Skip to main content

Resolution Limits of Nanoindentation Testing

  • Chapter
  • First Online:
Nanomechanical Analysis of High Performance Materials

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 203))

Abstract

As material and device length scales decrease, there must be a corresponding increase in the instrumentation resolution for accurate measurements. For these small length scale systems, including thin films, fine grained structures, and matrix composites, nanoindentation experiments provide a proven method for mechanical property measurements. Additionally, when nanoindentation is combined with scanning probe microscopy, individual tests can be placed directly in the regions of interest. However, these tests do not have infinite resolution, as they are limited by the volume probed during a test and the resulting residual damage. Here, an investigation of elastic and plastic mechanical properties is made in relation to the lateral test spacing and the mechanically probed volume. The results clearly show that closely spaced tests having residual plasticity adversely affect neighboring tests, having both poor accuracy and precision in the measurement. This is in contrast to purely elastic tests, which can be closely spaced without affecting accuracy or precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asif SAS, Wahl KJ, Colton RJ (1999) Nanoindentation and contact stiffness measurement using force modulation with a capacitive load-displacement transducer. Rev Sci Instrum 70(5):2408–2413. doi:10.1063/1.1149769

    Article  Google Scholar 

  • Asif SAS, Wahl KJ, Colton RJ, Warren OL (2001) Quantitative imaging of nanoscale mechanical properties using hybrid nanoindentation and force modulation. J Appl Phys 90(3):1192–1200

    Article  Google Scholar 

  • ASTM-E384—11e1 (2011) Standard test method for Knoop and Vickers hardness of materials. Physical testing standards and mechanical testing standards. ASTM International. West Conshohocken, USA. doi:10.1520/E0384-11E01

  • Cordill MJ, Lund MS, Parker J, Leighton C, Nair AK, Farkas D, Moody NR, Gerberich WW (2009) The Nano-Jackhammer effect in probing near-surface mechanical properties. Int J Plast 25(11):2045–2058. http://dx.doi.org/10.1016/j.ijplas.2008.12.015

    Google Scholar 

  • DIN ISO-6507-1 (2005) Metallic materials: Vickers hardness test—part 1: test method

    Google Scholar 

  • Durst K, Backes B, Göken M (2005) Indentation size effect in metallic materials: correcting for the size of the plastic zone. Scripta Mater 52(11):1093–1097. http://dx.doi.org/10.1016/j.scriptamat.2005.02.009

  • Gerberich WW, Tymiak NI, Grunlan JC, Horstemeyer MF, Baskes MI (2002) Interpretations of indentation size effects. J Appl Mech 69(4):433–442

    Article  MATH  Google Scholar 

  • Gerberich WW, Michler J, Mook WM, Ghisleni R, Östlund F, Stauffer DD, Ballarini R (2009) Scale effects for strength, ductility, and toughness in “brittle” materials. J Mater Res 24(03):898–906. doi:10.1557/jmr.2009.0143

    Article  Google Scholar 

  • Greenwood JA, Tripp JH (1967) The elastic contact of rough spheres. J Appl Mech 34(1):153–159

    Article  Google Scholar 

  • Hertz H (1896) Hertz’s miscellaneous papers. Macmilan, London

    Google Scholar 

  • ISO-14577-1 (2002) Metallic materials: instrumented indentation test for hardness and materials parameters—part 1: test method

    Google Scholar 

  • Jakes JE, Stone DS (2010) The edge effect in nanoindentation. Phil Mag 91(7–9):1387–1399. doi:10.1080/14786435.2010.495360

    Google Scholar 

  • Jakes JE, Frihart CR, Beecher JF, Moon RJ, Resto PJ, Melgarejo ZH, Suárez OM, Baumgart H, Elmustafa AA, Stone DS (2009) Nanoindentation near the edge. J Mater Res 24(03):1016–1031. doi:10.1557/jmr.2009.0076

    Article  Google Scholar 

  • Johnson KL (ed) (1985) Contact mechanics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Lucas BN, Oliver WC, Pharr GM, Loubet J-L (1996) Time dependent deformation during indentation testing. MRS online proceedings library 436: null–null. doi:10.1557/PROC-436-233

  • Nix WD, Gao H (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solid 46(3):411–425. http://dx.doi.org/10.1016/S0022-5096(97)00086-0

    Google Scholar 

  • Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(06):1564–1583. doi:10.1557/JMR.1992.1564

    Article  Google Scholar 

  • Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19(01):3–20. doi:10.1557/jmr.2004.19.1.3

    Article  Google Scholar 

  • Tabor D (1951) Hardness of metals. Oxford Calrendon Press, New York

    Google Scholar 

Download references

Acknowledgments

More information about nanoDMA III and Modulus Mapping can be found at www.Hysitron.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ude D. Hangen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hangen, U.D., Stauffer, D.D., Asif, S.A.S. (2014). Resolution Limits of Nanoindentation Testing. In: Tiwari, A. (eds) Nanomechanical Analysis of High Performance Materials. Solid Mechanics and Its Applications, vol 203. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6919-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6919-9_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6918-2

  • Online ISBN: 978-94-007-6919-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics