Skip to main content

Environmental Nanomechanical Testing of Polymers and Nanocomposites

  • Chapter
  • First Online:
Nanomechanical Analysis of High Performance Materials

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 203))

Abstract

The ever-increasing popularity of nanomechanical testing is being accompanied by the development of more and more novel test techniques and adaptation of existing techniques to work in increasingly environmentally challenging test conditions. Considerable progress has been made and reliable mechanical properties of materials can now be obtained at a range of temperature and surrounding media, greatly aiding development for operation under these environmental conditions. In this chapter several of these developments are reviewed, focussing on their use in the non-ambient nanomechanical testing of polymers and nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altaf K, Ashcroft IA, Hague R (2012) Modelling the effect of moisture on the depth sensing indentation response of a stereolithography polymer. Comput Mater Sci 52:112–117

    Article  Google Scholar 

  • Beake BD (2005) Evaluation of the fracture resistance of DLC coatings on tool steel under dynamic loading. Surf Coat Technol 198:90–93

    Article  Google Scholar 

  • Beake B (2006) Modelling indentation creep of polymers: a phenomenological approach. J Phys D Appl Phys 39:4478–4485

    Article  Google Scholar 

  • Beake BD (2010) Nanomechanical testing under nonambient conditions. American Scientific Publishers, Los Angeles

    Google Scholar 

  • Beake BD, Lau SP (2005) Nanotribological and nanomechanical properties of 5–80 nm tetrahedral amorphous carbon films on silicon. Diamond Relat Mater 14:1535–1542

    Article  Google Scholar 

  • Beake BD, Leggett GJ (2002) Nanoindentation and nanoscratch testing of uniaxially and biaxially drawn poly(ethylene terephthalate) film. Polymer 43:319–327

    Article  Google Scholar 

  • Beake BD, Smith JF (2002) High-temperature nanoindentation testing of fused silica and other materials. Philos Mag A 82:2179–2186

    Article  Google Scholar 

  • Beake BD, Smith JF (2004) Nano-impact testing—an effective tool for assessing the resistance of advanced wear-resistant coatings to fatigue failure and delamination. Surf Coat Technol 188–189:594–598

    Article  Google Scholar 

  • Beake BD, Leggett GJ, Alexander MR (2002a) Characterisation of the mechanical properties of plasma-polymerised coatings by nanoindentation and nanotribology. J Mater Sci 37:4919–4927

    Article  Google Scholar 

  • Beake BD, Zheng S, Alexander MR (2002b) Nanoindentation testing of plasma-polymerised hexane films. J Mater Sci 37:3821–3826

    Article  Google Scholar 

  • Beake BD, Shipway PH, Leggett GJ (2004) Influence of mechanical properties on the nanowear of uniaxially oriented poly(ethylene terephthalate) film. Wear 256:118–125

    Article  Google Scholar 

  • Beake BD, Bell GA, Brostow W et al (2007) Nanoindentation creep and glass transition temperatures in polymers. Polym Int 56:773–778

    Article  Google Scholar 

  • Beake BD, Goodes SR, Shi B (2009) Nanomechanical and nanotribological testing of ultra-thin carbon-based and MoST films for increased MEMS durability. J Phys D Appl Phys 42:065301

    Google Scholar 

  • Beake BD (2011) Nanomechanical testing under non-ambient conditions. In: Nalwa HS (ed) Encyclopedia of Nanoscience and Nanotechnology, 2nd edn. Vol. 18. American Scientific Publishers, Valencia, pp 115–120

    Google Scholar 

  • Bell GA, Bielinski DM, Beake BD (2008) Influence of water on the nanoindentation creep response of Nylon 6. J Appl Polym Sci 107:577–582

    Article  Google Scholar 

  • Bell GA, Chen J, Dong HS et al (2011) The design of a novel cryogenic nanomechanical and tribological properties instrumentation. Int Heat Treat Surf Eng 5:21–25

    Google Scholar 

  • Bermudez DM, Brostow W, Carrion-Vilches FJ et al (2005a) Wear of thermoplastics determined by multiple scratching. E-Polymers 001:1–9

    Google Scholar 

  • Bermudez MD, Brostow W, Carrion-Vilches FJ et al (2005b) Scratch velocity and wear resistance. E-Polymers 003:1–10

    Google Scholar 

  • Berthoud P, G’Sell C, Hiver JM (1999) Elastic-plastic indentation creep of glassy poly(methyl methacrylate) and polystyrene: characterization using uniaxial compression and indentation tests. J Phys D Appl Phys 32:2923–2932

    Article  Google Scholar 

  • Bower DI (2002) An introduction to polymer physics. Cambridge Univeristy Press, Cambridge

    Book  Google Scholar 

  • Briscoe BJ, Sinha SK (2003) Scratch resistance and localised damage characteristics of polymer surfaces—a review. Materialwiss Werkstofftech 34:989–1002

    Article  Google Scholar 

  • Brostow W, Cassidy PE, Macossay J et al (2003) Connection of surface tension with multiple tribological properties in epoxy plus fluoropolymer systems. Polym Inter 52:1498–1505

    Article  Google Scholar 

  • Brostow W, Clwnkaew W, Menard KP (2006) Connection between dynamic mechanical properties and sliding wear resistance of polymers. Mater Res Innovations 10:109

    Google Scholar 

  • Brostow W, Chonkaew W, Rapoport L et al (2007) Grooves in scratch testing. J Mater Res 22:2483–2487

    Article  Google Scholar 

  • Burris DL, Perry SS, Sawyer WG (2007) Macroscopic evidence of thermally activated friction with polytetrafluoroethylene. Tribol Lett 27:323–328

    Article  Google Scholar 

  • Casellas D, Caro J, Molas S et al (2007) Fracture toughness of carbides in tool steels evaluated by nanoindentation. Acta Mater 55:4277–4286

    Article  Google Scholar 

  • Chen J, Lu G (2012) Finite element modeling of nanoindentation based methods for mechanical properties of cells. J Biomec 45:2810–2816

    Article  Google Scholar 

  • Chen J, Bell GA, Dong HS et al (2010) A study of low temperature mechanical properties and creep behaviour of polypropylene using a new sub-ambient temperature nanoindentation test platform. J Phys D Appl Phys 43:425404

    Article  Google Scholar 

  • Chen J, Bell GA, Beake BD et al (2011) Low temperature nano-tribological study on a functionally graded tribological coating using nanoscratch tests. Tribol Lett 43:351–360

    Article  Google Scholar 

  • Chinh NQ, Gubicza J, Kovacs Z et al (2004) Depth-sensing indentation tests in studying plastic instabilities. J Mater Res 19:31–45

    Article  Google Scholar 

  • Chudoba T, Richter E (2001) Investigation of creep behaviour under load during indentation experiments and its influence on hardness and modulus results. Surf Coat Technol 148:191–198

    Article  Google Scholar 

  • Constantinides G, Kalcioglu ZI, McFarland M et al (2008a) Probing mechanical properties of fully hydrated gels and biological tissues. J Biomec 41:3285–3289

    Article  Google Scholar 

  • Constantinides G, Tweedie CA, Holbrook DM et al (2008b) Quantifying deformation and energy dissipation of polymeric surfaces under localized impact. Mater Sci Eng, A 489:403–412

    Google Scholar 

  • Dasari A, Yu ZZ, Mai YW (2009) Fundamental aspects and recent progress on wear/scratch damage in polymer nanocomposites. Mater Sci Eng, R 63:31–80

    Article  Google Scholar 

  • Duan ZC, Hodge AM (2009) High-temperature nanoindentation: new developments and ongoing challenges. JOM 61:32–36

    Article  Google Scholar 

  • Everitt NM, Davies MI, Smith JF (2011) High temperature nanoindentation—the importance of isothermal contact. Philos Mag 91:1221–1244

    Article  Google Scholar 

  • Feng G, Ngan AHW (2002) Effects of creep and thermal drift on modulus measurement using depth-sensing indentation. J Mater Res 17:660

    Article  Google Scholar 

  • Fink M, Fabing T, Scheerer M et al (2008) Measurement of mechanical properties of electronic materials at temperatures down to 4.2 K. Cryogenics 48:497–510

    Article  Google Scholar 

  • Fischer-Cripps AC (2006) Critical review of analysis and interpretation of nanoindentation test data. Surf Coat Technol 200:4153–4165

    Article  Google Scholar 

  • Fox-Rabinovich GS, Beake BD, Endrino JL et al (2006) Effect of mechanical properties measured at room and elevated temperatures on the wear resistance of cutting tools with TiAlN and AlCrN coatings. Surf Coat Technol 200:5738–5742

    Article  Google Scholar 

  • Gray A, Beake BD (2007) Elevated temperature nanoindentation and viscoelastic behaviour of thin poly(ethylene terephthalate) films. J Nanosci Nanotechnol 7:2530–2533

    Article  Google Scholar 

  • Gray A, Orecchia D, Beake BD (2009) Nanoindentation of advanced polymers under non-ambient conditions: creep modelling and tan delta. J Nanosci Nanotechnol 9:4514–4519

    Article  Google Scholar 

  • Hysitron (2012) Temperature control stages. http://hysitron.com/products/options-upgrades/temperature-control-stages. Accessed 22 Dec 2012

  • Iwabuchi, A. and T. Shimizu, et al. (1996). The development of a Vickers-type hardness tester for cryogenic temperatures down to 4.2 K. Cryogenics 36: 75–81

    Google Scholar 

  • Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  • Juliano TF, VanLandingham MR, Tweedie CA et al (2007) Multiscale creep compliance of epoxy networks at elevated temperatures. Exp Mech 47:99–105

    Article  Google Scholar 

  • Kalcioglu ZI, Qu M, Strawhecker KE et al (2011) Dynamic impact indentation of hydrated biological tissues and tissue surrogate gels. Philos Mag 91:1339–1355

    Article  Google Scholar 

  • Kaufman JD, Klapperich CM (2009) Surface detection errors cause overestimation of the modulus in nanoindentation on soft materials. J Mech Behav Biomed Mater 2:312–317

    Article  Google Scholar 

  • Korte S, Stearn RJ, Wheeler JM et al (2012) High temperature microcompression and nanoindentation in vacuum. J Mater Res 27:167–176

    Article  Google Scholar 

  • Kranenburg JM, Tweedie CA, van Vliet KJ et al (2009) Challenges and progress in high-throughput screening of polymer mechanical properties by indentation. Adv Mater 21:3551–3561

    Article  Google Scholar 

  • Li XD, Gao HS, Scrivens WA et al (2004) Nanomechanical characterization of single-walled carbon nanotube reinforced epoxy composites. Nanotechnology 15:1416–1423

    Article  Google Scholar 

  • Liu TX, Phang IY, Shen L et al (2004) Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules 37:7214–7222

    Article  Google Scholar 

  • Lu YC, Jones DC, Tandon GP et al (2010) High temperature nanoindentation of PMR-15 polyimide. Exp Mech 50:491–499

    Article  Google Scholar 

  • Mencik J, He LH, Swain MV (2009) Determination of viscoelastic-plastic material parameters of biomaterials by instrumented indentation. J Mech Behav Biomed Mater 2:318

    Article  Google Scholar 

  • MicroMaterials (2012) High and low temperature control. http://www.micromaterials.co.uk/the-nanotest/high-and-low-temperature-control. Accessed 22 Dec 2012

  • Monclus MA, Jennett NM (2011) In search of validated measurements of the properties of viscoelastic materials by indentation with sharp indenters. Philos Mag 91:1308–1328

    Article  Google Scholar 

  • Ngan AHW, Tang B (2002) Viscoelastic effects during unloading in depth-sensing indentation. J Mater Res 17:2604–2610

    Article  Google Scholar 

  • Ngan AHW, Tang B (2009) Response of power-law-viscoelastic and time-dependent materials to rate jumps. J Mater Res 24:853–862

    Article  Google Scholar 

  • Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583

    Article  Google Scholar 

  • Oyen ML (2005) Spherical indentation creep following ramp loading. J Mater Res 20:2094–2100

    Article  Google Scholar 

  • Oyen ML (2006) Analytical techniques for indentation of viscoelastic materials. Philos Mag 86:5625

    Article  Google Scholar 

  • Oyen ML (2007) Sensitivity of polymer nanoindentation creep measurements to experimental variables. Acta Mater 55:3633

    Article  Google Scholar 

  • Oyen ML, Cook RF (2009) A practical guide for analysis of nanoindentation data. J Mech Behav Biomed Mater 2:396–407

    Article  Google Scholar 

  • Phang IY, Liu TX, Mohamed A et al (2005) Morphology, thermal and mechanical properties of nylon 12/organoclay nanocomposites prepared by melt compounding. Polym Inter 54:456–464

    Article  Google Scholar 

  • Round AN, Yan B, Dang S et al (2000) The influence of water on the nanomechanical behavior of the plant biopolyester cutin as studied by AFM and solid-state NMR. Biophys J 79:2761–2767

    Article  Google Scholar 

  • Sawant A, Tin S (2008) High temperature nanoindentation of a Re-bearing single crystal Ni-base superalloy. Scripta Mater 58:275–278

    Article  Google Scholar 

  • Schmidt DJ, Cebeci FC, Kalcioglu ZI et al (2009) Electrochemically controlled swelling and mechanical properties of a polymer nanocomposite. ACS Nano 3:2207–2216

    Article  Google Scholar 

  • Schuh CA, Mason JK, Lund AC et al (2005) High temperature nanoindentation for the study of flow defects. Fundamentals of Nanoindentation and Nanotribology III, Boston

    Google Scholar 

  • Shen L, Phang IY, Chen L et al (2004a) Nanoindentation and morphological studies on nylon 66 nanocomposites. I. Effect Clay Loading Polym 45:3341–3349

    Google Scholar 

  • Shen L, Phang IY, Liu TX et al (2004b) Nanoindentation and morphological studies on nylon 66/organoclay nanocomposites. II. Effect Strain Rate Polym 45:8221–8229

    Google Scholar 

  • Singh SP, Smith JF, Singh RP (2008) Characterization of the damping behavior of a nanoindentation instrument for carrying out dynamic experiments. Exp Mech 48:571–583

    Article  Google Scholar 

  • Sinha SK, Lim D (2006) Effects of normal load on single-pass scratching of polymer surfaces. Wear 260:751–765

    Article  Google Scholar 

  • Sneddon IN (1965) The relation between load and penetration in axisymmetric Boussinesq problem for punch of arbitrary profile. Int J Eng Sci 3:47–57

    Article  MathSciNet  MATH  Google Scholar 

  • Suzuki T, Ohmura T (1996) Ultra-microindentation of silicon at elevated temperatures. Philos Mag A 74:1073–1084

    Article  Google Scholar 

  • Tehrani M, Safdari M, Al-Haik MS (2011) Nanocharacterization of creep behavior of multiwall carbon nanotubes/epoxy nanocomposite. Int J Plast 27:887–901

    Article  MATH  Google Scholar 

  • Tehrani M, Al-Haik M, Garmestani H et al (2012) Effect of moderate magnetic annealing on the microstructure, quasi-static, and viscoelastic mechanical behavior of a structural epoxy. J Eng, Mater Technol 134

    Google Scholar 

  • Tweedie CA, Van Vliet KJ (2006) Contact creep compliance of viscoelastic materials via nanoindentation. J Mater Res 21:1576–1589

    Article  Google Scholar 

  • Tweedie CA, Constantinides G, Lehman KE et al (2007) Enhanced stiffness of amorphous polymer surfaces under confinement of localized contact loads. Adv Mater 19:2540–2546

    Article  Google Scholar 

  • Xia J, Li CX, Dong H (2003) Hot-stage nano-characterisations of an iron aluminide. Mater Sci Eng, A 354:112–120

    Article  Google Scholar 

  • Xu GC, Li AY, De Zhang L et al (2004) Nanomechanic properties of polymer-based nanocomposites with nanosilica by nanoindentation. J Reinf Plast Compos 23:1365–1372

    Google Scholar 

  • Ye JP, Kojima N, Shimizu S et al (2005) High-temperature nanoindentation measurement for hardness and modulus evaluation of low-k films. Materials, Technology and Reliability for Advanced Interconnects, San Francisco

    Google Scholar 

  • Yoshino Y, Iwabuchi A, Onodera R et al (2001) Vickers hardness properties of structural materials for superconducting magnet at cryogenic temperatures. Cryogenics 41:505–511

    Article  Google Scholar 

  • Zhu Y, Okui N, Tanaka T et al (1991) Low temperature properties of hard elastic polypropylene fibres. Polymer 32:2588–2593

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben D. Beake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chen, J., Beake, B.D., Dong, H., Bell, G.A. (2014). Environmental Nanomechanical Testing of Polymers and Nanocomposites. In: Tiwari, A. (eds) Nanomechanical Analysis of High Performance Materials. Solid Mechanics and Its Applications, vol 203. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6919-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6919-9_4

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6918-2

  • Online ISBN: 978-94-007-6919-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics