Mesic Temperate Deciduous Forest Phenology

  • Jonathan M. HanesEmail author
  • Andrew D. Richardson
  • Stephen Klosterman


Deciduous forests in temperate climates are characterized by significant seasonal changes in ecological and biogeochemical processes that are directly linked to forest phenology. The timing of spring leaf emergence and autumn leaf senescence is heavily determined by weather and climate, and these phenological events influence the seasonal cycles of water, energy, and carbon fluxes. In addition to its role in ecological interactions and in regulating ecosystem processes, deciduous forest phenology has also been shown to be a robust indicator of the biological impacts of climate change on forest ecosystems. With an emphasis on spring leaf emergence and autumn leaf senescence, this chapter highlights the phenology of canopy trees in mesic temperate deciduous forests by describing the climate of these forests, environmental drivers of phenology, feedback of phenology on lower atmospheric processes, impacts of climate change on phenology, and future research directions.


Deciduous Forest Leaf Emergence Carbon Uptake Chilling Requirement Grow Season Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



A.D.R. acknowledges support from the National Science Foundation, through the Macrosystems Biology program, award EF-1065029; the Northeastern States Research Cooperative; and the US Geological Survey Status and Trends Program, the US National Park Service Inventory and Monitoring Program, and the USA National Phenology Network through grant number G10AP00129 from the United States Geological Survey. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation or USGS.


  1. Ahrends HE, Etzold S, Kutsch WL, Stoeckli R, Bruegger R, Jeanneret F, Wanner H, Buchmann N, Eugster W (2009) Tree phenology and carbon dioxide fluxes: use of digital photography for process-based interpretation at the ecosystem scale. Clim Res 39:261–274. doi: 10.3354/cr00811 CrossRefGoogle Scholar
  2. Angert A, Biraud S, Bonfils C, Henning CC, Buermann W, Pinzon J, Tucker CJ, Fung I (2005) Drier summers cancel out the CO2 uptake enhancement induced by warmer springs. PNAS USA 102:10823–10827. doi: 10.1073/pnas.0501647102 CrossRefGoogle Scholar
  3. Archetti M, Richardson AD, O’Keefe J, Delpierre N (2013) Predicting climate change impacts on the amount and duration of autumn colors in a New England forest. PLoS One 8(3):e57373. doi: 10.1371/journal.pone.0057373.CrossRefGoogle Scholar
  4. Badeck FW, Bondeau A, Bottcher K, Doktor D, Lucht W, Schaber J, Sitch S (2004) Responses of spring phenology to climate change. New Phytol 162:295–309. doi: 10.1111/j.1469-8137.2004.01059.x CrossRefGoogle Scholar
  5. Baldocchi DD, Wilson KB (2001) Modeling CO2 and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales. Ecol Model 142:155–184. doi: 10.1016/S0304-3800(01)00287-3 CrossRefGoogle Scholar
  6. Baldocchi DD, Black TA, Curtis PS, Falge E, Fuentes JD, Granier A, Gu L, Knohl A, Pilegaard K, Schmid HP, Valentini R, Wilson K, Wofsy S, Xu L, Yamamoto S (2005) Predicting the onset of net carbon uptake by deciduous forests with soil temperature and climate data: a synthesis of FLUXNET data. Int J Biometeorol 49:377–387. doi: 10.1007/s00484-005-0256-4 CrossRefGoogle Scholar
  7. Caffarra A, Donnelly A (2011) The ecological significance of phenology in four different tree species: effects of light and temperature on bud burst. Int J Biometeorol 55:711–721. doi: 10.1007/s00484-010-0386-1 CrossRefGoogle Scholar
  8. Cannell MGR, Smith RI (1986) Climatic warming, spring budburst and frost damage on trees. J Appl Ecol 23:177–191CrossRefGoogle Scholar
  9. Chmielewski FM, Rötzer T (2001) Response of tree phenology to climate change across Europe. Agric For Meteorol 108:101–112. doi: 10.1016/S0168-1923(01)00233-7 CrossRefGoogle Scholar
  10. Chuine I (2000) A unified model for budburst of trees. J Theor Biol 207:337–347. doi: 10.1006/jtbi.2000.2178 CrossRefGoogle Scholar
  11. Dragoni D, Schmid HP, Wayson CA, Potter H, Grimmond CSB, Randolph JC (2011) Evidence of increased net ecosystem productivity associated with a longer vegetated season in a deciduous forest in south-central Indiana, USA. Glob Change Biol 17:886–897. doi: 10.1111/j.1365-2486.2010.02281.x CrossRefGoogle Scholar
  12. Estrella N, Menzel A (2006) Responses of leaf colouring in four deciduous tree species to climate and weather in Germany. Clim Res 32:253–267. doi: 10.3354/cr032253 CrossRefGoogle Scholar
  13. Fisher JI, Mustard JF, Vadeboncoeur MA (2006) Green leaf phenology at Landsat resolution: scaling from the field to the satellite. Remote Sens Environ 100:265–279. doi: 10.1016/j.rse.2005.10.022 CrossRefGoogle Scholar
  14. Fitzjarrald D, Acevedo OC, Moore KE (2001) Climatic consequences of leaf presence in the eastern United States. J Climate 14:598–614. doi: 10.1175/1520-0442(2001)014<0598:CCOLPI>2.0.CO;2 CrossRefGoogle Scholar
  15. Friedl M, Henebry G, Reed B, Huete A, White M, Morisette J, Nemani R, Zhang X, Myneni R (2006) Land surface phenology. Accessed 27 Jan 2012
  16. Garrity SR, Bohrer G, Maurer KD, Mueller KL, Vogel CS, Curtis PS (2011) A comparison of multiple phenology data sources for estimating seasonal transitions in deciduous forest carbon exchange. Agric For Meteorol 151:1741–1752. doi: 10.1016/j.agrformet.2011.07.008 CrossRefGoogle Scholar
  17. Ghelardini L, Santini A, Black-Samuelsson S, Myking T, Falusi M (2010) Bud dormancy release in elm (Ulmus spp.) clones-a case study of photoperiod and temperature responses. Tree Physiol 30:264–274. doi: 10.1093/treephys/tpp110 CrossRefGoogle Scholar
  18. Goulden ML, Munger JW, Fan SM, Daube BC, Wofsy SC (1996) Exchange of carbon dioxide by a deciduous forest: response to interannual climate variability. Science 271:1576–1578. doi: 10.1126/science.271.5255.1576 CrossRefGoogle Scholar
  19. Hanes JM, Schwartz MD (2011) Modeling land surface phenology in a mixed temperate forest using MODIS measurements of leaf area index and land surface temperature. Theor Appl Climatol 105:37–50. doi: 10.1007/s00704-010-0374-8 CrossRefGoogle Scholar
  20. Hänninen H, Tanino K (2011) Tree seasonality in a warming climate. Trends Plant Sci 18:1380–1385. doi: 10.1016/j.tplants.2011.05.001 Google Scholar
  21. Hayden BP (1998) Ecosystem feedbacks on climate at the landscape scale. Philos Trans R Soc Lond B 353:5–18. doi: 10.1098/rstb.1998.0186 CrossRefGoogle Scholar
  22. Heide OM (1993) Daylength and thermal time responses of budburst during dormancy release in some northern deciduous trees. Physiol Plant 88:531–540CrossRefGoogle Scholar
  23. Horvath DP, Anderson JV, Chao WS, Foley ME (2003) Knowing when to grow: signals regulating bud dormancy. Trends Plant Sci 8:534–540. doi: 10.1016/j.tplants.2003.09.013 CrossRefGoogle Scholar
  24. Hunter AF, Lechowicz MJ (1992) Predicting the timing of budburst in temperate trees. J Appl Ecol 29:597–604CrossRefGoogle Scholar
  25. Ibáñez I, Primack RB, Miller-Rushing AJ, Ellwood E, Higuchi H, Lee SD, Kobori H, Silander JA (2010) Forecasting phenology under global warming. Philos Trans R Soc Lond B 365:3247–3260. doi: 10.1098/rstb.2010.0120 CrossRefGoogle Scholar
  26. Keeling CD, Chin JFS, Whorf TP (1996) Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382:146–149. doi: 10.1038/382146a0 CrossRefGoogle Scholar
  27. Keskitalo J, Bergquist G, Gardestrom P, Jannson S (2005) A cellular timetable of autumn senescence. Plant Physiol 139:1635–1648. doi: 10.1104/pp. 105.066845 CrossRefGoogle Scholar
  28. Körner C, Basler D (2010) Phenology under global warming. Science 327:1461–1462. doi: 10.1126/science.1186473 CrossRefGoogle Scholar
  29. Kramer PJ (1936) Effect of variation in length of day on growth and dormancy of trees. Plant Physiol 11:127–137CrossRefGoogle Scholar
  30. Kramer K (1994a) Selecting a model to predict the onset of growth of Fagus sylvatica. J Appl Ecol 31:172–181CrossRefGoogle Scholar
  31. Kramer K (1994b) A modeling analysis of the effects of climatic warming on the probability of spring frost damage to tree species in the Netherlands and Germany. Plant Cell Environ 17:367–377. doi: 10.1111/j.1365-3040.1994.tb00305.x CrossRefGoogle Scholar
  32. Lebourgeois F, Pierrat JC, Perez V, Piedallu C, Cecchini S, Ulrich E (2010) Simulating phenological shifts in French temperate forests under two climatic change scenarios and four driving global circulation models. Int J Biometeorol 54:563–581. doi: 10.1007/s00484-010-0305-5 CrossRefGoogle Scholar
  33. Lee DW, O’Keefe J, Holbrook NM, Feild TS (2003) Pigment dynamics and autumn leaf senescence in a New England deciduous forest, eastern USA. Ecol Res 18:677–694. doi: 10.1111/j.1440-1703.2003.00588.x CrossRefGoogle Scholar
  34. Levis S, Bonan G (2004) Simulating springtime temperature patterns in the community atmosphere model coupled to the community land model using prognostic leaf area. J Clim 2:4531–4540. doi: 10.1175/3218.1 CrossRefGoogle Scholar
  35. Liang L, Schwartz MD (2009) Landscape phenology: an integrative approach to seasonal vegetation dynamics. Landsc Ecol 24:465–472. doi: 10.1007/s10980-009-9328-x CrossRefGoogle Scholar
  36. Matsumoto K, Ohta T, Irasawa M, Nakamura T (2003) Climate change and extension of the Ginkgo biloba L. growing season in Japan. Glob Change Biol 9:1634–1642. doi: 10.1046/j.1365-2486.2003.00688.x CrossRefGoogle Scholar
  37. Menzel A (2000) Trends in phenological phases in Europe between 1951 and 1996. Int J Biometeorol 44:76–81. doi: 10.1007/s004840000054 CrossRefGoogle Scholar
  38. Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659. doi: 10.1038/17709 CrossRefGoogle Scholar
  39. Menzel A, Estrella N, Heitland W, Susnik A, Schleip C, Dose V (2008) Bayesian analysis of the species-specific lengthening of the growing season in two European countries and the influence of an insect pest. Int J Biometeorol 52:209–218. doi: 10.1007/s00484-007-0113-8 CrossRefGoogle Scholar
  40. Migliavacca M, Sonnentag O, Keenan TF, Cescatti A, O’Keefe J, Richardson AD (2012) On the uncertainty of phenological responses to climate change and its implication for terrestrial biosphere models. Biogeosci Discuss 9:879–926. doi: 10.5194/bgd-9-879-2012 CrossRefGoogle Scholar
  41. Miller-Rushing AJ, Katsuki T, Primack RB, Ishii Y, Lee SD, Higuchi H (2007) Impact of global warming on a group of related species and their hybrids: cherry tree (Rosaceae) flowering at Mt. Takao, Japan. Am J Bot 94:1470–1478. doi: 10.3732/ajb.94.9.1470 CrossRefGoogle Scholar
  42. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. doi: 10.1002/joc.1181 CrossRefGoogle Scholar
  43. Mitchell TD, Carter TR, Jones PD, Hulme M, New M (2004) A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100). Tyndall Centre working paper No. 55. Accessed 12 June 2012
  44. Moore KE, Fitzjarrald DR, Sakai RK, Goulden ML, Munger JW, Wofsy SC (1996) Seasonal variation in radiative and turbulent exchange at a deciduous forest in central Massachusetts. J Appl Meteorol 35:122–134CrossRefGoogle Scholar
  45. Morin X, Lechowicz MJ, Augspurger C, O’ Keefe J, Viner D, Chuine I (2009) Leaf phenology in 22 North American tree species during the 21st century. Glob Change Biol 15:961–975. doi: 10.1111/j.1365-2486.2008.01735.x CrossRefGoogle Scholar
  46. Morisette JT, Richardson AD, Knapp AK, Fisher JI, Graham EA, Abatzoglou J, Wilson BE, Breshears DD, Henebry GM, Hanes JM, Liang L (2009) Tracking the rhythm of the seasons in the face of global change: phenological research in the 21st century. Front Ecol Environ 7:253–260. doi: 10.1890/070217 CrossRefGoogle Scholar
  47. Murray MB, Cannell MGR, Smith RI (1989) Date of budburst of fifteen tree species in Britain following climatic warming. J Appl Ecol 26:693–700CrossRefGoogle Scholar
  48. Myking T (1999) Winter dormancy release and budburst in Betula pendula Roth and B. pubescens Ehrh. ecotypes. Phyton 39:139–146Google Scholar
  49. Myking T, Heide OM (1995) Dormancy release and chilling requirement of buds and latitudinal ecotypes of Betula pendula and B. pubescens. Tree Physiol 15:697–704CrossRefGoogle Scholar
  50. Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702. doi: 10.1038/386698a0 CrossRefGoogle Scholar
  51. Norby RJ, Hartz-Rubin JS, Verbrugge MJ (2003) Phenological responses in maple to experimental atmospheric warming and CO2 enrichment. Glob Change Biol 9:1792–1801. doi: 10.1111/j.1365-2486.2003.00714.x CrossRefGoogle Scholar
  52. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D’Amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51:933–938. doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 CrossRefGoogle Scholar
  53. Peñuelas J, Filella I (2001) Responses to a warming world. Science 294:793. doi: 10.1126/science.1066860 CrossRefGoogle Scholar
  54. Perry TO (1971) Dormancy of trees in winter. Science 171:29–36CrossRefGoogle Scholar
  55. Pielke R, Avissar R, Raupach M (1998) Interactions between the atmosphere and terrestrial ecosystems: influence on weather and climate. Glob Change Biol 4:461–475. doi: 10.1046/j.1365-2486.1998.t01-1-00176.x CrossRefGoogle Scholar
  56. Polgar CA, Primack RB (2011) Leaf-out phenology of temperate woody plants: from trees to ecosystems. New Phytol 191:926–941. doi: 10.1111/j.1469-8137.2011.03803.x CrossRefGoogle Scholar
  57. Richardson AD, O’Keefe J (2009) Phenological differences between understory and overstory: a case study using the long-term Harvard Forest records. In: Noormets A (ed) Phenology of ecosystem processes. Springer, Dordrecht/Heidelberg/London/New YorkGoogle Scholar
  58. Richardson AD, Bailey AS, Denny EG, Martin CW, O’Keefe J (2006) Phenology of a northern hardwood forest canopy. Glob Change Biol 12:1174–1188. doi: 10.1111/j.1365-2486.2006.01164.x CrossRefGoogle Scholar
  59. Richardson AD, Jenkins JP, Braswell BH, Hollinger DY, Ollinger SV, Smith M (2007) Use of digital webcam images to track spring green-up in a deciduous forest. Oecologia 152:323–334. doi: 10.1007/s00442-006-0657-z CrossRefGoogle Scholar
  60. Richardson AD, Braswell BH, Hollinger DY, Jenkins JP, Ollinger SV (2009a) Near-surface remote sensing of spatial and temporal variation in canopy phenology. Ecol Appl 19:1417–1428. doi: 10.1890/08-2022.1 CrossRefGoogle Scholar
  61. Richardson AD, Hollinger DY, Dail DB, Lee JT, Munger JW, O’Keefe J (2009b) Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests. Tree Physiol 29:321–331. doi: 10.1093/treephys/tpn040 CrossRefGoogle Scholar
  62. Richardson AD, Anderson RS, Arain MA, Barr AG, Bohrer G, Chen G, Chen JM, Ciais P, Davis KJ, Desai AR, Dietze MC, Dragoni D, Garrity SR, Gough CM, Grant R, Hollinger DY, Margolis HA, McCaughey H, Migliavacca M, Monson RK, Munger JW, Poulter B, Raczka BM, Ricciuto DM, Sahoo AK, Schaefer K, Tian H, Vargas R, Verbeeck H, Xiao J, Xue Y (2012) Terrestrial biosphere models need better representation of vegetation phenology: results from the North American Carbon Program site synthesis. Glob Change Biol 18:566–584. doi: 10.1111/j.1365-2486.2011.02562.x CrossRefGoogle Scholar
  63. Rötzer T, Grote R, Pretzsch H (2004) The timing of bud burst and its effect on tree growth. Int J Biometeorol 48:109–118. doi: 10.1007/s00484-003-0191-1 CrossRefGoogle Scholar
  64. Rousi M, Pusenius J (2005) Variations in phenology and growth of European white birch (Betula pendula) clones. Tree Physiol 25:201–210. doi: 10.1093/treephys/25.2.201 CrossRefGoogle Scholar
  65. Rutishauser T, Luterbacher J, Defila C, Frank D, Wanner H (2008) Swiss spring plant phenology 2007: extremes, a multi-century perspective, and changes in temperature sensitivity. Geophys Res Lett 35:L05703. doi: 10.1029/2007GL032545 CrossRefGoogle Scholar
  66. Schaaf CB, Gao F, Strahler AH, Lucht W, Li X, Tsang T, Strugnell NC, Zhang X, Jin Y, Muller J, Lewis P, Barnsley M, Hobson P, Disney M, Roberts G, Dunderdale M, Doll C, d’Entremont RP, Hu B, Liang S, Privette JL, Roy D (2002) First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens Environ 83:135–148. doi: 10.1016/S0034-4257(02)00091-3 CrossRefGoogle Scholar
  67. Schwalm CR, Williams CA, Schaefer K, Anderson R, Arain MA, Baker I, Barr A, Black TA, Chen G, Chen JM, Ciais P, Davis KJ, Desai A, Dietze M, Dragoni D, Fischer ML, Flanagan LB, Grant R, Gu L, Hollinger D, Izaurralde RC, Kucharik C, Lafleur P, Law BE, Li L, Li Z, Liu S, Lokupitiya E, Luo Y, Ma S, Margolis H, Matamala R, McCaughey H, Monson RK, Oechel WC, Peng C, Poulter B, Price DT, Riciutto DM, Riley W, Sahoo AK, Sprintsin M, Sun J, Tian H, Tonitto C, Verbeeck H, Verma SB (2010) A model-data intercomparison of CO2 exchange across North America: results from the North American Carbon Program site synthesis. J Geophys Res 115:G00H05. doi: 10.1029/2009JG001229 CrossRefGoogle Scholar
  68. Schwartz MD, Hanes JM (2010) Intercomparing multiple measures of the onset of spring in eastern North America. Int J Climatol 30:1614–1626. doi: 10.1002/joc.2008 CrossRefGoogle Scholar
  69. Schwartz MD, Ahas R, Aasa A (2006) Onset of spring starting earlier across the northern Hemisphere. Glob Change Biol 12:343–351. doi: 10.1111/j.1365-2486.2005.01097.x CrossRefGoogle Scholar
  70. Tanino KK, Kalcsits L, Silim S, Kendall E, Gray G (2010) Temperature-driven plasticity in growth cessation in deciduous woody plants: a working hypothesis suggesting how molecular and cellular function is affected by temperature during dormancy induction. Plant Mol Biol 73:49–65. doi: 10.1007/s11103-010-9610-y CrossRefGoogle Scholar
  71. Taylor G, Tallis MJ, Giardina CP, Percy KE, Miglietta F, Gupta PS, Gioli B, Calfapietra C, Gielen B, Kubiske ME, Scarascia-Mugnozza GE, Kets K, Long SP, Karnosky DF (2008) Future atmospheric CO2 leads to delayed autumnal senescence. Glob Change Biol 14:264–275. doi: 10.1111/j.1365-2486.2007.01473.x CrossRefGoogle Scholar
  72. Vitasse Y, Porte AJ, Kremer A, Michalet R, Delzon S (2009) Responses of canopy duration to temperature changes in four temperate tree species: relative contributions of spring and autumn leaf phenology. Oecologia 161:187–198. doi: 10.1007/s00442-009-1363-4 CrossRefGoogle Scholar
  73. Vitasse Y, Francois C, Delpierre N, Dufrene E, Kremer A, Chuine I, Delzon S (2011) Assessing the effects of climate change on the phenology of European temperate trees. Agric For Meteorol 151:969–980. doi: 10.1016/j.agrformet.2011.03.003 CrossRefGoogle Scholar
  74. Zhang X, Friedl MA, Schaaf CB, Strahler AH, Hodges JCF, Gao F, Reed BC, Huete A (2003) Monitoring vegetation phenology using MODIS. Remote Sens Environ 84:471–475. doi: 10.1016/S0034-4257(02)00135-9 CrossRefGoogle Scholar
  75. Zhang X, Friedl MA, Schaaf CB, Strahler AH (2004) Climate controls on vegetation phenological patterns in northern mid- and high latitudes inferred from MODIS data. Glob Change Biol 10:1133–1145. doi: 10.1111/j.1365-2486.2004.00784.x CrossRefGoogle Scholar
  76. Zhang X, Tarpley D, Sullivan JT (2007) Diverse responses of vegetation phenology to a warming climate. Geophys Res Lett 34, L19405. doi: 10.1029/2007GL031447 CrossRefGoogle Scholar
  77. Zhao M, Running SW (2010) Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329:940–943. doi: 10.1126/science.1192666 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2013

Authors and Affiliations

  • Jonathan M. Hanes
    • 1
    Email author
  • Andrew D. Richardson
    • 2
  • Stephen Klosterman
    • 2
  1. 1.Department of GeographyUniversity of Wisconsin-MilwaukeeMilwaukeeUSA
  2. 2.Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeUSA

Personalised recommendations