaska. Glob Change Biol 14:229–235CrossRefGoogle Scholar
  132. Thórhallsdóttir TE (1998) Flowering phenology in the central highland of Iceland and implications for climatic warming in the Arctic. Oecologia 114:43–49CrossRefGoogle Scholar
  133. Tømmervik H, Wielgolaski FE, Neuvonen S, Solberg B, Høgda KA (2005) Biomass and production on a landscape level in the mountain birch forests. In: Wielgolaski FE (ed) Plant ecology, herbivory, and human impact in Nordic mountain birch forests. Springer, Berlin/HiedelbergGoogle Scholar
  134. Tyler G (2001) Relationships between climate and flowering of eight herbs in a Swedish deciduous forest. Ann Bot 87:623–630CrossRefGoogle Scholar
  135. van der Jeugd H, Eichhorn G, Litvins KE, Stahl J, Larsson K, van der Graaf A, Drent RH (2009) Keeping up with early springs: rapid range expansion in avian herbivore incurs a mismatch between reproductive timing and food supply. Glob Change Biol 15:1057–1071CrossRefGoogle Scholar
  136. Vikhamar-Schuler D, Hanssen-Bauer I, Førland E (2010) Long-term climate trends of Finnmarksvidda, Northern-Norway. met. no. report 6/2010:1–41Google Scholar
  137. Visser ME, Both C, Lambrechts MM (2004) Global climate change leads to mistimed avian reproduction. Adv Ecol Res 3:89–110CrossRefGoogle Scholar
  138. Vitasse Y, Francois C, Delpierre N, Dufrene E, Kremer A, Chuine I, Delzon S (2011) Assessing the effects of climate change on the phenology of European temperate trees. Agric For Meteorol 151:969–980CrossRefGoogle Scholar
  139. Vors LS, Boyce MS (2009) Global declines of caribou and reindeer. Glob Change Biol 15:2626–2633CrossRefGoogle Scholar
  140. Walker MD, Wahren CH, Hollister RD, Henry GHR, Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP, Callaghan TV, Carroll AB, Epstein HE, Jónsdóttir IS, Klein JA, Magnússon B, Molau U, Oberbauer SF, Rewa SP, Robinson CH, Shaver GR, Suding KN, Thompson CC, Tolvanen A, Totland Ø, Turner PL, Tweedie CE, Webber PJ, Wookey PA (2006) Plant community responses to experimental warming across the tundra biome. PNAS 103:1342–1346PubMedCrossRefGoogle Scholar
  141. Wielgolaski FE (1974a) Phenological studies in tundra. In: Lieth H (ed) Phenology and seasonality modeling. Springer, New YorkGoogle Scholar
  142. Wielgolaski FE (1974b) Phenology in agriculture. In: Lieth H (ed) Phenology and seasonality modeling. Springer, New YorkGoogle Scholar
  143. Wielgolaski FE (1999) Starting dates and basic temperatures in phenological observations of plants. Int J Biometeorol 42:158–168CrossRefGoogle Scholar
  144. Wielgolaski FE (2000) Predictions in plant phenology. Paper presented at International congress: progress in phenology, FreisingGoogle Scholar
  145. Wielgolaski FE (2001) Phenological modifications in plants by various edaphic factors. Int J Biometeorol 45:196–202PubMedCrossRefGoogle Scholar
  146. Wielgolaski FE (2003) Climatic factors governing plant phenological phases along a Norwegian fjord. Int J Biometeorol 47:213–220PubMedCrossRefGoogle Scholar
  147. Wielgolaski FE (2009) Old Norwegian phenodata series in relation to recent ones. Int J Agrometeorol 14:33–38Google Scholar
  148. Wielgolaski FE, Kärenlampi L (1975) Plant phenology of Fennoscandian tundra areas. In: Wielgolaski FE (ed) Fennoscandian tundra ecosystems part1: plants and microorganisms. Springer, HeidelbergGoogle Scholar
  149. Wielgolaski FE, Nordli Ø, Karlsen SR (2011) Plant phenological variation related to temperature in Norway during the period 1928–1977. Int J Biometeorol 55:819–831PubMedCrossRefGoogle Scholar
  150. Wipf S (2010) Phenology, growth, and fecundity of eight subarctic tundra species in response to snowmelt manipulations. Plant Ecol 207:53–66CrossRefGoogle Scholar
  151. Woodley EJ, Svoboda J (1994) Effects of habitat on variations of phenology and nutrient concentration among four common plant species of the Alexandra Fiord Lowland. In: Svoboda J, Freedman B (eds) Ecology of a polar oasis, Alexandra Fiord, Ellesmere Island, Canada. Captus University Press, TorontoGoogle Scholar
  152. Wookey PA, Parsons AN, Welker JM, Potter JA, Callaghan TV, Press MC (1993) Comparative responses of phenology and reproductive development to simulated environmental change in sub-arctic and high-arctic plants. Oikos 67:490–502CrossRefGoogle Scholar
  153. Zeng H, Jia G, Epstein H (2011) Recent changes in phenology over the northern latitudes detected from multi-satellite data. Environ Res Lett 6:1–11. doi: 10.1088/1748-9326/6/4/045508 CrossRefGoogle Scholar
  154. Zhang X, Friedl MA, Schaaf CB, Strahler AH (2004) Climate controls on vegetation phenological patterns in northern mid- and high latitudes inferred from MODIS data. Glob Change Biol 10:1133–1145CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2013

Authors and Affiliations

  1. 1.Department of BioscienceUniversity of OsloOsloNorway
  2. 2.Department of Biology and Rocky Mountain Biological LaboratoryUniversity of MarylandCollege ParkUSA

Personalised recommendations