Mediterranean Phenology

  • Donatella SpanoEmail author
  • Richard L. Snyder
  • Carla Cesaraccio


This chapter describes the five Mediterranean zones around the world and discusses vegetation and environmental factors, including climate, that make the Mediterranean Climate zones unique. Several key reports on the role of climate and climate change on phenological development of Mediterranean ecosystems are presented and discussed. The chapter talks about the impact of current and projected temperature and precipitation on phenology and emphasizes the importance of precipitation patterns on response to higher temperature. One conclusion is that more studies are needed on drought impact on phenology since water stress can increase plant temperature and result in even faster phenological development. Drought can speed up phenological development, but it can also impede growth and lead to reduced productivity.


Mediterranean Basin Summer Drought Mediterranean Ecosystem Mediterranean Species Phenological Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alba-Sanchez F, Sabariego-Ruiz S, De La Guardia CD, Nieto-Lugilde D, De Linares C (2010) Aerobiological behaviour of six anemophilous taxa in semi-arid environments of southern Europe (Almeria, SE Spain). J Arid Environ 74(11):1381–1391CrossRefGoogle Scholar
  2. Alessio GA, de Lillis M, Brugnoli E, Lauteri M (2004) Water source and water use efficiency in Mediterranean coastal dune vegetation. Plant Biol 6:350–357PubMedCrossRefGoogle Scholar
  3. Andresen LC, Michelsen A, Jonasson S, Schmidt IK, Mikkelsen TN, Ambus P, Beier C (2010) Plant nutrient mobilization in temperate heathland responds to elevated CO2, temperature and drought. Plant Soil 328:381–396CrossRefGoogle Scholar
  4. Archibold OW (1995) Ecology of world vegetation. Chapman & Hall, LondonCrossRefGoogle Scholar
  5. Arianoutsou M, Mardilis TA (1987) Observations on the phenology of two dominant plants of the Greek maquis. In: Tenhunen JD, Catarino FM, Lange OL, Oechel WC (eds) Plant response to stress: functional analysis in Mediterranean ecosystems, vol 15, NATO Adv Sci Inst Ser G Ecol Sci. Springer, Berlin/HeidelbergGoogle Scholar
  6. Askeyev OV, Tischin D, Sparks TH, Askeyev IV (2005) The effect of climate on the phe-nology, acorn crop and radial increment of pedunculate oak (Quercus robur) in the middle Volga region, Tatarstan, Russia. Int J Biometeorol 49:262–266PubMedCrossRefGoogle Scholar
  7. Bakkenes M, Alkemade JRM, Ihle F, Leemans R, Latour JB (2002) Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Glob Chang Biol 8:390–407CrossRefGoogle Scholar
  8. Beniston M, Stephenson DB, Christensen OB et al (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Chang 81:71–95CrossRefGoogle Scholar
  9. Bernal M, Estiarte M, Peñuelas J (2011) Drought advances spring growth phenology of the Mediterranean shrub Erica multiflora. Plant Biol 13:252–257PubMedCrossRefGoogle Scholar
  10. Bond WJ, Midgley JJ (2003) The evolutionary ecology of sprouting in woody plants. Int J Plant Sci 164:S103–S114CrossRefGoogle Scholar
  11. Borghetti M, Cinnirella S, Magnani F, Saracino A (1998) Impact of long-term drought on xylem embolism and growth in Pinus halepensis Mill. Trees 12:187–195Google Scholar
  12. Cannell MGR, Smith RI (1983) Thermal time, chill days and prediction of budburst in Picea sitchencis. J Appl Ecol 20:951–963CrossRefGoogle Scholar
  13. Castro J, Zamora R, Hodar JA, Gomez JM (2005) Alleviation of summer drought boosts establishment success of Pinus sylvestris in a Mediterranean mountain: an experimental approach. Plant Ecol 181:191–202CrossRefGoogle Scholar
  14. Castro-Díez P, Milla R, Virginia Sanz V (2005) Phenological comparison between two co-occurring Mediterranean woody species differing in growth form. Flora 200:88–95CrossRefGoogle Scholar
  15. Cesaraccio C, Spano D, Snyder RL, Duce P (2004) Chilling and forcing model to predict bud-burst of crop and forest species. Agric Forest Meteorol 126:1–13CrossRefGoogle Scholar
  16. Cheddadi R, Guiot J, Jolly D (2001) The Mediterranean vegetation: what if the atmospheric CO2 increased? Landsc Ecol 16:667–675CrossRefGoogle Scholar
  17. Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment re-port of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, NYGoogle Scholar
  18. Cody ML, Mooney HA (1978) Convergence versus non-convergence in Mediterranean-climate ecosystems. Annu Rev Ecol Syst 9:265–321CrossRefGoogle Scholar
  19. Correia OA, Martins AC, Catarino FM (1992) Comparative phenology and seasonal foliar nitrogen variation in Mediterranean species of Portugal. Ecol Mediterr 18:7–18Google Scholar
  20. Cowling RM, Rundel PW, Lamont BB, Arroyo MK, Arianoutsou M (1996) Plant diversity in Mediterranean-climate regions. Trends Ecol Evol 11:352–360CrossRefGoogle Scholar
  21. Cubasch U, Meehl GA, Boer GJ, Stouffer RJ, Dix M, Noda A, Senior CA, Raper S, Yap KS (2001) Projections on future climate change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden P, Dai X, Maskell K, Johnson CI (eds) Climate change 2001: the scientific basis, contribution of Working Group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  22. Davis GW, Richardson DM (1995) Mediterranean-type ecosystems. The function of biodiversity. Ecological studies, vol 109. Springer, BerlinCrossRefGoogle Scholar
  23. de Lillis M, Fontanella A (1992) Comparative phenology and growth in different species of the Mediterranean maquis of central Italy. Vegetatio 99–100:83–96CrossRefGoogle Scholar
  24. De Luis M, Gonzalez-Hidalgo JC, Raventos J (2003) Effects of fire and torrential rainfall on erosion in a Mediterranean gorse community. Land Degrad Dev 14:203–213CrossRefGoogle Scholar
  25. di Castri F (1973) Climatographical comparison between Chile and the western coast of North America. In: di Castri F, Mooney HA (eds) Mediterranean type ecosystems, origin and structure. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  26. di Castri F, Goodall DW, Specht RL (eds) (1981) Ecosystems of the world: Mediterranean-type shrublands. Elsevier Scientific Publishing Company, AmsterdamGoogle Scholar
  27. Dios Miranda JD, Padilla FM, Pugnaire FI (2009) Response of a Mediterranean semiarid community to changing patterns of water supply. Perspect Plant Ecol 11:255–266CrossRefGoogle Scholar
  28. Doi H, Takahashi M (2008) Latitudinal patterns in the phenological response of leaf colouring and leaf fall to climate change in Japan. Glob Ecol Biogeogr 17:556–561CrossRefGoogle Scholar
  29. Duce P, Spano D, Asunis C, Cesaraccio C, Sirca C, Motroni A (2000) Effect of climate variability on phenology and physiology of Mediterranean vegetation. In: 3rd European conference on Applied Climatology, PisaGoogle Scholar
  30. Duce P, Cesaraccio C, Spano D, Snyder RL (2002) Weather variability effect on phenological events in a Mediterranean-type climate. In: 15th conference on biometeorology/aero-biology and 16th international congress of biometeorology, Kansas CityGoogle Scholar
  31. Emberger L (1962) Comment comprendre le territoire phytogéographique méditerranéen francaiş et la position “systématique” de celui-ci. Nationalia Monspeliensia. Série Botanica 14:47–54Google Scholar
  32. Fischlin A, Midgley GF, Price JT, Leemans R, Gopal B, Turley C, Rounsevell MDA, Dube OP, Tarazona J, Velichko AA (2007) In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Ecosystems, their properties, goods, and services. Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  33. Fried JS, Torn MS, Mills E (2004) The impact of climate change on wildfire severity: a regional forecast for northern California. Clim Chang 64:169–191CrossRefGoogle Scholar
  34. Gao XJ, Giorgi F (2008) Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model. Glob Planet Chang 62:195–209CrossRefGoogle Scholar
  35. Gao XJ, Pal JS, Giorgi F (2006) Projected changes in mean and extreme precipitation over the Mediterranean region from a high resolution double nested RCM simulation. Geophys Res Lett 33:L03706. doi: 10.1029/2005GL024954 CrossRefGoogle Scholar
  36. García-de-Lomas J, Cózar A, Dana ED, Hernández I, Sánchez-García Í, García CM (2010) Invasiveness of Galenia pubescens (Aizoaceae): a new threat to Mediterranean-climate coastal ecosystems. Acta Oecol 36:39–45CrossRefGoogle Scholar
  37. García-Mozo H, Galán C, Aira MJ, Belmonte J, Díaz de la Guardia C, Fernández D, Gutierrez AM, Rodriguez FJ, Trigo MM, Dominguez-Vilches E (2002) Modelling start of oak pollen season in different climatic zones in Spain. Agric Forest Meteorol 110:247–257CrossRefGoogle Scholar
  38. García-Mozo H, Chuine I, Aira MJ, Belmonte J, Bermejo D, Díaz de la Guardia C, Elvira B, Gutiérrez M, Rodríguez-Rajo J, Ruiz L, Trigo MM, Tormo R, Valencia R, Galán C (2008) Regional phenological models for forecasting the start and peak of the Quercus pollen season in Spain. Agric Forest Meteorol 148:372–380CrossRefGoogle Scholar
  39. García-Mozo H, Mestre A, Galán C (2010) Phenological trends in southern Spain: a response to climate change. Agric Forest Meteorol 150(4):575–580CrossRefGoogle Scholar
  40. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Chang 63:90–104CrossRefGoogle Scholar
  41. Giorgi F, Bi X, Pal JS (2004) Mean, interannual variability and trends in a regional climate change experiment over Europe. II: climate change scenarios (2071–2100). Clim Dyn 23:839–858CrossRefGoogle Scholar
  42. Goldstein AH, Hultman NE, Fracheboud JM, Bauer MR, Panek JA, Xu M, Qi Y, Guenther AB, Baugh W (2000) Effects of climate variability on the carbon dioxide, water and sensible heat fluxes above a ponderosa pine plantation in the Sierra Nevada (CA). Agric Forest Meteorol 101:113–129CrossRefGoogle Scholar
  43. Gordo O, Sanz JJ (2005) Phenology and climate change: a long-term study in a Mediterranean locality. Oecologia 146:484–495PubMedCrossRefGoogle Scholar
  44. Gordo O, Sanz JJ (2009) Long-term temporal changes of plant phenology in the Western Mediterranean. Glob Chang Biol 15:1930–1948CrossRefGoogle Scholar
  45. Gordo O, Sanz JJ (2010) Impact of climate change on plant phenology in Mediterranean ecosystems. Glob Chang Biol 16:1082–1106CrossRefGoogle Scholar
  46. Graciano C, Guiamet JJ, Goya JF (2005) Impact of nitrogen and phosphorus fertilization on drought responses in Eucalyptus grandis seedlings. Forest Ecol Manag 212:40–49CrossRefGoogle Scholar
  47. Gratani L, Varone L (2004) Leaf key traits of Erica arborea L., Erica multiflora L. and Rosmarinus officinalis L. co-occurring in the Mediterranean maquis. Flora 199:58–69CrossRefGoogle Scholar
  48. Gritti ES, Smith B, Sykes MT (2006) Vulnerability of Mediterranean Basin ecosystems to climate change and invasion by exotic plant species. J Biogeogr 33:145–157CrossRefGoogle Scholar
  49. Gulmon SL (1977) A comparative study of grasslands of California and Chile. Flora 166:261–278Google Scholar
  50. Hanes TL (1981) California chaparral. In: di Castri F, Goodall DW, Specht RL (eds) Eco-systems of the world: Mediterranean-type shrublands. Elsevier Scientific Publishing Company, AmsterdamGoogle Scholar
  51. Hänninen H (1990) Modeling bud dormancy release in trees from cool and temperate regions. Acta For Fenn 213:1–47Google Scholar
  52. Hayhoe K, Cayan D, Field CB, Frumhoff PC, Maurer EP, Miller NL, Moser SC, Schneider SH, Cahill KN, Cleland EE, Dale L, Drapek R, Hanemann RM, Kalkstein LS, Lenihan J, Lunch CK, Neilson RP, Sheridan SC, Verville JH (2004) Emissions pathways, climate change, and impacts on California. Proc Natl Acad Sci U S A 101:12422–12427PubMedCrossRefGoogle Scholar
  53. Hollister RD, Webber PJ, Tweedie CE (2005) The response of Alaskan arctic tundra to experimental warming: differences between short- and long-term responses. Glob Chang Biol 11:525–536CrossRefGoogle Scholar
  54. Holmgren M, Stapp P, Dickman CR et al (2006) Extreme climatic events shape arid and semiarid ecosystems. Front Ecol Environ 4:87–95CrossRefGoogle Scholar
  55. Houghton JT, Ding Y, Griggs DJ, Noguer M, Van der Linden PJ, Xiaosu D (2001) Climate change 2001: the scientific basis. Contribution of Working Group I to the third as-sessment report of the intergovernmental panel on climate change (IPCC). Cambridge University Press, CambridgeGoogle Scholar
  56. Intergovernmental Panel on Climate Change (2007) Climate Change 2007: Synthesis report, contribution of Working Groups I, II and III to the fourth assessment report of the in-tergovernmental panel on climate change. IPCC, GenevaCrossRefGoogle Scholar
  57. Intergovernmental Panel on Climate Change, McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (eds) (2001) Climate change 2001: impacts, adaptation and vulnerability. Cambridge University Press, CambridgeGoogle Scholar
  58. International Union for the Conservation of Nature (1999) Biological diversity of dry land, Mediterranean, arid, semiarid, savanna, and grassland ecosystems, World Conservation Union: fourth meeting of subsidiary body on scientific, technical, and technological advice, MontrealGoogle Scholar
  59. Jato V, Rodríguez-Rajo FJ, Aira MJ (2007) Use of Quercus ilex subsp. ballota and pollen-production data for interpreting Quercus pollen curves. Aerobiologia 23:91–105CrossRefGoogle Scholar
  60. Jensen KD, Beier C, Michelsen A, Emmett BA (2003) Effects of experimental drought on microbial processes in two temperate heathlands at contrasting water conditions. Appl Soil Ecol 24:165–176CrossRefGoogle Scholar
  61. Joffre R, Rambal S (2002) Mediterranean ecosystems. In: Encyclopedia of life sciences. Wiley, Chichester. doi:  10.1038/npg.els.0003196
  62. Joffre R, Rambal S, Ratte JP (1999) The dehesa system of southern Spain and Portugal as a natural ecosystem mimic. Agrofor Syst 45:57–79CrossRefGoogle Scholar
  63. Körner C, Sarris D, Christodoulakis D (2005) Long-term increase in climatic dryness in the East Mediterranean as evidenced for the island of Samos. Reg Environ Chang 5:27–36CrossRefGoogle Scholar
  64. Kozlowski TT, Pallardy SG (1997) Physiology of woody plants. Academic, San DiegoGoogle Scholar
  65. Kramer K (1994) Selecting a model to predict the onset of growth of Fagus sylvatica. J Appl Ecol 31:172–181CrossRefGoogle Scholar
  66. Kramer K, Leinonen I, Loustau D (2000) The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forest ecosystems: an overview. Int J Biometeorol 44:67–75PubMedCrossRefGoogle Scholar
  67. Kummerow J (1981) Structure of roots and root systems. In: Di Castri F, Goodal DW, Specht RL (eds) Ecosystems of the world – Mediterranean-type shrublands. Elsevier, AmsterdamGoogle Scholar
  68. Kuzucuoglu C (1989) Fires in Mediterranean region. Blue Planet Ecol 72:371–412Google Scholar
  69. Lenihan JM, Drapek R, Bachelet D, Neilson RP (2003) Climate change effects on vegetation distribution, carbon, and fire in California. Ecol Appl 13:1667CrossRefGoogle Scholar
  70. Llorens L, Penuelas J (2005) Experimental evidence of future drier and warmer conditions affecting flowering of two co-occurring Mediterranean shrubs. Int J Plant Sci 166:235–245CrossRefGoogle Scholar
  71. Llorens L, Penuelas J, Estiarte M (2003) Ecophysiological responses of two Mediterranean shrubs, Erica multiflora and Globularia alypum, to experimentally drier and warmer conditions. Physiol Plant 119:231–243CrossRefGoogle Scholar
  72. Llorens L, Penuelas J, Estiarte M, Bruna P (2004) Contrasting growth changes in two dominant species of a Mediterranean shrubland submitted to experimental drought and warming. Ann Bot 94:843–853PubMedCrossRefGoogle Scholar
  73. Malcolm JR, Markham A, Neilson RP, Garaci M (2002) Estimated migration rates under scenarios of global climate change. J Biogeogr 29:835–849CrossRefGoogle Scholar
  74. Manes F, Capogna F, Puppi G, Vitale M (2002) Ecophysiological characterization of Phillirea angustifolia L. and response of resprouts to different fire disturbance intensities. In: Trabaud L, Prodon R (eds) Fire and biological processes. Backhuys Publishers, LeidenGoogle Scholar
  75. Martinez-Vilalta J, Pinol J (2002) Drought-induced mortality and hydraulic architecture in pine populations of the NE Iberian Peninsula. Forest Ecol Manag 161:247–256CrossRefGoogle Scholar
  76. Matias L, Castro J, Zamora R (2011) Soil nutrient availability under a global change scenario in a Mediterranean mountain ecosystem. Glob Chang Biol 17:1646–1657CrossRefGoogle Scholar
  77. Mendoza I, Zamora R, Castro J (2009) A seeding experiment for testing tree-community recruitment under variable environments: implications for forest regeneration and conservation in Mediterranean habitats. Biol Conserv 142:1491–1499CrossRefGoogle Scholar
  78. Menzel A, Estrella N, Testka A (2005) Temperature response rates from long-term phenological records. Clim Res 30:21–28CrossRefGoogle Scholar
  79. Menzel A, Sparks TH, Estrella N et al (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976CrossRefGoogle Scholar
  80. Midgley GF, Chapman RA, Hewitson B, Johnston P, De Wit M, Ziervogel G, Mukheibir P, Van Niekerk L, Tadross M, Van Wilgen BW, Kgope B, Morant PD, Theron A, Scholes RJ, Forsyth GG (2005) A status quo, vulnerability and adaptation assessment of the physical and socio-economic effects of climate change in the western Cape. Report to the Western Cape Government, Cape Town, South Africa. CSIR Report No. ENV-S-C 2005–073, CSIR Environmentek, StellenboschGoogle Scholar
  81. Milla R, Castro-Díez P, Montserrat-Martí G (2010) Phenology of Mediterranean woody plants from NE Spain: synchrony, seasonality, and relationships among phenophases. Flora 205:190–199CrossRefGoogle Scholar
  82. Minnich RA (1983) Fire mosaics in southern California and northern Baja California. Science 219:1287–1294PubMedCrossRefGoogle Scholar
  83. Miranda P, Coelho FES, Tomé AR, Valente MA (2002) 20th century Portuguese climate and climate change scenarios. In: Santos FD, Forbes K, Moita R (eds) Climate change in Portugal. Scenarios, impacts and adaptation measures. Gradiva, LisboaGoogle Scholar
  84. Moll EJ (1987) Phenology of Mediterranean plants in relation to fire season: with special reference to the Cape Province South Africa. In: Tenhunen JD, Catarino FM, Lange OL, Oechel WC (eds) Plant response to stress: functional analysis in Mediterranean ecosystems, NATO Adv Sci Inst Ser G Ecol Sci. Springer, Berlin/HeidelbergGoogle Scholar
  85. Moll EJ, Campbell BM, Cowling RM, Bossi L, Karman ML, Boucher C (1984) A description of major vegetation categories in and adjacent to the Fynbos biome. Report No. 83, S Afr Nat Sci ProgramGoogle Scholar
  86. Montenegro G (1987) Quantification of Mediterranean plant phenology and growth. In: Tenhunen JD, Catarino FM, Lange OL, Oechel WC (eds) Plant response to stress: functional analysis in Mediterranean ecosystems, NATO Adv Sci Inst Ser G Ecol Sci. Springer, Berlin/HeidelbergGoogle Scholar
  87. Mooney HA, Conrad CE (1977) Symposium on the environmental consequences of fire and fuel management in Mediterranean ecosystem. USDA Forest Service General, Technical report WO-3, U.S. Government Printing OfficeGoogle Scholar
  88. Mooney HA, Kummerow J (1981) Phenological development of plants in Mediterranean climate regions. In: di Castri F, Goodall DW, Specht RL (eds) Ecosystems of the world: Mediterranean-type shrublands. Elsevier Scientific Publishing Company, AmsterdamGoogle Scholar
  89. Mooney HA, Johnson A, Parson D, Keeley S, Hoffman A, Hays R, Giliberto J, Chu C (1977) The producers-their resources and adaptive response. In: Mooney HA (ed) Convergent evolution in Chile and California Mediterranean climate ecosystems. Dowden Hutchinson & Ross, StroudsburgGoogle Scholar
  90. Morin X, Roy J, Sonié L, Chuine I (2010) Changes in leaf phenology of three European oak species in response to experimental climate change. New Phytol 186(4):900–910PubMedCrossRefGoogle Scholar
  91. Mouillot F, Rambal S, Joffre R (2002) Simulating climate change impacts on fire frequency and vegetation dynamics in a Mediterranean-type ecosystem. Glob Chang Biol 8:423–437CrossRefGoogle Scholar
  92. Mouillot F, Ratte JP, Joffre R, Moreno JM, Rambal S (2003) Some determinants of the spatio-temporal fire cycle in a Mediterranean landscape (Corsica, France). Landsc Ecol 18:665–674CrossRefGoogle Scholar
  93. Munné-Bosch S, Nogués S, Alegre L (1999) Diurnal variations of photosynthesis and dew absorption by leaves in two evergreen shrubs growing in Mediterranean field conditions. New Phytol 144:109–119CrossRefGoogle Scholar
  94. Mutke S, Gordo J, Climent J, Gil L (2003) Shoot growth and phenology modeling of grafted stone pine (Pinus pinea L.) in inner Spain. Ann Forest Sci 60:527–537CrossRefGoogle Scholar
  95. Naveh Z (1990) Fire in the Mediterranean: a landscape perspective. In: Goldhammer JG, Jenkins MJ (eds) Fire in ecosystem dynamics. SPB Academic Publ, The HagueGoogle Scholar
  96. Oechel WC, Moreno MJ (1994) The role of fire in Mediterranean ecosystems. Springer, Berlin/HeidelbergGoogle Scholar
  97. Ogaya R, Peñuelas J (2004) Phenological patterns of Quercus ilex, Phillyrea latifolia, and Arbutus unedo growing under a field experimental drought. Ecoscience 11:263–270Google Scholar
  98. Ogaya R, Peñuelas J (2007) Tree growth, mortality, and above-ground biomass accumulation in a holm oak forest under a five-year experimental field drought. Plant Ecol 189:291–299CrossRefGoogle Scholar
  99. Orshan G (1989) Plant pheno-morphological studies in Mediterranean type ecosystems. Kluwer Acad Pub, DordrechtGoogle Scholar
  100. Osborne CP, Chuine I, Viner D, Woodward FI (2000) Olive phenology as a sensitive indicator of future climatic warming in the Mediterranean. Plant Cell Environ 23:701–710CrossRefGoogle Scholar
  101. Ovalle C, Aronson J, Del Pozo A, Avendano J (1990) The espinal: agroforestry system of the Mediterranean-type climate region of Chile. Agrofor Syst 10:213–239CrossRefGoogle Scholar
  102. Ovalle C, Aronson J, Del Pozo A, Avendano J (1996) Land occupation patterns and vegetation structure of the anthropogenic savannas (espinales) of central Chile. For Ecol Manage 86:129–139CrossRefGoogle Scholar
  103. Parry ML (ed) (2000) Assessment of potential effects and adaptations to climate change in Europe: the Europe Acacia Project. Report of concerted action of the environment programme of the Research Directorate General of the Commission of the European Communities, Jackson Environmental Institute, University of East Anglia, NorwichGoogle Scholar
  104. Pausas JG, Abdel Malak D (2004) Spatial and temporal patterns of fire and climate change in the eastern Iberian Peninsula (Mediterranean Basin). In: Arianoutsou M, Papanastasis VP (eds) Ecology, conservation and management of Mediterranean climate ecosystems of the world. 10th international conference on Mediterranean climate ecosystems, Rhodes, Greece. Millpress, RotterdamGoogle Scholar
  105. Pellizzaro G, Cesaraccio C, Duce P, Ventura A, Zara P (2007) Relationships between seasonal patterns of live fuel moisture and meteorological drought indices for Mediterranean shrubland species. Int J Wildland Fire 16:232–241CrossRefGoogle Scholar
  106. Peñuelas J (2001) Cambios atmosféricos y climáticos y sus consecuencias sobre el fun-cionamiento y la estructura de los ecosistemas terrestres mediterráneos. In: Zamora R, Pugnaire FI (eds) Ecosistemas mediterráneos Análisis functional. CSIC-AEET Press, GranadaGoogle Scholar
  107. Peñuelas J, Boada M (2003) A global change-induced biome shift in the Montseny mountains (NE Spain). Glob Chang Biol 9:131–140CrossRefGoogle Scholar
  108. Peñuelas J, Filella I (2001) Responses to a warming world. Science 294:793–795PubMedCrossRefGoogle Scholar
  109. Peñuelas J, Filella I, Comas P (2002) Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Glob Chang Biol 8:532–544Google Scholar
  110. Peñuelas J, Filella I, Zhang X, Llorens L, Ogaya R, Lloret F, Comas P, Estiarte M, Terradas J (2004) Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytol 161:837–846CrossRefGoogle Scholar
  111. Peñuelas J, Prieto P, Beier C, Cesaraccio C, De Angelis P, De Dato G, Emmett BA, Estiarte M, Garadnai J, Gorissen A, Kovács-Láng E, Kröel-Dulay G, Llorens L, Pellizzaro G, Riis-Nielsen T, Schmidt IK, Sirca C, Sowerby A, Spano D, Tietema A (2007) Response of plant species richness and primary productivity in shrublands along a north–south gradient in Europe to seven years of experimental warming and drought. Reductions in primary productivity in the heat and drought year of 2003. Glob Chang Biol 13:2563–2581CrossRefGoogle Scholar
  112. Peñuelas J, Lloret F, Montoya R (2001) Severe drought effects on mediterranean woody flora in Spain. Forest Sci 47:214–218Google Scholar
  113. Pereira JS, Beyschlag G, Lange OL, Beyschlag W, Tenhunen JD (1987) Comparative phenology of four Mediterranean shrub species growing in Portugal. In: Plant response to stress: functional analysis in Mediterranean ecosystems, NATO Adv Sci Inst Ser G Ecol Sci. Springer, Berlin/HeidelbergGoogle Scholar
  114. Pinto CA, Henriques MO, Figueiredo JP, David JS, Abreu FG, Pereira JS, Correia I, David TS (2011) Forest phenology and growth dynamics in Mediterranean evergreen oaks: effects of environmental conditions and water relations. Ecol Manag 262(3):500–508CrossRefGoogle Scholar
  115. Prieto P (2007) Phenology, biomass and community composition changes in a Mediterranean shrubland submitted to experimental warming and drought. Dissertation, Universitat Autònoma de Barcelona, BarcelonaGoogle Scholar
  116. Prieto P, Peñuelas J, Niinemets Ü, Ogaya R, Schmidt IK, Beier C, Tietema A, Sowerby A, Emmett BA, Kovács Láng E, Kröel-Dulay G, Lhotsky B, Cesaraccio C, Pellizzaro G, de Dato G, Sirca C, Estiarte M (2009) Changes in the onset of spring growth in shrubland species in response to experimental warming along a north–south gradient in Europe. Glob Ecol Biogeogr 18:473–484CrossRefGoogle Scholar
  117. Quezel P (1977) Forests of the Mediterranean basin. In: Mediterranean forests and maquis: ecology conservation and management. UNESCO, ParisGoogle Scholar
  118. Rambal S, Ourcival JM, Joffre R, Mouillot F, Nouvellon Y, Reichstein M, Rocheteau A (2003) Drought controls over conductance and assimilation of a Mediterranean evergreen ecosystem: scaling from leaf to canopy. Glob Chang Biol 9:1813–1824CrossRefGoogle Scholar
  119. Ramos MC, Martinez-Casasnovas JA (2004) Nutrient losses from a vineyard soil in North-eastern Spain caused by an extraordinary rainfall event. Catena 55:79–90CrossRefGoogle Scholar
  120. Reichstein M, Tenhunen JD, Roupsard O, Ourcival JM, Rambal S, Miglietta F, Peressotti A, Pecchiari M, Tirone G, Valentini R (2002) Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean evergreen sites: revision of current hypotheses? Glob Chang Biol 8:999–1017CrossRefGoogle Scholar
  121. Rodrigo FS (2002) Changes in climate variability and seasonal rainfall extremes: a case study from San Fernando (Spain), 1821–2000. Theor Appl Climatol 72:193–207CrossRefGoogle Scholar
  122. Rossiter RC, Ozanne PG (1970) South-western temperate forests, woodlands and heaths. In: Moore RM (ed) Australian grassland. Australian National University Press, CanberraGoogle Scholar
  123. Rundel PW (1981) The matorral zone of central Chile. In: di Castri F, Goodall DW, Specht RL (eds) Ecosystems of the world: Mediterranean-type shrublands. Elsevier Scientific Publishing Company, AmsterdamGoogle Scholar
  124. Rundel PW (1983) Impact of fire on nutrient cycles in Mediterranean-type ecosystems, with reference to chaparral. In: Kruger FJ, Mitchell DT, Jarvis JUM (eds) Mediterranean-type ecosystems: the role of nutrients. Springer, Berlin/HeidelbergGoogle Scholar
  125. Rundel PW (1995) Adaptive significance of some morphological and physiological characteristics in Mediterranean plants: facts and fallacies. In: Roy J, Aronson J, di Castri F (eds) Time scales of biological responses to water constraints: the case of Mediterranean biota. SPB Academic Publishers, AmsterdamGoogle Scholar
  126. Rundel PW (1998) Landscape disturbance in Mediterranean-type ecosystems: an overview. In: Rundel PW, Montenegro G, Jaksic FM (eds) Ecological studies: landscape degradation and biodiversity in Mediterranean-type ecosystems. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  127. Rundel PW (2007) Mediterranean-climate ecosystems. In: Levin S (ed) Encyclopedia of biodiversity. Academic, ElsevierGoogle Scholar
  128. Rundel PW, Vankat JL (1989) Chaparral communities and ecosystems. In: Keeley S (ed) The California chaparral: paradigms reexamined. Los Angeles County Museum of Natural History, Los AngelesGoogle Scholar
  129. Sala OE, Chapin IFS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DH, Mooney HA, Oesterheld M, Leroy Poff N, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774PubMedCrossRefGoogle Scholar
  130. Sanz-Pérez V, Castro-Díez P, Valladares F (2009) Differential and interactive effects of tem-perature and photoperiod on budburst and carbon reserves in two co-occurring Mediter-ranean oaks. Plant Biol 11(2):142–151PubMedCrossRefGoogle Scholar
  131. Sardans J, Penuelas J (2004) Increasing drought decreases phosphorus availability in an evergreen Mediterranean forest. Plant Soil 267:367–377CrossRefGoogle Scholar
  132. Sardans J, Penuelas J (2007) Drought changes phosphorus and potassium accumulation patterns in an evergreen Mediterranean forest. Funct Ecol 21:191–201CrossRefGoogle Scholar
  133. Sheffield J, Wood EF (2008) Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim Dyn 31:79–105CrossRefGoogle Scholar
  134. Simões MP, Madeira M, Gazarini L (2008) The role of phenology, growth and nutrient re-tention during leaf fall in the competitive potential of two species of Mediterranean shrubs in the context of global climate changes. Flora 203:578–589CrossRefGoogle Scholar
  135. Somot S, Sevault F, Deque M, Crepon M (2008) 21st century climate change scenario for the Mediterranean using a couple atmosphere ocean regional climate model. Glob Planet Chang 63:112–126CrossRefGoogle Scholar
  136. Spano D, Cesaraccio C, Duce P, Snyder RL (1999) Phenological stages of natural species and their use as climate indicators. Int J Biometeorol 42:124–133CrossRefGoogle Scholar
  137. Specht RL (1973) Structure and functional response of ecosystems in the Mediterranean climate of Australia. In: di Castri F, Mooney HA (eds) Mediterranean-type ecosystems, origin and structure. Springer, Berlin/HeidelbergGoogle Scholar
  138. Specht RL (1979) Ecosystems of the world: heathlands and related shrublands. Elsevier, AmsterdamGoogle Scholar
  139. Specht RL (1981) Mallee ecosystem in southern Australia. In: Castri F, Goodall DW, Specht RL (eds) Mediterranean-type shrublands. Elsevier, AmsterdamGoogle Scholar
  140. Tenhunen JD, Catarino FM, Lange OL, Oechel WC (1987) Plant response to stress: functional analysis in Mediterranean ecosystems, NATO Adv Sci Inst Ser G Ecol Sci. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  141. Thomas CD, Williams SE, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Philipps OL (2004) Biodiversity conservation: uncertainty in predictions of extinction risk/effects of changes in climate and land use/climate change and extinction risk (reply). Nature 430:34Google Scholar
  142. Thrower NJW, Bradbury DE (1973) The physiography of the Mediterranean lands with special emphasis on California and Chile. In: di Castri F, Mooney HA (eds) Mediterranean-type ecosystems, origin and structure. Springer, Berlin/HeidelbergGoogle Scholar
  143. Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci U S A 102:8245–8250PubMedCrossRefGoogle Scholar
  144. Trabaud L, Prodon R (1993) Fire in Mediterranean ecosystems. Commission of European Communities, BrusselsGoogle Scholar
  145. Tryjanowski P, Panek M, Sparks TH (2006) Phenological response of plants to temperature varies at the same latitude: case study of dog violet and horse chestnut in England and Poland. Clim Res 32:89–93CrossRefGoogle Scholar
  146. Valladares F, Vilagrosa A, Peñuelas J, Ogaya R, Camarero JJ, Corcuera L, Siso S, Gil Pelegrin E (2004) Estres hídrico: ecofisiología y escalas de la sequía. In: Valladares F (ed) Ecologia del bosque mediterráneo en un mundo cambiante. Ministerio de Medio Ambiente,EGRAF, S.A, MadridGoogle Scholar
  147. Viegas DX, Viegas MT, Ferreira AD (1992) Moisture content of fine forest fuels and fire occurrence in central Portugal. Int J Wildland Fire 2:69–86CrossRefGoogle Scholar
  148. Viegas DX, Piñol J, Viegas MT, Ogaya R (2001) Estimating live fine fuels moisture content using meteorologically-based indexes. Int J Wildland Fire 10:223–240CrossRefGoogle Scholar
  149. Zinke PJ (1973) Analogies between the soil and vegetation types in Italy, Greece and California. In: di Castri F, Mooney HA (eds) Mediterranean-type ecosystems, origin and structure. Springer, Berlin/HeidelbergGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2013

Authors and Affiliations

  • Donatella Spano
    • 1
    • 2
    Email author
  • Richard L. Snyder
    • 3
  • Carla Cesaraccio
    • 4
  1. 1.Department of Science for Nature and Environmental Resources (DipNet)University of SassariSassariItaly
  2. 2.Euro-Mediterranean Centre for Climate Change (CMCC)SassariItaly
  3. 3.Department of Land, Air, and Water ResourcesUniversity of CaliforniaDavisUSA
  4. 4.Institute of BiometeorologyNational Research CouncilSassariItaly

Personalised recommendations